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Abstract

In existing models of jointly-optimal fiscal and monetary policy, the monetary aspects of

the economic environment have little to do with capital taxation prescriptions. Instead, the

capital-taxation prescriptions of the underlying purely real economy in such models carry over

unchanged, qualitatively and very nearly quantitatively, to the monetary economy. In this pa-

per, we employ a micro-founded model of money in order to more meaningfully connect optimal

fiscal and monetary policy, with a particular focus on optimal capital taxation. Our main result

is that deep-rooted frictions underlying monetary trade in and of themselves provide a rationale

for nonzero capital taxation — specifically, for capital subsidies. Optimal capital subsidies arise

in versions of our model where monetary trades lead to capital holdup problems — in which

case the prescription to subsidize capital follows readily — as well as versions of our model

where holdup problems are absent. The latter result especially highlights the unique connection

between fiscal and monetary policy our model articulates because the underlying purely real

economy in our model features zero capital taxation. Connecting our results with some other

recent advances in optimal capital taxation, we prove that for some versions of our environment,

capital-income subsidies are consistent with zero intertemporal distortions. Our main conclusion

is that capital-tax policy can fundamentally be driven by monetary issues.
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1 Introduction

Ramsey models of jointly-optimal fiscal and monetary policy have only recently begun considering

how the presence of capital accumulation affects policy prescriptions. Schmitt-Grohe and Uribe

(2005) and Chugh (2007) both conclude that monopoly power in goods markets leads to capital

subsidies as part of the Ramsey policy. The intuition is of course straightforward: monopoly

power in goods markets leads to an inefficiently-low capital stock in the private economy, and a

benevolent government attempts to correct this by subsidizing capital. In neither Schmitt-Grohe

and Uribe (2005) nor Chugh (2007) is optimal capital taxation the main focus. However, in terms

of their capital-taxation implications, their results are essentially just an extension of Judd’s (2002)

demonstration — which does not rely at all on the existence of money or even a fully-specified

Ramsey optimal-taxation problem — that monopoly power in goods markets calls for subsidies to

capital. The monetary aspects of Schmitt-Grohe and Uribe’s (2005) and Chugh’s (2007) models

therefore have nothing to do with their capital taxation results. They both use simple reduced-form

models of money demand, which seems important for the lack of a deep connection between fiscal

policy and monetary policy.1 In particular, there is little sense in such models that monetary issues

drive fiscal policy prescriptions.

In this paper, we instead employ a micro-founded model of money in order to more meaningfully

connect optimal fiscal and monetary policy, with a particular focus on optimal capital taxation. Our

main result is that deep-rooted frictions underlying monetary trade in and of themselves provide a

rationale for subsidizing capital. Moreover, this result is specific to the fully-optimal joint fiscal and

monetary policy: if monetary policy were conducted in a (particular) sub-optimal way, the capital-

income tax rate would be zero. None of our optimal-taxation results is driven by incompleteness

of the tax system, as can often happen especially with regards to the capital-income tax. To the

contrary, our model features a complete set of tax instruments, which means there is (at least) one

policy instrument for every independent margin in the decentralized economy. Our results thus

illustrate that capital-tax policy can fundamentally be driven by monetary issues and can depend

in particular on the primitive reasons for money demand.

Our work is a policy application of the model of Aruoba, Waller, and Wright (2007), who build

on Lagos and Wright (2005) in order to integrate search-based monetary theory with a standard

RBC dynamic general equilibrium model featuring capital accumulation. As Aruoba, Waller, and

Wright (2007) — henceforth, AWW — show, if capital is used for production of goods that are

exchanged in bilateral trades, then holdup problems in capital accumulation generically arise when

the terms of trade in bilateral monetary transactions are determined via bargaining. These holdup

1Schmitt-Grohe and Uribe (2005) use a transactions-based velocity model, and Chugh (2007) uses a cash-

good/credit-good structure.
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problems in capital investment — that is, the fact that some parties must make unilateral capital

investment decisions but then share the fruits of the capital via production in bilateral trades —

lead to inefficiently-low capital accumulation. In the baseline AWW bargaining environment, we

find, perhaps not too surprisingly, that capital subsidies are optimal.

However, AWW also prove that if terms of trade in bilateral monetary transactions are de-

termined by competitive price determination, then capital holdup problems disappear (as does

another holdup problem related to money demand inherent in a micro-founded model of money).

A natural conjecture then is that a zero capital tax would be optimal. We show that this is in

fact not the case. Even though capital holdup problems disappear with competitive pricing, the

optimal monetary policy, which entails a deviation from the Friedman Rule of a zero net nominal

interest rate, distorts private-sector capital accumulation. Inflation thus acts as an indirect tax

on capital accumulation, which a capital-income subsidy then either partially or wholly offsets.

This latter result in particular is a nontrivial interaction between monetary and fiscal policy, one

that can only be revealed by our full Ramsey framework — that is, one that can arise only in

an environment with no lump-sum taxation. In this sense, optimal capital taxation is driven by

fundamentally monetary issues, in contrast to the results of Schmitt-Grohe and Uribe (2005) and

Chugh (2007), in which capital-taxation prescriptions are, qualitatively, independent of money de-

mand. This is the essence of our conclusion that the primitive reasons underlying money demand

may have important implications for how one thinks about optimal fiscal policy.

Our results can in a broad sense be viewed as a monetary counterpart to Acemoglu and Shimer

(1999), who demonstrate, in a purely real environment, that search and bargaining frictions in

labor markets lead to holdup problems in capital investment. Acemoglu and Shimer (1999) also

consider environments in which holdup problems are absent.2 While they do not explicitly draw

optimal taxation implications, it seems clear from their analysis that capital subsidies would be

optimal in their bargaining environment, but would be unnecessary when holdup problems are

absent. Similar to Acemoglu and Shimer (1999), we find that capital subsidies are optimal in our

bargaining environment, driven primarily by holdup problems. However, in contrast to Acemoglu

and Shimer (1999) and as we noted above, we find that capital subsidies continue to be optimal

even in the absence of holdup problems, driven by the unique connection between monetary policy

and fiscal policy that operates through monetary trades.

Our result can also be related to Albanesi and Armenter (2007), who recently provided a unified

framework in which to think about long-run capital taxation in both the Ramsey representative-

agent framework and the Mirrleesian heterogenous-agent framework. One particularly important

distinction they make is that between zero capital taxation and zero intertemporal distortions.

2In their model this occurs when labor-market search is directed by ex-ante price (wage) posting.
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They provide sufficient conditions under which a zero wedge between intertemporal marginal rates

of substitution and marginal rates of transformation is optimal. Whether this zero wedge requires a

zero capital tax or a nonzero capital tax then depends on the details of the economic environment.

Albanesi and Armenter’s (2007) framework does not encompass (either reduced-form or micro-

founded) monetary environments. However, we are able to prove for two important variants of our

model that a zero intertemporal distortion is optimal and, moreover, that capital subsidies are in

fact required to support a zero intertemporal distortion. For other versions of our model, in which

holdup problems afflicting money demand are present, we find that intertemporal distortions are

optimal. This latter result is yet another way in which fundamentally monetary issues in our model

have implications for capital-income taxation.

The main focus in this paper is on the long-run optimal capital tax. However, our model also

leads to other novel policy prescriptions. We have already mentioned that the Ramsey policy devi-

ates from the classic Friedman Rule of a zero net nominal interest rate. We also conduct stochastic

business-cycle simulations of our model; our central finding with regards to policy dynamics is that

inflation is extremely stable over the business cycle. This latter result is novel because it arises in

a flexible-price environment, which is counter to the conventional high-inflation-volatility result in

the flexible-price Ramsey literature since Chari, Christiano, and Kehoe (1991). The deviation from

the Friedman Rule and optimal inflation stability both arise in the simpler monetary environment

that was studied in Aruoba and Chugh (2007), an environment that featured no capital accumu-

lation. Thus, we document here that the results of Aruoba and Chugh (2007) readily extend to a

monetary model with capital; although we briefly discuss these results in our model here, we refer

interested readers to Aruoba and Chugh (2007) for more in-depth analysis on these two points.

As emphasized above, our results have nothing to do with incompleteness of the tax system.

As Chari and Kehoe (1999, p. 1679-1680) explain, an incomplete tax system is in place if, for at

least one pair of goods in the economy, the government has no policy instrument that drives a

wedge between the marginal rate of substitution (MRS) and the corresponding marginal rate of

transformation (MRT). As the examples of Correia (1996), Jones, Manuelli, and Rossi (1997), and

Armenter (2008) illustrate, incompleteness of the tax system typically leads to non-zero capital-

income taxation because the capital tax ends up substituting for the ability to create certain wedges.

Incompleteness of tax instruments does not plague our model. In our analysis, neither the non-zero

capital tax nor the deviation from the Friedman Rule arises due to any inability on the part of the

government to create wedges between one or more MRS/MRT pairs. Indeed, in Section 5, we prove

that our model features a complete set of policy instruments by demonstrating that the government

has one unique policy tool for each wedge between MRS and MRT that it might want to create.

The rest of our work is organized as follows. Section 2 describes the environment and charac-
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terizes the private sector equilibrium. Section 3 describes efficient allocations. Section 4 presents

the Ramsey problem. Section 5 proves that the tax system is complete in the sense defined above.

Section 6 presents analytical results, and Section 7 presents numerical results. Section 8 concludes.

We provide the details of some of our analytical results in the Appendix.

2 Model

Our model follows closely the baseline model in AWW, which extends the framework in Lagos and

Wright (2005) — henceforth, LW — to allow capital accumulation. The economy is populated by a

measure one of infinitely-lived ex-ante identical households. In any period t, households first trade

in a centralized market. During the centralized market (CM), a household rents its previously-

accumulated capital and supplies its labor on spot factor markets; it chooses CM consumption in a

spot goods market; and its adjusts its holdings of capital, a one-period nominal government bond,

and money. Prices are determined competitively in all trades executed in the CM.

Upon exiting the CM, each household receives an idiosyncratic taste shock which governs its

trading status in the second subperiod of period t. Trades in this second subperiod occur in a

decentralized fashion, hence the label decentralized market (DM). A given household is a buyer in

the DM with fixed probability σ, a seller with fixed probability σ, and neither a buyer nor a seller

with probability 1− 2σ. That is, with probability 1− 2σ, a household does not trade at all in the

DM.3

In the DM, buyers and sellers meet randomly, and trade is bilateral. In a given trade, a seller

household produces goods for the buyer household using effort and capital, and receives money in

return from the buyer. The terms of trade in a bilateral meeting are determined either through

bargaining, which has become fairly standard in this class of models, or through Walrasian pricing

(price-taking). We implement the latter pricing mechanism following Rocheteau and Wright (2005).

Relative to LW, the critical innovation in AWW is that capital is accumulated in the CM and used

in production in both the CM and the DM. As AWW show, with capital productive in both

markets, the “dichotomy” result of both LW and Aruoba and Wright (2003), in which CM and DM

allocations have nothing to do with each other, disappears.

Compared to AWW, we have reorganized the timing of markets by assuming that the CM meets

before the DM in a given period. We make this change to mimic as closely as possible the timing

assumption in standard monetary models — in particular, the cash-in-advance models of Lucas and

Stokey (1983) and Chari, Christiano, and Kehoe (1991) — in which asset trade occurs before trade

3This “taste shock” structure is simply a shortcut for the fully-specified environment in LW and the earlier

monetary theory literature, in which the environment is specified explicitly in terms of search and double-coincidence

problems. The two environments are formally identical.
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in those goods markets in which money is the medium of exchange. This change in the timing of

markets compared to AWW facilitates comparisons with these early seminal contributions to the

macro-Ramsey literature, but it turns out to be inconsequential for all of our results.

We next describe economic events in the model in some more detail and then derive equilibrium

conditions.

