

Data and Computer Codes for

“The Spending and Debt Response to Minimum Wage Hikes”

Àpril 2012

1) The programs and datasets to replicate the CEX, CPS, SIPP and credit card results are located in the
subdirectory "unix_files"
 * AER_FINAL_PROGRAMS.zip contains all of the programs
 * The file run_programs.do in that folder will call all of the programs in
 the order they need to be run. The files that are commented out will not
 run but are included for completeness (the files that create our CEX
 extract from the CEX data cds and the files used to clean and analyze the
 credit card data).
 * The main data extracts are the following:
 * ces_int_82_08.dta.gz
 * ogr_select.dta.gz
 * rep_sipp1.dta.gz
 * The programs to create the extracts are included, and presume that the rawer forms
 of the data have already been created.
 * Path names may need to be changed.

2) The programs and datasets to replicate the Dynamic Programming are in the subdirectory
"minwage"

 * See below for step-by-step DP replication instructions

 * If you copy this research.zip file directly to your C: drive and unzip (i.e. get C:/research/),
 all path names and file references for the dynamic programming part of the code should work
without modification.

Dynamic Programming Code

1. Attached are the computer codes used to generate the dynamic programming model results in “The

Consumption Response to Minimum Wage Hikes”.

2. Because the programs in this package call each other and pass files between themselves, the
programs will work only if directories are properly specified