2.1 Production

In the CM, production takes place according to a constant-returns technology subject to TFP

shocks, Yt = ZtF (Kt, Ht). The notation is standard: Kt denotes aggregate capital, Ht denotes

aggregate labor, and Zt is the aggregate TFP shock. Profit-maximization by perfectly-competitive

firms leads to standard factor-price conditions: the wage satisfies wt = ZtFH(Kt,Ht), and the

rental price of capital satisfies rt = ZtFK(Kt,Ht).

In the period-t DM, sellers produce using their capital carried out of the period-t CM, which,

according to our timing and notational conventions, is Kt+1.4 Output in the DM is produced

according to the technology qt = Ztf(Kt+1, et), where et is the effort exerted by the seller, which

creates a disutility given by v(et).5 Solving for the effort necessary for producing qt units of DM

output using capital Kt+1 and aggregate technology state Zt and computing its disutility leads to

a cost function c(qt,Kt+1, Zt), which describes the total (utility) cost of production. With f(.)

strictly increasing and strictly concave in each of its two arguments, and v(.) strictly increasing

and strictly convex, it readily follows that cq > 0, ck < 0, cz < 0, cqq > 0, cqk < 0 and ckk > 0.

2.2 Households

A household enters the period-t CM with money holdings mt−1, nominal government bond holdings

bt−1, and capital holdings kt. Before events unfold in the CM, the government spending state,

Gt, and the TFP state Zt are realized; we denote the exogenous aggregate state collectively as

St = [Gt, Zt]. Denoting the household’s value function at the beginning of the period-t CM by Wt(.)

and the household’s value function at the beginning of the period-t DM by Vt(.), the household’s

CM problem is

Wt (mt−1, bt−1, kt, St) = max
xt,ht,mt,bt,kt+1

{U(xt)−Aht + Vt(mt, bt, kt+1, St)}

subject to

Ptxt + Pt

[
kt+1 − (1− τk

t )(rt − δ)kt

]
+ mt + bt = Ptwt(1− τh

t )ht + mt−1 + Rt−1bt−1.

4Specifically, with the CM convening before the DM, households exit the period-t CM with Kt+1 units of capital,

which is used in both period-t DM production and period-t + 1 CM production.
5To preserve the tractability of the model, we do not link DM effort to labor supply in the CM.
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Pt is the nominal price of the (only) consumption good in the CM, which is xt; Rt−1 is the gross

nominal return on the one-period government bond purchased in period t − 1; and τk
t and τh

t are

the tax rates on capital income (net of depreciation) and labor income, respectively.

The first-order conditions of this problem are

U ′(xt) =
A

wt(1− τh
t )

, (1)

A

Ptwt(1− τh
t )

= Vm,t(mt, bt, kt+1, St), (2)

A

Ptwt(1− τh
t )

= Vb,t(mt, bt, kt+1, St), (3)

and
A

wt(1− τh
t )

= Vk,t(mt, bt, kt+1, St). (4)

What makes the LW and AWW frameworks so tractable is the quasi-linearity of utility in the

CM (and, as a prerequisite of course, the very existence of the CM) compared to similar search-

based models in which households in equilibrium end up holding arbitrary non-negative quantities

of money — for example of the latter, see Molico (2006). As LW and AWW show, quasi-linear

CM utility implies that asset holdings — most importantly, money holdings — are identical across

households in equilibrium. This degeneracy of the asset distribution follows from the first-order

conditions (1)-(4), which together show that a given household’s CM marginal utility of wealth is

independent of its trading status in the previous DM.6 Thus, all households in equilibrium make

identical decisions in the CM. Another tractable implication of the CM problem is that Wt(.) is

linear in all its arguments, with marginal values given by

Wm,t(mt−1, bt−1, kt, St) =
A

Ptwt(1− τh
t )

,

Wb,t(mt−1, bt−1, kt, St) =
ARt−1

Ptwt(1− τh
t )

,

and

Wk,t(mt−1, bt−1, kt, St) =
A

[
1 + (rt − δ)

(
1− τk

t

)]

wt

(
1− τh

t

) .

Turning to the DM, we can write the problem of a household that enters the DM with portfolio

(mt, bt, kt+1) as

Vt(mt, bt, kt+1, St) = σ
{

u
(
qb
t

)
+ βEtWt+1

(
mt − db

t , bt, kt+1, St+1

)}

+ σ {−c (qs
t , kt+1, Zt) + βEtWt+1 (mt + ds

t , bt, St+1)} (5)

+ (1− 2σ)βEtWt+1 (mt, bt, kt+1, St+1) ,

6We refer interested readers to LW and AWW for more technical details.
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where the first line describes the expected payoff if the household is a buyer, the second line

describes the expected payoff if the household is a seller, and the last line describes the expected

payoff if the household does not participate in the DM. We use (qb
t , d

b
t) and (qs

t , d
s
t ) to represent the

terms of trade from the viewpoints of the buyers and sellers, respectively.7

Exploiting the linearity of Wt(.), (5) simplifies to

Vt(mt, bt, kt+1, St) = σ
{

u
(
qb
t

)
− c (qs

t , kt+1, Zt)− βχtd
b
t + βχtd

s
t

}
+ βEtWt+1 (mt, bt, kt+1, St+1) .

Thus, all we have to do to characterize the solution to the household’s problem is to compute the

partial derivatives of Vt(.), which we do below for both pricing schemes we consider, bargaining

and price-taking. As in AWW, capital’s role in the DM is only as a productive input; it cannot

be used as a medium of exchange. Those familiar with the AWW model may choose to skip the

following exposition and proceed directly to the Ramsey problem in Section 4.

2.2.1 Household DM Problem - Bargaining

In this class of models, the most commonly-used pricing protocols for DM trades is bargaining —

generalized Nash bargaining, in particular. Denote by θ the (generalized Nash) bargaining power

of the buyer, by (mt, bt, kt+1) the portfolio of the buyer, and by (m̃t, b̃t, k̃t+1) the portfolio of the

seller. The generalized Nash bargaining problem is thus

max
qt,dt

[u(qt) + βEtWt+1 (mt − dt, bt, kt+1, St+1)− βEtWt+1 (mt, bt, kt+1, St+1)]
θ

×
[
−c(qt, k̃t+1, Zt) + βEtWt+1

(
m̃t + dt, b̃t, k̃t+1, St+1

)
− βEtWt+1

(
m̃t, b̃t, k̃t+1, St+1

)]1−θ

subject to

dt ≤ mt. (6)

The amount of cash that a buyer turns over to a seller in a DM trade is dt; the constraint (6) is

thus simply a feasibility condition stating the buyer cannot spend more cash than he has on hand

before meeting the seller. The threat points in the bargaining problem are the values of continuing

on to the next CM, which occurs in period t + 1, without consummating a trade.

Once again using the linearity of Wt(.) and defining χt ≡ Et

[
A/{Pt+1wt+1(1− τh

t+1)}
]
, the

bargaining problem simplifies to

max
qt,dt

{u(qt)− βdtχt}θ
{
−c(qt, k̃t+1, Zt) + βdtχt

}1−θ

7Strictly speaking, we need to integrate these payoffs over the distribution of capital and money holdings in the

economy, but as LW and AWW show and as we summarized above, these distributions are degenerate.
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subject to (6). In equilibrium, one can show, as AWW do, that (6) binds and that the quantity

produced solves

βχtmt = g(q, k̃t+1, Zt),

where

g(q, k, Z) ≡ θc(q, k, Z)u′(q) + (1− θ)u(q)cq(q, k, Z)
θu′(q) + (1− θ)cq(q, k, Z)

.

These last two conditions show that (q, d) depends only on the buyer’s money holdings and the

seller’s capital holdings (along with, of course, the TFP realization), and on neither the seller’s

money holdings nor the buyer’s capital holdings.

Using the results from the bargaining problem, and taking the appropriate partial derivatives

of (qb
t , q

s
t , d

b
t , d

s
t ) with respect to the appropriate household’s own money and capital holdings, we

can compute the partial derivatives of Vt(.) to finish solving the household’s problem:

Vm,t (mt, bt, kt+1, St) = βχt

[
σ

u′(q)
gq(q, kt+1, Z)

+ 1− σ

]
,

Vb,t (mt, bt, kt+1, St) = βRtχt, (7)

and

Vk,t (mt, bt, kt+1, St) = −σ

[
−cq (qt, kt+1, Zt)

gk(qt, kt+1, Zt)
gq(qt, kt+1, Zt)

+ ck (qt, kt+1, Zt)
]

+βAEt

[
1 + (rt+1 − δ)

(
1− τk

t+1

)

wt+1

(
1− τh

t+1

)
]

.

In these expressions, we used ∂qb
t/∂mt = βχt/gq(qt, Zt) and ∂qs

t /∂kt = −gk(qt, kt+1, Zt)/gq(qt, kt+1, Zt).

Finally, defining

γ(qt, kt+1, Zt) ≡ cq(qt, kt+1, Zt)gk(qt, kt+1, Zt)− ck(qt, kt+1, Zt)gq(qt, kt+1, Zt)
gq(qt, kt+1Zt)

, (8)

we have

Vk,t (mt, bt, kt+1, St) = σγ(qt, kt+1, Zt) + βEt

{
χt

[
1 + (rt+1 − δ)

(
1− τk

t+1

)]}
.

The definition of γ(.) in (8) will be quite useful in understanding our bargaining model’s holdup

problem in capital investment.

2.2.2 Household DM Problem - Price-Taking

An alternative to bargaining is price taking, in which buyers and sellers each take the price of a

unit of good in the DM, p̃, as given and solve their respective demand and supply problems. The

buyer’s problem is

V b (mt, bt, kt+1, St) = max
q
{u (q) + βEtWt+1 (mt − p̃q, bt, kt+1, St+1)}
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subject to p̃q ≤ mt. In equilibrium, this constraint binds, and we have qt = Mt/p̃.

The seller’s problem is

V s (mt, bt, kt+1, St) = max
q
{−c (q, kt+1, Zt) + βEtWt+1 (mt + p̃q, bt, kt+1, St+1)} ,

with yields first-order condition cq(qt, kt+1, Zt) = βp̃χt. Using these two expressions, the two

envelope conditions we need to solve the problem of the household are

Vm,t (mt, bt, kt+1, St) = (1− σ) βχt + σβχt
u′ (qt)

cq (qt, kt+1, Zt)

and

Vk,t(mt, bt, kt+1, St) = −σck(qt, kt+1, Zt) + βEt

{
χt

[
1 + (rt+1 − δ)

(
1− τk

t+1

)]}
;

Vb,t(.) is still given by (7).

2.3 Government

Government consumption takes place in the CM and is financed by taxes on capital and labor

income as well as money creation and debt issuance. Its CM flow budget constraint is thus

Mt + Bt + Ptwtτ
h
t Ht + Ptτ

k
t (rt − δ)Kt = PtGt + Mt−1 + Rt−1Bt−1.

We show below that permitting the government to have access to other policy instruments that

affect either the CM or the DM has no bearing whatsoever on the Ramsey allocation.

2.4 Private Sector Equilibrium

Imposing equilibrium (mt = Mt, kt = Kt, etc.), and combining the optimality conditions for firms

and households, we now list the equilibrium conditions we use in writing the Ramsey problem.

2.4.1 Bargaining

Given policy processes {τh
t , τk

t , Rt}∞t=0, the technology process {Zt}∞t=0, the government spending

process {Gt}∞t=0, and initial conditions (M0, B0,K0), equilibrium is a collection of state-contingent

processes {qt, Bt,Mt,Kt, Xt,Ht, Pt}∞t=0 satisfying

U ′(Xt) =
A

(1− τh
t )ZtFH(Kt,Ht)

, (9)

βMtEt

[
U ′(Xt+1)

Pt+1

]
= g(qt,Kt+1, Zt), (10)

U ′(Xt) = βEt

{
U ′(Xt+1)

[
1 + (1− τk

t+1)(Zt+1FK(Kt+1,Ht+1)− δ)
]}

+ σγ(qt,Kt+1, Zt), (11)
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Rt = σ
u′(qt)

gq(qt,Kt+1, Zt)
+ 1− σ, (12)

U ′(Xt)
Pt

= βRtEt

[
U ′(Xt+1)

Pt+1

]
, (13)

Xt + Gt + Kt+1 = ZtF (Kt,Ht) + (1− δ)Kt, (14)

and

Mt + Bt + PtZtFH(Kt,Ht)τh
t Ht + Ptτ

k
t [ZtFK(Kt,Ht)− δ]Kt = PtGt + Mt−1 + Rt−1Bt−1. (15)

Some of these equilibrium conditions are identical to what one would get in a standard RBC model,

such as the consumption-leisure optimality condition (9) and the intertemporal Euler equation for

bonds in (13). Condition (10) follows from the solution to the DM bargaining problem, and (12)

is a no-arbitrage condition that links the nominal return on bonds to the implied return of holding

money.

Given our focus on capital income taxation, (11) deserves special attention. Except for the last

term on the right-hand-side, (11) is a standard intertemporal Euler equation for capital investment.

Because capital is used not only in the CM but also in the DM (with probability σ, if the household

turns out to be a seller), optimal investment decisions take this into account. The additional term

σγ(.) captures the return to capital in the DM, which reflects the fact that, all else equal, producing

a given quantity of DM output is cheaper if a seller has more capital.

To construct the Ramsey problem, we need a compact expression for real money balances;

combining (10), (12) and (13) we can express real money balances as

Mt

Pt
=

g(qt,Kt+1, Zt)
U ′(xt)

[
σ

u′(qt)
gq(qt,Kt+1, Zt)

+ 1− σ

]
. (16)

We should also note that any monetary equilibrium must satisfy Rt ≥ 1, which, when expressed in

terms of allocations using (12), translates into what we call the zero lower bound (ZLB) constraint

σ

(
u′(qt)

gq(qt,Kt+1, Zt)
− 1

)
≥ 0. (17)

2.4.2 Price-Taking

Given policy processes {τh
t , τk

t , Rt}∞t=0, the technology process {Zt}∞t=0, the government spending

process {Gt}∞t=0, and initial conditions (M0, B0,K0), equilibrium is a collection of state-contingent

processes {qt, Bt,Mt,Kt, Xt,Ht, Pt}∞t=0 satisfying (9), (13), (14), and (15), along with

βMtEt

[
U ′(Xt+1)

Pt+1

]
= qtcq(qt, Kt+1, Zt), (18)

U ′(Xt) = βEt

{
U ′(Xt+1)

[
1 + (1− τk

t+1)(Zt+1FK(Kt+1,Ht+1)− δ)
]}
− σck(qt,Kt+1, Zt), (19)
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and

Rt = σ
u′(qt)

cq(qt, Kt+1, Zt)
+ 1− σ. (20)

In the price-taking version of our environment, (19) replaces (11) as the intertemporal Euler

equation for capital. Instead of the γ(.) that appears in (11), (19) features −ck(.) as the DM return

to capital. From the definition in (8), γ(.) contains −ck(.), which describes the cost reduction for

a marginal change in capital, holding fixed output q. However, in γ(.), the cost reduction captured

by −ck(.) is at least partially offset by the increased cost due to the production of higher q, as

captured by the cq(.) > 0 term inside the γ(.) function.8

The presence of cq(.) > 0 inside γ(.) is a manifestation of the capital-holdup problem identified

by AWW. Because a household that turns out to be a seller does not enjoy the full return to its own

capital accumulation decision, but rather must share some of the return via ex-post bargaining with

a buyer, generically there will be under-accumulation of capital compared to the socially-optimal

level of capital. In the price-taking environment, however, the competitive nature of DM trades

circumvents this holdup problem — the terms of trade the seller faces, (q, d), are not affected by

his actions.

Next, real money balances can be expressed in the price-taking environment as

Mt

Pt
=

qtcq(qt,Kt+1, Zt)
U ′(Xt)

[
σ

u′(qt)
cq(qt,Kt+1, Zt)

+ 1− σ

]
,

which follows from (13), (18) and (20). Finally using (20), the ZLB constraint ensuring a monetary

equilibrium is

σ

(
u′(qt)

cq(qt,Kt+1, Zt)
− 1

)
≥ 0. (21)

3 Efficient Allocations, Holdup Problems and Intertemporal Effi-

ciency

Before turning to the Ramsey problem, we list the conditions that characterize the allocations

{qt,Kt+1, Xt,Ht} that a social planner would choose. Social efficiency is described by

u′(qt) = cq(qt,Kt+1, Zt), (22)

U ′(Xt) = βEt

{
U ′(Xt+1) [1 + (Zt+1FK(Kt+1,Ht+1)− δ)]

}− σck(qt, Kt+1, Zt), (23)

U ′(Xt) =
A

ZtFH(Kt,Ht)
, (24)

and

Xt + Gt + Kt+1 = ZtF (Kt,Ht) + (1− δ)Kt, (25)
8This latter reflects the fact that the bargaining solution yields ∂q/∂k > 0 for the seller.
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which do not require much comment because they follow readily from the definition of efficiency.9

Comparing (22)-(25) with the decentralized equilibrium conditions, however, is instructive.

We make several observations. First, obviously, in the presence of proportional taxes, neither

price-taking nor bargaining can achieve the social optimum. Second, shutting down proportional

taxes, the equilibrium under price-taking achieves the social optimum if Rt = 1, i.e. if the Friedman

Rule of a zero net nominal interest rate is in place. Third, even in the absence of proportional taxes

and at the Friedman Rule, the equilibrium under Nash bargaining can never achieve the social

optimum. This is due to the two holdup problems present in the bargaining environment, one that

afflicts money demand and one that, as we mentioned above, afflicts investment in capital.

The holdup problem in capital investment disappears if θ = 0, which leads to γ(.) = −ck(.)

and hence, as we discussed above, socially-optimal capital-accumulation incentives.10 However,

any θ < 1 means that households that turn out to be buyers have not accumulated the socially-

optimal level of money balances. This follows because θ < 1 ⇒ gq(.) 6= cq(.), which in turn means

that the social efficiency condition (22) will never coincide with the equilibrium condition (12).

Intuitively, unless the buyer knows he will receive the entire surplus from a bilateral DM trade

(which occurs only if θ = 1), ex-ante (i.e., in the immediately preceding CM), the buyer does not

have the socially-optimal incentives to accumulate money. This is a holdup problem in money

accumulation. Thus, while θ = 0 completely eliminates the capital holdup problem, the money

holdup problem is present.

Alternatively, the money holdup problem disappears if θ = 1. However, this also means γ(.) 6=
−ck(.), which we know from our discussion above distorts capital-accumulation incentives. Thus,

while θ = 1 completely eliminates the money holdup problem, the holdup problem in capital

investment is present.

For the intermediate cases θ ∈ (0, 1), both the money holdup problem and the capital holdup

problem are present because both gq(.) 6= cq(.) and γ(.) 6= −ck(.). But, interestingly, under price-

taking, both of these holdup problems disappear because no households — neither buyers nor sellers

— can affect the terms of DM trade through ex-ante accumulation choices. Thus, price-taking

achieves social efficiency under the Friedman Rule (again, though, absent proportional taxation —

we have not yet considered the Ramsey equilibrium).

Finally, for the subsequent analysis of the Ramsey problem and solution, it is useful to restate

the conditions describing efficient allocations in terms of marginal rates of substitution (MRS)

and corresponding marginal rates of transformation (MRT). To do this, note that our definition

of the cost function of DM sellers mixes notions of preferences with notions of technology. As

9They can be derived from maximizing social welfare given by (32) subject to the resource constraint (14).
10However, when θ = 0, or when sellers make take-it-or-leave-it offers, a monetary equilibrium does not exist since

the buyers have no incentive to carry money in to the DM.
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we described in Section 2.1, the primitives behind this reduced-form cost function are that DM

production occurs as sellers operate the technology q = Zf(k, e) while incurring the disutility of

effort v(e). It is easy to verify that the relationship between DM cost, utility, and production

functions implies cq(q, k, Z) = v′(e)/Zfe(k, e) and ck(q, k, Z) = −fk(k, e)v′(e)/fe(k, e).

Proposition 1. If the DM production function is q = Zf(k, e) and DM disutility of effort is v(e),

then the MRS and MRT for the pairs (et, qt), (Xt,Ht) and (Xt, Xt+1) are defined by

MRSet,qt ≡ −u′(qt)
v′(et)

MRTet,qt ≡ − 1
Ztfe(Kt+1, et)

MRSXt,Ht ≡ − A

U ′(Xt)
MRTXt,Ht ≡ −ZtFH(Kt,Ht) (26)

MRSXt,Xt+1 ≡
βU ′(Xt+1)

U ′(Xt)
MRTXt,Xt+1 ≡

1− σv′(et)fk(Kt+1, et)ZtFH(Kt,Ht)
Afe(Kt+1, et)

Zt+1FK(Kt+1, Ht+1) + 1− δ

Proof. See Appendix B.

Each MRS in Proposition 1 has the standard interpretation as a ratio of marginal utilities.

Similarly, each MRT has the interpretation as a ratio of the marginal products of an appropriately-

defined transformation frontier.11 In the static MRS/MRT pairs in the first two lines above,

negative signs appear because we have defined both CM and DM utility functions in terms of one

good (consumption) and one bad (labor, or, in the DM, effort). The MRS between Xt and Xt+1 is

of course standard.

The intertemporal MRT (IMRT) in the third line above deserves further discussion. We formally

derive the IMRT in Appendix B; an intuitive description suffices here. In the standard one-sector

RBC model, in which there is only one type of produced good, it is straightforward to define the

IMRT using the economy-wide intertemporal resource constraint. Due to our model’s two-sector

structure (DM and CM), however, defining the IMRT (in terms of CM consumption goods) is not as

simple. By definition, the IMRT measures how many units of Xt the economy must forego in order

to gain a given amount of Xt+1, holding output of all other goods in the economy constant. If Xt is

reduced by one unit, the economy gains one additional unit of capital Kt+1, which increases Xt+1

via period-t+1 CM production. Following period-t+1 production and subsequent depreciation, the

one unit reduction in Xt leads to a gain of Zt+1FK(Kt+1,Ht+1) + 1− δ. This channel is standard

in an RBC model, and it is present in our environment, as well. However, a second channel that

affects the IMRT is also at work in our environment. The additional unit of Kt+1 will also lead to

increased period-t DM production. Our definition of IMRT thus adjusts for this increase in qt.

Reverting to using the cost function in the DM, the following corollary characterizes the efficient

allocations in terms of MRSs and MRTs.
11We have in mind a very general notion of transformation frontier as in Mas-Colell et al (1995, p. 129).
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Corollary 1. The solution to the social planner’s problem is characterized by the CM resource

constraint (25) along with
MRSet,qt

MRTet,qt

≡ u′(qt)
cq(qt, Kt+1, Zt)

= 1, (27)

Et

[
MRSXt,Xt+1

MRTXt,Xt+1

]
≡ Et





βU ′(Xt+1) [Zt+1FK(Kt+1,Ht+1) + 1− δ]

U ′(Xt)
[
1 +

σck(qt,Kt+1, Zt)ZtFH(Kt,Ht)
A

]





= 1, (28)

and
MRSXt,Ht

MRTXt,Ht

≡ A

U ′(Xt) [ZtFH(Kt,Ht)]
= 1. (29)

Proof. Obvious from the definition of the cost function c(.), Proposition 1, and (22)-(24)

Corollary 1 shows that the economically-efficient allocations in our model can be described in

terms of “zero-wedge conditions” between MRSs and MRTs. This way of understanding efficiency

is of course standard, but given the novelty of our model, it is important to show how to precisely

express efficiency in terms of the zero-wedge expressions (27), (28), and (29). This is especially

important because, as Chari and Kehoe (1999, p. 1674) emphasize, optimal tax theory is really

about the determination of optimal wedges between MRSs and MRTs. In what follows, we take

expressions (27), (28), and (29) as the conditions that define zero wedges.

4 Ramsey Problem

As is common in the public finance approach to macroeconomic policy since Lucas and Stokey

(1983), we use the primal approach and cast the Ramsey problem as the problem of a benevolent

planner who chooses allocations subject to their implementation as a monetary equilibrium. We

prove the following Proposition in Appendix A.1.

Proposition 2. The allocations in a monetary equilibrium satisfy the resource constraint (14),

the ZLB constraint ((17) for the bargaining model or (21) for the price-taking model), and the

present-value implementability constraint (PVIC),

E0

∞∑
t=0

βt

[
U ′(Xt)Xt −AHt + σg(qt,Kt+1, Zt)

(
u′(qt)

gq(qt,Kt+1, Zt)
− 1

)
+ σγ(qt,Kt+1, Zt)Kt+1

]
= U ′(X0)A0

(30)

for the bargaining model or

E0

∞∑
t=0

βt

[
U ′(Xt)Xt −AHt + σqtcq(qt,Kt+1, Zt)

(
u′(qt)

cq(qt,Kt+1, Zt)
− 1

)
− σck(qt,Kt+1, Zt)Kt+1

]
= U ′(X0)A0

(31)
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for the price-taking model, where the constant A0 depends on M0, B0, and K0,

A0 =
M−1 + R−1B−1

P0
+

[
1 + (1− τk

0 )(Z0FK(K0, H0)− δ)
]
K0.

Comparing these PVICs with ones from standard flexible-price models, such as the ones in

Chari and Kehoe (1999), the third and fourth terms on the left-hand-sides of (30) and (31) are

novel. As Aruoba and Chugh (2007) argue, the third term is simply the marginal utility of money

times the amount of real money balances, where the “marginal utility” stems from being able to

consume more in the DM if the household happens to be a buyer. Similarly, the fourth term is

nothing but the marginal DM benefit of capital times the capital holdings of the household. This

extra benefit accrues when the household is a seller (with probability σ), and the benefit terms

γ(.) (bargaining) or −ck(.) (price-taking) arise directly from the intertemporal Euler equations for

capital in the respective environments.

Integrating over all households, the Ramsey problem is to choose {Xt,Ht, Kt+1, qt} to maximize

E0

∞∑

t=0

βt {U(Xt)−AHt + σ [u(qt)− c(qt,Kt+1, Zt)]} (32)

subject to the resource constraint (14), the PVIC ((30) for the bargaining model or (31) for the

price-taking model), and the ZLB constraint ((17) for the bargaining model or (21) for the price-

taking model), taking as given {Gt, Zt} and K0. In Appendix A.2, we list the conditions that

characterize the solution to this problem for both pricing schemes, along with the conditions that

allow us to construct the policies and prices that support the Ramsey allocation.

5 Completeness of the Tax System

As we discussed in the introduction, an important issue in models of optimal taxation is whether or

not the assumed tax instruments constitute a complete tax system.12 In this section, we establish

that the tax system is complete in our model. Establishing this is important for two reasons.

First, at a technical level, proving completeness reaffirms that the Ramsey problem as formulated

in Section 4, in which the only constraints are the sequence of CM resource constraints and the

single PVIC, is indeed the correct Ramsey problem.13 As shown by Chari and Kehoe (1999, p.

1680), Correia (1996), Armenter (2008), and many others, incompleteness of the tax system requires

12For convenience, we restate the definition of Chari and Kehoe (1999, 1679-1680) that an incomplete tax system

is in place if, for at least one pair of goods in the economy, the government has no policy instrument that drives

a wedge between the marginal rate of substitution (MRS) and the corresponding marginal rate of transformation

(MRT). If this is not the case, then the tax system is instead said to be complete.
13For the purpose of establishing completeness, the ZLB constraint is irrelevant because it stems from the need to

implement a monetary equilibrium and has nothing to do with completeness/incompletness of the tax system.
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imposing additional constraints that reflect the incompleteness. Incompleteness is not an issue in

our model, therefore we do not need to impose additional constraints. Second, it is well-known

in Ramsey theory that incomplete tax systems can lead to a wide range of “non-standard” policy

prescriptions in which some instruments stand in for the ability to create certain wedges that

cannot, by assumption of the available tax instruments, be created in a decentralized economy.

Proving completeness therefore establishes that none of our results is due to any policy instrument

serving as imperfect proxies for other, unavailable, instruments.

As we showed in Section 3, there are three independent MRS/MRT pairs in the environment,

and expressions (27)-(29) state the efficiency conditions in terms of these MRS/MRT pairs. Com-

pleteness of the tax system requires that each of these margins is affected by (at least) one policy

instrument. To establish completeness, we first express explicitly in terms of MRS/MRT pairs

the private-sector equilibrium conditions that are the analogs of the efficiency conditions (27)-(29).

For simplicity and brevity, we do this for the price-taking version of the model, but the ensuing

arguments and logic hold for bargaining as well.

Using (9), (19), (20), and the definitions of MRSs and MRTs presented in Proposition 1, we

have that in the decentralized economy

MRSet,qt

MRTet,qt

= 1 +
Rt − 1

σ
, (33)

Et

{
MRSXt,Xt+1

MRTXt,Xt+1

}
=

[
1 +

σck (qt,Kt+1, Zt) ZtFH(Kt, Ht)
A

]−1

× (34)
{[

1 +
σck (qt,Kt+1, Zt)

U ′(Xt)

]
+ βEt

[
τk
t+1U

′(Xt+1) [Zt+1FK(Kt+1,Ht+1)− δ]
U ′(Xt)

]}

and
MRSXt,Ht

MRTXt,Ht

= 1− τh
t . (35)

Next, we express in the same way the first-order conditions of the Ramsey planner (which are

derived in Appendix A.2); doing so gives

MRSet,qt

MRTet,qt

= 1− ξ

1 + ξ

[
qtu

′′(qt)− qtcqq(qt,Kt+1, Zt)− cqk(qt,Kt+1, Zt)Kt+1

cq(qt,Kt+1, Zt)

]
(36)

− ιt
1 + ξ

[
u′′(qt)cq(qt,Kt+1, Zt)− u′(qt)cqq(qt, Kt+1, Zt)

[cq(qt,Kt+1, Zt)]3

]
,

Et

{
MRSXt,Xt+1

MRTXt,Xt+1

}
=

[
1 +

σck(qt,Kt+1, Zt)ZtFH(Kt,Ht)
A

]−1

× (37)
{

1 +
σck (qt,Kt+1, Zt) + ξU ′′ (Xt) Xt + σξC1t + σιtC2t − βξEt {U ′′ (Xt+1) Xt+1 [Zt+1FK (t + 1) + 1− δ]}

(1 + ξ)U ′(Xt)

}
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and
MRSXt,Ht

MRTXt,Ht

= 1 +
(

ξ

1 + ξ

)
U ′′(Xt)Xt

U ′(Xt)
. (38)

In (37), C1t and C2t are expressions defined in Appendix A.2, and ξ and ιt are the Lagrange

multipliers of the Ramsey problem associated, respectively, with the PVIC and the sequence of

ZLB constraints.

We are now ready to establish completeness of the tax system.

Proposition 3. Completeness of the Tax System.

1. Suppose that the Ramsey allocation converges to a deterministic steady state. In the steady

state of a competitive equilibrium, the three policy instruments R, τh and τk can uniquely

create, in the margins defined by conditions (27), (28), and (29), the wedges implied by the

steady-state Ramsey allocation.

2. Along the dynamic path of any competitive equilibrium, the instruments Rt and τh
t can

uniquely create, in the margins defined by conditions (27) and (29), the wedges implied by the

dynamic path of the Ramsey allocation.

Proof. For the first part of the statement, we compare the steady versions of (33)-(35) with those

of (36)-(38). The second part of the statement follows directly because (33), (35), (36) and (38)

are all static conditions.

Note that, with reference to wedges between the IMRS and IMRT, Proposition 3 covers only

the steady state. As is well-understood in Ramsey theory, outside of steady state, if both a state-

contingent capital-income tax and state-contingent government debt returns are possible (the latter

can be achieved in our environment via state-contingent movements in the inflation rate, which

affect the realized real returns on nominal government debt), both cannot be simultaneously pinned

down.14 In fact, as in virtually all of the literature, our analytical results regarding capital-income

taxes are only steady-state results (while our results regarding the optimality of the Friedman rule

cover both in- and out-of-steady-state allocations).

Having proven completeness of the tax system, we next proceed to characterizing the optimal

policy by solving the Ramsey problem as defined in Section 4 and decentralizing it using policy

instruments. We emphasize that none of the policy prescriptions obtained is because one (or more)

of the policy instruments that is assumed available is acting as an imperfect substitute for a policy

instrument that is assumed unavailable.

14See, for example, the discussion in Chari and Kehoe (1999, p. 1708) or Ljunqvist and Sargent (2004, p. 500-502).
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6 Optimal Policy: Analytical Results

Now that we have proven completeness of the tax system, we are able to prove the following

Propositions that characterize the optimal policy. We focus on two cases because analytical proofs

can be obtained for them: bargaining with θ = 1 (buyer-take-all) and price-taking. We find

numerically that most of the results we prove here also hold for the calibrated version of the model

with θ < 1; for those results that do not hold under θ < 1, there are clear economic explanations.15

6.1 Optimal Positive Nominal Interest Rate

Proposition 4. (Optimal Deviation from the Friedman Rule under Bargaining) Under

bargaining, if θ = 1, the optimal policy features a strictly positive net nominal interest rate in

every period t ≥ 1. Furthermore, if u(.) is CRRA (constant relative risk aversion), and the DM

production function f(k, e) is constant-returns-to-scale, then the optimal nominal interest rate is

constant over time.

Proof. Consider the first-order condition of the Ramsey problem with respect to qt, which is ex-

pression (51) in Appendix A.2. With θ = 1, we have g(q, K,Z) = c(q,K, Z) and γ(q, K, Z) = 0.

Dropping all arguments of functions, dropping time subscripts because everything is period-t, and

assuming the ZLB never binds (i.e., the multiplier ιt = 0 in expression (51)), this first-order condi-

tion simplifies to

u′ − cq = −
(

ξ

1 + ξ

)
c

cq

[
u′′ − u′cqq

cq

]
. (39)

Because the multiplier on the PVIC ξ > 0 under the Ramsey allocation, u is strictly concave,

c > 0, cq > 0, and cqq > 0, the right-hand-side of (39) is strictly positive. This in turn implies

u′ > cq, and

σ
u′(qt)

cq(qt,Kt+1, Zt)
+ 1− σ > 1.

But this implies, by the equilibrium condition (17) with θ = 1 imposed, that Rt > 1. We have thus

proven that the Friedman Rule is never optimal and that the ZLB never binds.

Now assume u(q) = q(1−η)/(1− η) and f(k, e) = k1−φeφ. These assumptions lead to

Rt = σ

[
1−

(
ξ

1 + ξ

)
ηφ

(
1 +

1− φ

ηφ

)]−1

+ 1− σ,

which clearly shows the optimal nominal interest rate is constant over time; further details appear

in Appendix B.

15In the bargaining version with θ < 1, some proofs depend on the signs of higher-order derivatives of already

complicated functions such as gqk which are indeterminate in general.
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Proposition 5. (Optimal Deviation from the Friedman Rule under Price-Taking) Under

price-taking, if the DM production function f(k, e) is constant-returns-to-scale, the optimal policy

features a strictly positive net nominal interest rate in every period t ≥ 1. Furthermore, if u(.)

is CRRA (constant relative risk aversion), then the optimal nominal interest rate is constant over

time.

Proof. We start from the first-order condition of the Ramsey problem with respect to qt, which is

expression (56) in Appendix A.2. Once again dropping all arguments of functions, dropping time

subscripts because everything is period-t, (except, recall, that K chosen in period t is Kt+1 by our

timing and notational convention), and assuming the ZLB never binds (i.e., the multiplier ιt = 0

in expression (56)), this first-order condition simplifies to

u′ − cq = −
(

ξ

1 + ξ

) [
qu′′ − qcqq − cqkK

]
.

As we demonstrate in Appendix B, if the DM production function is constant-returns-to-scale, then

qcqq + cqkK = 0. In this case, we get

u′ − cq = −
(

ξ

1 + ξ

)
qu′′ > 0, (40)

which together with (21) imply that Rt > 1. The Friedman Rule is thus never optimal and the ZLB

constraint never binds. Comparing (40) with (36) it is clear that supporting the Ramsey allocation

requires creating a wedge in the (et, qt) margin; condition (33) shows this is achieved by setting

Rt > 1.

If we also assume CRRA utility in the DM, we get

Rt = σ

[
1−

(
ξ

1 + ξ

)
η

]−1

+ 1− σ, (41)

which clearly shows the optimal nominal interest rate is constant over time; further details appear

in Appendix B.

The Ramsey allocation features a qt smaller than the Pareto-optimal level. This is true in both

the price-taking and buyer-take-all bargaining environments. In a Ramsey allocation, in general

one should expect all final goods — q is, after all, a final good in the economy — to be below

their Pareto-optimal levels, and so it is in our Ramsey allocation as well.16 To decentralize this

feature of the Ramsey allocation, what is needed is the ability to create a wedge between the

MRS and MRT in condition (27). Expression (33) shows that there is a policy instrument — the

nominal interest rate — that achieves precisely this. Thus, a strictly positive net nominal interest

rate (i.e., Rt > 1) creates exactly the wedge between MRS and MRT that the Ramsey allocation
16For example, see Diamond and Mirrlees (1971) or Atkinson and Stiglitz (1980).
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requires. The deviation from the Friedman Rule does not arise as an imperfect substitute for some

other instrument. In other words, as we proved in Section 5, this result has nothing to do with

incompleteness of the tax system.

The policy prescription of deviating from the Friedman Rule is in contrast to the environments

of Lucas and Stokey (1983), Chari, Christiano, Kehoe (1991), and others in which taxation of final

activities that require cash ends up being achieved without having to resort to a positive nominal

interest rate; in these basic Ramsey monetary models, other instruments (in particular, the labor

income tax) end up indirectly taxing cash-intensive activities. This point is discussed extensively

in Aruoba and Chugh (2007).

6.2 Optimal Capital Taxation

Having established results regarding the monetary aspects of optimal policy in some important

versions of our model, we now turn to characterizing the associated fiscal aspects of optimal policy.

Proposition 6. (Optimal Tax for Labor) Under both bargaining and price-taking, the optimal

labor income tax is positive.

Proof. See Appendix C.

Corollary 2. If the CM sub-utility function for consumption is CRRA, then the optimal labor tax

is constant.

Proof. See Appendix C.

Proposition 6 follows simply by comparing (35) with (38), which shows that supporting the

Ramsey allocation requires creating a wedge in the (Xt,Ht) margin, which the CM labor-income

tax achieves.

We are now ready to prove our main result, which is that a steady-state capital subsidy (i.e.,

τk < 0) is optimal in some important versions of our environment. We discuss how optimal

monetary policy has important consequences for optimal fiscal policy in the price-taking version of

our environment, in which capital-holdup problems are absent and hence, ostensibly, zero-capital

taxation would seemingly be optimal. Finally, we show how our results connect with the synthesis

of Albanesi and Armenter (2007) even though our model does not fit their canonical framework.

Proposition 7. (Optimal Subsidy for Capital) Assuming CRS production in the DM, under

(a) bargaining with θ = 1 or (b) price-taking, the optimal long-run policy will include a subsidy

to capital income except when (1) the DM is shut down (i.e. no trades are carried out exclusively

with money) or (2) capital is not used in the DM (i.e. the monetary and non-monetary sides of

the economy are decoupled).
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Proof. (a) (Bargaining with θ = 1) Imposing steady state on the Ramsey planner’s first-order

condition for capital, (53), dropping arguments of functions, and imposing both ι = 0 (since we

showed ZLB doesn’t bind) and θ = 1 (which implies γ(.) = 0 and g(.) = c(.)), we have

−σck − ρ + β [ρ (FK + 1− δ)] + σξ

[
ck

(
u′

cq
− 1

)
− cu′cqk

[cq]2

]
= 0.

The last term in square brackets on the left-hand-side can be rearranged to

−ck +
u′

cq

[
ckcq − ccqk

cq

]
= −ck;

the equality follows because ckcq−ccqk = 0 due to our CRS assumption (further details are provided

in Appendix B). Collecting terms, we have

β [1 + (FK − δ)]− 1 =
σ(1 + ξ)ck

ρ
.

Also, note that the multiplier on the resource constraint, ρ can be solved as

ρ =
A(1 + ξ)

FH
(42)

from (54), which is the Ramsey planner’s first-order condition for CM labor. This leads to

β [1 + (FK − δ)]− 1 =
σckFH

A
(43)

Similarly imposing steady state and θ = 1 on the private sector equilibrium condition (11) yields

β
[
1 + (1− τk)(FK − δ)

]
− 1 = 0. (44)

Combining (43) and (44), we get the Ramsey-optimal capital tax rate,

τk =
σFHck

Aβ (FK − δ)
.

Standard assumptions imply FH > 0 and (FK − δ) > 0, and of course β > 0 and A > 0 by

assumption. The only way, therefore, τk can equal zero is if σ = 0 (which means DM trades never

occur) or ck = 0 (which means capital is not used for DM production). So long as both the DM

exists (σ > 0) and capital is used for DM production, we must have τk < 0 because ck < 0.

(b) (Price-Taking) Following similar algebra, the Ramsey planner’s first-order condition for

capital in the price-taking case can be simplified to exactly the expression in (43), using the CRS

property of the DM production function (in particular, applying Euler’s theorem to the marginals

of the DM cost function, which yields cqkq + ckkk = 0). The steady state multiplier ρ on the

resource constraint is also again given by (42).

For price-taking, the steady-state version of the private sector equilibrium condition (19) is

given by

β
[
1 + (1− τk)(FK − δ)

]
− 1 =

σck

U ′ ; (45)
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solving (43), and (45) for the Ramsey-optimal capital tax rate,

τk =
σck

[
FH

A
− 1

U ′

]

β(FK − δ)
. (46)

Note that we showed in Proposition 6 that τh > 0 and using (9) this implies FH/A > 1/U ′. As in

case (a), standard assumptions on production and this result guarantee that the only way τk can

equal zero is if σ = 0 or ck = 0. Otherwise, we must have τk < 0.

The two parts of Proposition 7 allow us to disentangle two distinct motivations for capital

subsidies. One obvious motivation is the capital holdup problem. As we discussed above, provided

θ > 0 in the bargaining environment, a capital holdup problem is present, which leads to sub-

optimally low private-sector capital accumulation. A subsidy to capital income naturally alleviates

this problem. We think this result is quite interesting because existing optimal-taxation models

that descend from Chamley (1986) and Judd (1985) are not suited to consider how holdup problems

affect capital accumulation and hence optimal capital tax rates. And yet, as, say, Acemoglu and

Shimer (1999) or Caballero (2007) argue, holdup problems are prevalent in the economy and are

likely to be important for macroeconomic issues. Search-based environments featuring capital

accumulation decisions made before bilateral trades naturally can give rise to holdup problems.

Although optimal-capital taxation implications are not explicitly drawn by Acemoglu and Shimer

(1999), it seems clear in their (non-monetary) environment that search and bargaining frictions

associated with labor would also lead to optimal capital subsidies.

However, it is not just holdup problems that lead to capital subsidies in our model. Price-taking

removes capital holdup (as well as money holdup) problems, as we discussed above and as AWW

show. Nonetheless, the Ramsey policy features a capital subsidy in the price-taking environment,

too. The capital subsidy arises in the price-taking environment because optimal monetary policy

spills over into optimal fiscal policy. As we discussed above, the deviation from the Friedman Rule

— a monetary tax — achieves taxation of the final good q, which is required by basic optimal-

taxation principles, as also discussed above. Intuitively, by taxing DM goods, the monetary tax is

also a tax on capital used for DM production. To correct this distortion, capital income must be

subsidized.

At a more technical level, if, counterfactually, the Friedman Rule were part of the optimal

policy in the price-taking environment, it would imply that a lump-sum tax/transfer exists in the

economy.17 But a lump-sum instrument would allow the Ramsey planner to achieve efficiency

17This can be seen from condition (41), which shows that the Friedman Rule (R = 1) necessarily requires ξ = 0.

But ξ = 0 means the PVIC is completely relaxed, which can only occur if there is a lump-sum tax in the environment.

See also Ljungqvist and Sargent (2004, p. 494).
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along the CM consumption-leisure margin and this would imply τh = 0 and 1/U ′ = FH/A. But

1/U ′ = FH/A immediately implies, from (46), that τk = 0. Thus, if the Friedman Rule were

somehow optimal, it would lead to a zero capital tax. Because the Friedman Rule is not optimal,

there is a capital subsidy even though price-taking eliminates all holdup problems.

This result that the monetary aspects of optimal policy meaningfully affect the fiscal aspects of

optimal policy is unlike Schmitt-Grohe and Uribe (2005) and Chugh (2007). As we mentioned in the

introduction, the Schmitt-Grohe and Uribe (2005) and Chugh (2007) capital-taxation prescriptions

are essentially just monetary translations of the Judd (2002) prescription that if monopoly problems

afflict goods markets, capital accumulation should be subsidized. Judd’s (2002) prescription has

nothing to do with Ramsey taxation — one could allow a lump-sum instrument in Judd’s (2002)

environment and the prescription would be the same. In contrast, in our micro-founded monetary

model, the causality in some sense runs from monetary issues (optimal monetary policy in the

presence of anonymous goods trades that require the existence of money) to fiscal policy. Such a

channel does not arise in Schmitt-Grohe and Uribe (2005) and Chugh (2007), in which the reduced-

form models of money demand mean that the monetary aspects of policy and fiscal aspects of policy

are more-or-less simply lain side-by-side rather than deeply integrated with each other.

Regardless of one’s preferred stand on a model of money demand, we can also connect our

results to Albanesi and Armenter (2007), who provide a unified framework with which to think

about long-run capital taxation. One important distinction they make is that nonzero capital

taxation may be consistent with zero intertemporal distortions. Specifically, their work highlights

that the essence of the celebrated Chamley (1986) and Judd (1985) result is not that zero-capital-

taxation per se is optimal, but rather that it is optimal because it supports a zero wedge between

intertemporal marginal rates of substitution and marginal rates of transformation. Whether a zero

intertemporal wedge requires a zero capital tax or a nonzero capital tax then depends on the details

of the economic environment.

Many economic environments — including Chamley’s (1986) and Judd’s (1985) — have the

feature that a zero intertemporal wedge requires a zero capital tax, but this need not always be.

Although Albanesi and Armenter’s (2007) framework does not encompass (either reduced-form

or micro-founded) monetary environments, we can show, for the cases covered by Proposition 7,

that capital subsidies are in fact needed for a zero intertemporal distortion, and, moreover, a zero

intertemporal distortion is optimal.

Proposition 8. (Zero Intertemporal Distortions) For the cases studied in Proposition 7, the

Ramsey-optimal policy features a zero intertemporal distortion in the long run.

Proof. In Proposition 1, we derived the IMRT and IMRS for our economy. Imposing steady state,

the IMRS is simply β. To prove the result, it will be sufficient to show that in a deterministic
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steady-state, the IMRT at the Ramsey-optimal allocation equals β.

We established above that (43) is the Ramsey planner’s first-order condition for capital at the

steady state for both of the cases considered in this Proposition. Rearranging (43), we have

β =
1 +

σckFH

A
1 + FK − δ

,

in which the right-hand-side is precisely the IMRT we derived in Proposition 1. (recall that ck =

−v′(e)fk/fe). For the price-taking case, another way to prove this result would be to substitute

the optimal tax rate we derived in (46) in to (34) to get IMRS equals IMRT.

Thus, although our model cannot be cast in Albanesi and Armenter’s (2007) canonical form, we

can add micro-founded models of monetary trade to their list of environments as ones in which a

long-run zero intertemporal distortion can be optimal.18 Of course, in our environment, supporting

this allocation requires a capital subsidy for the various reasons we have already discussed.

7 Optimal Policy: Numerical Results

Having established a number of analytical results for the steady state and some dynamic results

for two important versions of the model, we resort to numerical methods to obtain results for the

bargaining case with θ < 1 and for other dynamic results.

7.1 Solution Strategy and Parameterization

To the extent possible, we use the parameters and functional forms that AWW provide, whose

model is calibrated to match some long-run features of the US economy. Specifically, the DM utility

function is u(q) = ln(q+b)− ln(b) with b = 0.0001, which is a parameter that forces u(0) = 0, which

can occur in the DM if a household does not meet another party with whom to trade. The DM

production function is q = Zeφk1−φ, which implies the cost function c(q, K,Z) = (1/Zψ)qψK1−ψ,

with ψ ≡ 1/φ. In the CM, instantaneous utility is B ln(X) − AH, and the production function is

Y = ZKαH1−α. We use the parameter values provided in AWW.19 It should be noted that our

functional forms conform to all of the restrictions specified in our analytical results, i.e. both utility

18Technically, what prevents our model from being cast in Albanesi and Armenter’s (2007) canonical form is the

presence of the K terms in the implementability constraint, arising from the trading arrangements in the DM. Such

a feature of the Ramsey problem does not arise in standard Chamley (1986) or Judd (1985)-type analyses.
19The calibration in AWW is annual. The following parameters are fixed across different version of

the model : (β, δ, α, η) = (0.976, 0.07, 0.288, 1). For the bargaining version with θ = 1, we use

(A, B, ψ, σ) = (3.702, 1.395, 1.738, 0.210), for the bargaining version with θ < 1, we use (A, B, ψ, σ, θ) =

(4.928, 1.852, 1.302, 0.227, 0.735), and for the price-taking version we use (A, B, ψ, σ) = (6.453, 2.401, 1.15, 0.215).
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functions are CRRA and both production functions are CRS. As such, the nominal interest rate

and the labor income tax will be constant over time.

The exogenous government spending and TFP processes each evolve as an AR(1) in logs,

ln Gt+1 = (1− ρG) ln Ḡ + ρG ln Gt + εG
t+1,

ln Zt+1 = ρZ ln Zt + εZ
t+1,

with εG ∼ N(0, σ2
εG) and εZ ∼ N(0, σ2

εZ ). We calibrate Ḡ = 0.1, so that government purchases

constitute about 18 percent of total GDP in steady-state.20 In line with Schmitt-Grohe and Uribe

(2004) and the RBC literature, we set the parameters of the stochastic processes σεG = 0.03,

σεZ = 0.023, ρG = 0.9, and ρZ = 0.82. Finally, we choose the level of steady-state real government

debt, an object not pinned down by the model, so that it is 45 percent of steady-state output,

consistent with the parameterizations of CCK and Schmitt-Grohe and Uribe (2004).

For Ramsey steady-states, we use standard numerical solvers for nonlinear systems of equations.

To study Ramsey dynamics, we approximate time-invariant decision rules for q,K, X,H using the

Ramsey first-order conditions.21 We construct global nonlinear approximations because of the

presence of the potentially occasionally-binding ZLB constraint.22 Of interest to many practitioners,

however, should be our (unreported) findings that, for the versions of the model in which we know

for sure the ZLB constraint is always slack, first-order and second-order local approximations yielded

results virtually identical to our global approximation.23 With decision rules in hand, we conduct

1000 simulations of 500 periods each and discard the first 100 periods. As in Khan, King, and

Wolman (2003) and others, we assume that the initial state of the economy is the asymptotic

Ramsey steady state. For each simulation, we then compute first and second moments and report

the averages of these moments over the 1000 simulations.

7.2 Steady-State

In Figure 1, we present the optimal steady-state nominal interest rate and the optimal steady-state

capital income tax as θ varies between 0 and 1. At θ = 1, as we proved in Propositions 4 and 7,

20Real GDP takes into account both CM and DM output: σM/P + Y .
21Along with approximating decision rules for the allocation variables of direct interest, we also must approximate

the decision rule for the multiplier on the ZLB, ι, as well as the functions that define policies and prices.
22We approximate these functions using linear combinations of Chebyshev polynomials, following Judd (1992).

Results from Aruoba, Fernandez-Villaverde and Rubio-Ramirez (2006) and Aruoba, Waller, and Wright (2007) in-

dicate that this approximation method is very accurate. While our algorithm allows the ZLB to be an occasionally

binding constraint, which means the multiplier ι may have one or more kinks in it, our quantitative results indicate

that for the parameterizations we use the ZLB either always binds or never binds.
23Of course, this statement only holds for sufficiently-small driving shocks; the business-cycle magnitude shocks

that we assume are apparently small enough.
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the optimal net nominal interest rate is positive and the optimal capital tax is negative — Figure

1 shows that quantitatively, these are, respectively, 9.8% and −80%. The latter in particular may

seem especially large, but it is not out of line with capital subsidy rates found in other Ramsey

studies. For example, Schmitt-Grohe and Uribe (2005, Table 2) find an optimal capital subsidy

rate of 44 percent in their benchmark model featuring a host of real and nominal rigidities; they

also report that it can be as high as 85 percent.

As θ falls, the optimal nominal interest rate also falls, eventually hitting the zero lower bound,

just as in Aruoba and Chugh (2007). On the other hand, the capital-income subsidy falls (i.e.,

τk rises) as θ falls below 1. For sufficiently-low θ, the ZLB constraint binds and the Friedman

rule becomes the constrained optimum.24 Both of these results — that the nominal interest rate

falls towards zero and the capital-tax rate rises towards zero as θ decreases below unity — can be

explained by the holdup problems in the environment.

First, as θ falls, the holdup problem for money demand becomes more severe because a larger

share of the surplus of a DM trade is grabbed by the seller. In addition, as shown by Aruoba, Ro-

cheteau, and Waller (2007), a side-effect of generalized Nash bargaining is that the buyer’s surplus

is not monotonic in the amount of money the buyer carries into the DM. The non-monotonicity of

the Nash outcome and a positive net nominal interest rate each separately induce households to

choose a suboptimally-low level of money balances, resulting in a suboptimally-low q. The Ramsey

planner tries to remedy this by lowering the nominal interest rate so long as it is consistent with

monetary equilibrium. The dotted lines in Figure 1 show the policies that would arise if somehow

the ZLB was not a restriction on monetary equilibria; and they show that the Ramsey planner

would then continue reducing the net nominal interest rate below 0% as θ falls sufficiently far

below unity.

To explain the fall in the capital income subsidy (the rise in τk), note that as θ falls, the share of

the surplus of a DM trade earned by the seller increases, which means the capital holdup problem

becomes less severe.25 This allows the Ramsey planner to ease the capital subsidy.

Table 1 reports the steady-state values of the three important policy tools (R, τk, τh) under

three different model environments: bargaining with θ = 1, bargaining with our calibrated value

of θ < 1, and price-taking. For the calibrated value of θ = 0.735, the ZLB constraint binds and

the Friedman rule is optimal. For the price-taking version, the optimal net nominal interest rate

is 7.7%. The capital income subsidy, at 80% when θ = 1, falls to 25.1% in the calibrated version

of the bargaining environment, and falls further to 2.7% in the price-taking environment. Finally,

the labor income tax is in the range 25− 30% for all versions of our model.

24It is important to note that due to Proposition 4, there will always be an interior θ̄ where the Friedman rule will

not be optimal for all θ > θ̄.
25Recall that in the limiting case θ = 0, the capital holdup problem in principle completely disappears.
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We proved in Proposition 8 that the Ramsey equilibrium features a zero steady-state intertem-

poral distortion in both the price-taking environment and the bargaining environment with θ = 1.

This result does not carry over to bargaining with θ < 1. Numerically, we find for these cases

that the Ramsey equilibrium does not equate IMRS and IMRT. As we discussed in Section 3,

what is different about the θ < 1 environment compared to either the θ = 1 or the price-taking

environment is that holdup problems in money accumulation are present. The presence of the

money-holdup problem thus prevents the Ramsey planner from attaining a zero distortion along

the capital-accumulation margin. We emphasize that although the capital holdup problem becomes

less severe as θ falls below 1, the discrete appearance of the money-holdup problem as we move

from θ = 1 to any θ < 1 adds yet another private-sector distortion with which the Ramsey planner

must deal. Our quantitative findings show that dealing with this problem requires deviating from

efficiency along the capital-accumulation margin.

7.3 Dynamics

In Table 2, we report simulation-based moments for the Ramsey allocations and policy variables for

the same three environments presented in Table 1. Because we proved for our assumed functional

forms that the optimal nominal interest rate and the optimal labor income tax are constant, we

do not report their dynamics. Also, as we mentioned above, when both a state-contingent capital-

income tax and state-contingent government debt returns are possible (the latter can be achieved

in our environment via state-contingent movements in the inflation rate, which changes the real

return of nominal government debt), both cannot be simultaneously pinned down. We choose to fix

capital-income-tax rate at its deterministic steady-state level and allow fluctuations in inflation to

achieve the required state-contingency in government debt returns. This strategy allows the most

scope to test whether or not the primitive frictions captured by our environment have anything

quantitatively-important to say regarding the optimality of inflation stability, an issue of interest

in its own right.

Turning to the results, Table 2 shows that state-contingent inflation has very low volatility in

all three versions we study. At a standard deviation of about 60 basis points at an annual rate,

we would characterize this as inflation stability. This inflation-stability result also arises in the

micro-founded monetary environment absent capital studied by Aruoba and Chugh (2007), but

it is strikingly different from the typical inflation volatility result that arises in standard flexible-

price Ramsey environments either with or without capital.26 That the endogeneity of capital

26Quantitatively, baseline inflation volatility results in the flexible-price Ramsey literature are generally in the

range of 5% to 10%, depending on the precise model and/or calibration. The result here of roughly 0.6% inflation

volatility is thus an order of magnitude smaller. See Chari and Kehoe (1999), Schmitt-Grohe and Uribe (2005), and

Chugh (2007) for a few examples.
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accumulation does not change the optimality volatility of inflation is in line with the results of

Chugh (2007) and Schmitt-Grohe and Uribe (2005), who both find that, so long as prices are

flexible, capital accumulation in and of itself does little to change Ramsey inflation dynamics. As

Aruoba and Chugh (2007) explain in detail, the intuition for the optimality of inflation stability is

as follows: the relative price between CM and DM consumption depends on the inflation rate, and

distorting this relative price imposes welfare costs so large that the Ramsey planner largely refrains

from varying inflation despite its ability to absorb shocks to the government budget. We refer the

interested reader to Aruoba and Chugh (2007) for more in-depth analysis of this result because it

and its intuition carry over unchanged to our environment here.

8 Conclusion

The capital-taxation prescriptions that arise in existing Ramsey models of jointly-optimal fiscal

and monetary policy have little to do with monetary aspects of the environment. Such results leave

the impression that monetary issues are at best of minor importance for capital-income taxation.

Our work shows that this impression changes once one adopts a more fundamental view of money

demand than existing work adopts. In our model, capital-taxation prescriptions stem directly

from primitive informational and coordination frictions that make monetary trade endogenously

valuable. We find that capital-income subsidies are optimal in such an environment. A holdup

problem in capital accumulation is one reason for this subsidy. This holdup problem can be traced

to the bilateral nature of monetary exchange, exchanges in which capital is a required input to

production. But even when holdup problems in capital accumulation do not exist, as occurs in

our competitive-pricing environment, the optimal monetary policy, which entails a deviation from

the Friedman Rule, spills over into and distorts capital accumulation, calling for a capital-income

subsidy. Thus, monetary issues may indeed be important for capital-taxation prescriptions.

A point that we think is not as widely-appreciated as it should be is that non-zero capital income

taxes may or may not be consistent with intertemporal efficiency, even in standard models used

to consider capital taxation. We showed that whenever holdup problems afflicting money demand

are absent, capital subsidies lead to intertemporal efficiency. However, if money demand is plagued

by holdup problems, then capital subsidies do not bring about intertemporal efficiency. This is yet

another channel by which fundamentally monetary issues can have implications for capital-income

taxation, a channel about which reduced-form models of money demand are necessarily silent.

Finally, our model also inherits the general properties of optimal policy discovered by Aruoba

and Chugh (2007) in a similar environment lacking capital accumulation. Primary among these

results is that a deviation from the Friedman Rule is optimal and inflation exhibits very low volatility

in the face of business-cycle magnitude shocks. As we mentioned above, we refer interested readers
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to Aruoba and Chugh (2007) for more in-depth analysis of these results.

We see several promising avenues for future research. The AWW environment lacks an extensive

dimension of decentralized activity. As Rocheteau and Wright (2005) show in a micro-founded mon-

etary model without capital accumulation, the interplay between extensive and intensive margins of

decentralized activity can be important for policy prescriptions. Reconsidering our capital-taxation

results in an extended version of the AWW environment that allows for an extensive margin could

prove quite interesting. More broadly, holdup problems are an understudied topic in the context

of macroeconomics. Our results provide an example in which various holdup problems have impor-

tant implications for policy prescriptions. As Caballero (2007) has also emphasized, it would be

worthwhile to think about how holdup problems affect other questions in macroeconomics.
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A The Ramsey Problem

A.1 Proof of Proposition 2

That allocations from a monetary equilibrium should satisfy the CM resource constraint (14), the

ZLB constraint ((17) for the bargaining model or (21) for the price-taking model) is obvious. Here

we derive the PVIC for the bargaining version of the model. The expression for the price-taking

version follows the same steps.

We begin by summing the budget constrains of the three types of agents (buyer, sellers and

nonparticipants in the previous DM) to get

PtXt+Bt+Mt+PtKt+1 = Ptwt(1−τh
t )Ht+Mt−1+Rt−1Bt−1+

[
1 + (1− τk

t )(FK(Kt,Ht)− δ)
]
Kt.

Multiplying by βtU ′(Xt)/Pt, summing from t = 0, 1, ...,∞, and dropping all Et terms to keep

notation simple, we get
∞∑

t=0

βtU ′(Xt)Xt +
∞∑

t=0

βtU ′(Xt)
Bt

Pt
+

∞∑

t=0

βtU ′(Xt)
Mt

Pt
+

∞∑

t=0

βtU ′(Xt)Kt+1 =

∞∑

t=0

βtU ′(Xt)(1− τh
t )wtHt +

∞∑

t=0

βtU ′(Xt)
Mt−1

Pt
+

∞∑

t=0

βtU ′(Xt)
Rt−1Bt−1

Pt
(47)

+
∞∑

t=0

βtU ′(Xt)
[
1 + (1− τk

t )(FK(Kt,Ht)− δ)
]
Kt.

Substitute into the second term on the left-hand-side of (47) using expression (13) to get
∞∑

t=0

βt+1U ′(xt+1)
RtBt

Pt+1
.

This term cancels with the the last summation on the right-hand-side of (47) to leave only the

initial bond position,

U ′(x0)
R−1B−1

P0
.

Next, substitute into the third term on the left-hand-side of (47) using (12) and (13) to get
∞∑

t=0

βt+1U ′(xt+1)
Mt

Pt+1

[
σ

u′(qt)
gq(qt,Kt+1, Zt)

+ 1− σ

]
;

expanding this summation, we have
∞∑

t=0

βt+1U ′(xt+1)
Mt

Pt+1
+ σ

∞∑

t=0

βt+1U ′(xt+1)
Mt

Pt+1

[
u′(qt)

gq(qt,Kt+1, Zt)
− 1

]
.

Canceling the first summation in this last expression with the second summation on the right-hand-

side of (47) to leave only the initial money holdings,

U ′(x0)
(

M−1

P0

)
,
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and writing Mt
Pt+1

= Mt
Pt

Pt
Pt+1

, we can express the second summation just above as

σ
∞∑

t=0

βt+1U ′(xt+1)
Mt

Pt

Pt

Pt+1

[
u′(qt)

gq(qt,Kt+1, Zt)
− 1

]
.

Use (16) to substitute for Mt/Pt,

σ
∞∑

t=0

βt+1 U ′(xt+1)
Pt+1

Pt

U ′(Xt)
g(qt,Kt+1, Zt)

[
σ

u′(qt)
gq(qt,Kt+1, Zt)

+ 1− σ

] [
u′(qt)

gq(qt,Kt+1, Zt)
− 1

]
.

Using (12) and (13), we can make the substitution βEt

[
U ′(xt+1)

Pt+1

]
= U ′(Xt)

Pt

[
σ u′(qt)

gq(qt,Kt+1,Zt)
+ 1− σ

]−1

which yields

σ

∞∑

t=0

βtg(qt,Kt+1, Zt)
[

u′(qt)
gq(qt,Kt+1, Zt)

− 1
]

.

Next, using (9), we can substitute into the first term on the right-hand-side of (47) to get

∞∑

t=0

βtAHt;

and using (11), we can express the fourth term on the left-hand-side of (47) as

∞∑

t=0

βt+1U ′(Xt+1)
[
1 + (1− τk

t+1)(FK(Kt+1,Ht+1)− δ)
]
Kt+1 +

∞∑

t=0

βtσγ(qt,Kt+1)Kt+1.

Canceling the first summation with the last term on the right-hand-side of (47) yields

U ′(X0)
[
1 + (1− τk

0 )(FK(K0, H0)− δ)
]
K0.

Defining A0 as

A0 ≡ M−1 + R−1B−1

P0
+

[
1 + (1− τk

0 )(FK(K0,H0)− δ)
]
K0,

re-introducing the expectation operator E0, and collecting all remaining terms, we arrive at

E0

∞∑

t=0

βt

[
U ′(Xt)Xt −AHt + σg(qt,Kt+1, Zt)

(
u′(qt)

gq(qt,Kt+1, Zt)
− 1

)
+ σγ(qt,Kt+1, Zt)Kt+1

]
= U ′(X0)A0,

which is expression (30) in the text.
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A.2 The Solution to the Ramsey Problem

The Ramsey problem described in Section 4 is to choose {Xt,Ht,Kt+1, qt} to maximize

E0

∞∑

t=0

βt {U(Xt)−AHt + σ [u(qt)− c(qt,Kt+1, Zt)]}

subject to the resource constraint

ZtF (Kt,Ht) + (1− δ)Kt −Xt −Gt −Kt+1 ≥ 0, (48)

the PVIC, which is

E0

∞∑
t=0

βt

[
U ′(Xt)Xt −AHt + σg(qt,Kt+1, Zt)

(
u′(qt)

gq(qt,Kt+1, Zt)
− 1

)
+ σγ(qt,Kt+1, Zt)Kt+1

]
= U ′(X0)A0.

(49)

for the bargaining model or

E0

∞∑
t=0

βt

[
U ′(Xt)Xt −AHt + σqtcq(qt,Kt+1, Zt)

(
u′(qt)

cq(qt,Kt+1, Zt)
− 1

)
− σck(qt,Kt+1, Zt)Kt+1

]
= U ′(X0)A0

(50)

for the price-taking model,27 and the ZLB constraint, which is

σ

(
u′(qt)

gq(qt,Kt+1, Zt)
− 1

)
≥ 0

for the bargaining model or

σ

(
u′(qt)

cq(qt,Kt+1, Zt)
− 1

)
≥ 0

for the price-taking model, taking as given {Gt, Zt} and K0. We associate multipliers βtρt with the

time-t resource constraint, ξ with the PVIC, and βtιt with the time-t ZLB constraint.

27Note the simplification in the third term which leads to σ [qtu
′(qt)− qtcq(qt, Kt+1, Zt)].
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A.2.1 Bargaining

The Kuhn-Tucker conditions for the problem above are the first-order conditions

qt : σ [u′(qt)− cq(qt,Kt+1, Zt)] + σξ

[
gq(qt,Kt+1, Zt)

(
u′(qt)

gq(qt,Kt+1, Zt)
− 1

)]

+σξ

[
g(qt,Kt+1, Zt)

(
u′′(qt)gq(qt,Kt+1, Zt)− u′(qt)gqq(qt,Kt+1, Zt)

[gq(qt,Kt+1, Zt)]2

)
+ γq(qt,Kt+1, Zt)Kt+1

]
(51)

+σιt

[
u′′(qt)gq(qt,Kt+1, Zt)− u′(qt)gqq(qt,Kt+1, Zt)

[gq(qt,Kt+1, Zt)]2

]
= 0,

Xt : U ′(Xt)− ρt + ξ [U ′′(Xt)Xt + U ′(Xt)] = 0, (52)

Kt+1 : −σck(qt,Kt+1, Zt)− ρt + βEt {ρt+1 [Zt+1FK(Kt+1,Ht+1) + 1− δ]}
+σξ

[
gk(qt,Kt+1, Zt)

(
u′(qt)

gq(qt,Kt+1, Zt)
− 1

)
− g(qt,Kt+1, Zt)u′(qt)gqk(qt,Kt+1, Zt)

[gq(qt,Kt+1, Zt)]2

]
(53)

+σξγk(qt,Kt+1, Zt)Kt+1 + σξγ(qt, Kt+1, Zt)− σιt
u′(qt)gqk(qt, Kt+1, Zt)

[gq(qt,Kt+1, Zt)]2
= 0,

Ht : −A + ρtZtFH(Kt,Ht)− ξA = 0, (54)

along with (48), (49), and the complementary slackness condition

ιtσ

[
u′(qt)

gq(qt,Kt+1, Zt)
− 1

]
= 0, and ιt ≥ 0. (55)

We can represent the right-hand side of the PVIC in terms of allocations as

U ′(X0)A0 = U ′(X0)
[
g(q−1,K0, Z−1)

βU ′(X0)
+

B−1/P−1

β

]
+

U ′(X0)
β

K0

[
1− σ

γ(q−1,K0, Z−1)
U ′(X0)

]
,

in which the initial real bond position B−1/P−1 is a parameter that we set as described in Section

7.1.

With these Ramsey FOCs in hand, we proceed as follows. Imposing steady state on (51)-(54),

and taking the timeless perspective, i.e. setting time-zero allocations equal to their steady state

value, we solve for the steady state values of allocations and the multiplier ξ. Next, given ξ and

{Zt, Gt}, (51)-(55) characterize {qt, Xt,Kt,Ht, ιt}. We back out policies {τh
t , Rt} from (9) and (12)

statically. Finally ex-post inflation can be solved dynamically from (13).
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A.2.2 Price-Taking

The Kuhn-Tucker conditions for the problem above are the first-order conditions

qt : σ [u′(qt)− cq(qt,Kt+1, Zt)] + σξ [u′(qt) + qtu
′′(qt)− cq(qt,Kt+1, Zt)− qtcqq(qt,Kt+1, Zt)]

−σξcqk(qt,Kt+1, Zt)Kt+1 + σιt

[
u′′(qt)cq(qt,Kt+1, Zt)− u′(qt)cqq(qt,Kt+1, Zt)

[cq(qt, Kt+1, Zt)]2

]
= 0, (56)

Xt : U ′(Xt)− ρt + ξ [U ′′(Xt)Xt + U ′(Xt)] = 0, (57)

Kt+1 : −σck(qt,Kt+1, Zt)− ρt + βEt {ρt+1 [Zt+1FK(Kt+1,Ht+1) + 1− δ]}
−σξ [qtcqk(qt,Kt+1, Zt) + ckk(qt,Kt+1, Zt)Kt+1 + ck(qt,Kt+1, Zt)]− σιt

u′(qt)cqk(qt,Kt+1, Zt)
[cq(qt,Kt+1, Zt)]2

= 0,(58)

Ht : −A + ρtZtFH(Kt,Ht)− ξA = 0, (59)

along with (48), (50), and the complementary slackness condition

ιtσ

[
u′(qt)

cq(qt,Kt+1, Zt)
− 1

]
= 0, and ιt ≥ 0. (60)

We can represent the right-hand side of the PVIC in terms of allocations as

U ′(X0)A0 = U ′(X0)
[
q−1cq(q−1,K0, Z−1)

βU ′(X0)
+

B−1/P−1

β

]
+

U ′(X0)
β

K0

[
1 + σ

ck(q−1,K0, Z−1)
U ′(X0)

]
,

in which, once again, the initial real bond position B−1/P−1 is a parameter that we set as described

in Section 7.1.

With these FOCs in hand, we proceed as follows. Imposing steady state on (56)-(59), and

taking the timeless perspective, i.e. setting time-zero allocations equal to their steady state value,

we solve for the steady state values of allocations and the multiplier ξ. Next, given ξ and {Zt, Gt},
(56)-(60) characterize {qt, Xt,Kt,Ht, ιt}. We back out policies {τh

t , Rt} from (9) and (20) statically.

Finally inflation can be solved dynamically from (13).

For reference, we define

C1t = [qtcqk(qt,Kt+1, Zt) + ckk(qt,Kt+1, Zt)Kt+1 + ck(qt,Kt+1, Zt)]

C2t =
u′(qt)cqk(qt,Kt+1, Zt)

[cq(qt,Kt+1, Zt)]2

37



B Details of the Proofs of Propositions 1, 4, 5 and 7

B.1 Proposition 1

The expression for IMRS, βU ′(Xt+1)/U ′(Xt), simply follows from the social welfare function. To see

where the expression for IMRT comes from, consider a decrease in Xt by one unit. This will increase

Kt+1 by one unit. This marginal increase in capital will have two effects. First, as occurs in a

standard RBC model with capital, output in period t+1 will increase by Zt+1FK(Kt+1,Ht+1)+1−δ

units, which in period t + 1 can be converted one-for-one into Xt+1. Because of the existence of

the DM, though, a second effect arises: qt will rise by σZtfk(Kt+1, et) units. In order to properly

define IMRT in our environment, then, this increase in qt needs to be taken into account.

To properly account for this second effect, consider the following thought experiment. In or-

der to hold production of qt fixed following an initial reduction of Xt by one unit, DM effort

must be reduced by σfk(Kt+1, et)/fe(Kt+1, et). This reduction in DM effort will increase utility

σv′(et)fk(Kt+1, et)/fe(Kt+1, et). This increase in utility is equivalent to a decrease in CM labor

by σv′(et)fk(Kt+1, et)/fe(Kt+1, et)A, under the maintained assumption of linear disutility of CM

labor. Next, this reduction in CM labor would lead to a reduction of period-t CM output by the

amount σZtFH(Kt,Ht)v′(et)fk(Kt+1, et)/fe(Kt+1, et)A, which, because there is of course a unit

rate of transformation between CM output and CM consumption, means a decrease in Xt by the

same amount.

Thus, we have demonstrated that a reduction in Xt in the amount

1−σZtFH(Kt,Ht)v′(et)fk(Kt+1, et)/fe(Kt+1, et)A leads to an increase in Xt+1 by Zt+1FK(Kt+1,Ht+1)+

1 − δ units. Clearly, if σ = 0 as in the standard RBC model, we have that MRTXt,Xt+1 =

Zt+1FK(Kt+1,Ht+1) + 1 − δ, which has the usual interpretation that a one unit decrease in Xt

leads to increased period-t+1 CM consumption by the amount Zt+1FK(Kt+1, Ht+1)+1− δ. With

σ > 0, in order to achieve the same increase in period-t+1 CM consumption, the required decrease

in Xt is less than one unit. This is due to the fact that DM output also increases when one unit of

Xt is foregone.

In the text we claimed that ck corresponds to −v′(e)fk/fe. To see this, remember that ck

refers to the marginal change in utility for having more capital, holding output constant. Using

the production function q = Zf(k, e), we can write dq = Zfkdk + Zfede. If we consider a change

in k with no change in q, this corresponds to a change in e in the amount −fkdk/fe. The change

in utility due to this change in k will therefore be −v′(e)fk/fe. A similar argument shows that cq

corresponds to v′(e)/Zfe.
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B.2 Proposition 4

We start by

u′ − cq = −
(

ξ

1 + ξ

)
c

cq

[
u′′ − u′cqq

cq

]
. (61)

which along with (17) show that Rt is constant if and only if u′/cq is constant. We assume

u(q) = q(1−η)/(1− η), which has the property

qtu
′′(qt) = −ηu′(qt). (62)

We also assume q = Zk1−φeφ which yield the following cost function and related derivatives

c(q, K,Z) =
1

Zψ
qψK1−ψ > 0 (63)

cq(q, K, Z) =
1

Zψ
ψqψ−1K1−ψ > 0 (64)

ck(q, K, Z) =
1

Zψ
(1− ψ)qψK−ψ < 0 (65)

cqq(q,K, Z) =
1

Zψ
ψ(ψ − 1)qψ−2K1−ψ > 0 (66)

cqk(q, K,Z) =
1

Zψ
ψ(1− ψ)qψ−1K−ψ < 0 (67)

where ψ ≡ 1/φ. These imply the properties

cqqq

cq
=

ψ(ψ − 1)qψ−2K1−ψq

ψqψ−1K1−ψ
= ψ − 1 (68)

c

qcq
=

qψK1−ψ

ψqψ−1K1−ψq
=

1
ψ

(69)

where we dropped arguments for notational simplicity. Rewriting (61)

u′

cq
= 1−

(
ξ

1+ξ

) c

c2
q

[
u′′ − u′

cqq

cq

]

u′

cq
= 1−

(
ξ

1+ξ

) cu′′

c2
q

[
1 +

cqqq

ηcq

]

u′

cq
= 1−

(
ξ

1+ξ

) cu′′

c2
q

[
1 +

ψ − 1
η

]

u′

cq
= 1−

(
ξ

1+ξ

) −cηu′

qc2
q

[
1 +

ψ − 1
η

]

u′

cq
= 1−

(
ξ

1+ξ

) −ηu′

ψcq

[
1 +

ψ − 1
η

]

where in the second and fourth lines we use (62), in the third line we use (68) and in the fifth line

we use (69). Collecting terms we get

u′

cq
=

[
1−

(
ξ

1 + ξ

)
η

ψ

(
1 +

ψ − 1
η

)]−1

which show that u′/cq is indeed constant.
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B.3 Proposition 5

Using (66) and (67) we get

cqqq + cqkk =
1

Zψ

[
ψ(ψ − 1)qψ−2K1−ψq + ψ(1− ψ)qψ−1K−ψK

]
= 0

which is in fact an application of the Euler’s Theorem.

Using (62), we can rewrite (40) as

u′

cq
= 1−

(
ξ

1 + ξ

)
η
u′

cq

Collecting terms we get
u′

cq
=

[
1−

(
ξ

1 + ξ

)
η

]−1

which show that u′/cq is indeed constant.

B.4 Proposition 7

Using (63), (64), (65) and (67) we get

cqck − ccqk =
1

Z2ψ

[
ψqψ−1K1−ψ(1− ψ)qψK−ψ − qψK1−ψψ(1− ψ)qψ−1K−ψ

]
= 0

C Proof of Proposition 6 and Corollary 2

Combining (35) and (38) we get

1− τh
t = 1 +

(
ξ

1 + ξ

)
U ′′(Xt)Xt

U ′(Xt)

which shows that τh
t > 0 as ξ > 0, U ′′(X) < 0 and U ′(X) > 0, all of which hold under our

assumptions.

Moreover, if U(x) = X1−γ/(1− γ) then we have

τh
t = γ

(
ξ

1 + ξ

)

since U ′′(X)X = −γU ′(X).
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Figure 1 - Ramsey Steady-State Under Bargaining
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Notes : Ramsey steady-state policy as a function of the bargaining power of the buyer (θ) with the ZLB

constraint (solid line) and without the ZLB constraint (dotted line).
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Table 1 - Steady State Policies

Variable Bargaining (θ = 1) Bargaining (θ < 1) Price-Taking

τh 0.317 0.312 0.263

τk -0.795 -0.251 -0.027

R− 1 9.761 0 7.673

Notes: Nominal interest rate reported in percentage points.
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Table 2 - Dynamics

(a) Bargaining (θ = 1)

Variable Mean Std. Dev. Auto corr. Corr(x,GDP ) Corr(x,Z) Corr(x, G)

π − 1 7.151 0.609 0.705 -0.474 -0.398 -0.115

q 0.757 0.049 0.903 0.923 0.956 0.033

K 1.836 0.126 0.979 0.553 0.609 0.061

X 0.303 0.015 0.951 0.811 0.874 -0.067

H 0.322 0.014 0.692 0.700 0.592 0.391

GDP 0.551 0.039 0.791 1 0.981 0.180

PDM/P 0.124 0.002 0.735 -0.966 -0.912 -0.294

(b) Bargaining (θ < 1)

Variable Mean Std. Dev. Auto corr. Corr(x,GDP ) Corr(x,Z) Corr(x, G)

π − 1 -2.378 0.568 0.703 -0.452 -0.387 -0.123

q 0.294 0.014 0.874 0.956 0.981 0.027

K 1.634 0.113 0.979 0.571 0.614 0.069

X 0.296 0.015 0.950 0.824 0.879 -0.064

H 0.314 0.013 0.691 0.674 0.572 0.407

GDP 0.534 0.037 0.796 1 0.981 0.183

PDM/P 0.418 0.007 0.765 -0.287 -0.186 -0.293

(c) Price-Taking

Variable Mean Std. Dev. Auto corr. Corr(x,GDP ) Corr(x,Z) Corr(x, G)

π − 1 5.113 0.617 0.701 -0.451 -0.384 -0.122

q 0.725 0.034 0.852 0.970 0.992 0.019

K 1.633 0.114 0.978 0.572 0.616 0.071

X 0.311 0.016 0.949 0.825 0.881 -0.060

H 0.327 0.013 0.689 0.675 0.572 0.404

GDP 0.540 0.037 0.795 1 0.981 0.183

PDM/P 0.123 0.002 0.797 -0.163 -0.070 -0.212

Notes: Simulation-based moments. Inflation reported in percentage points.
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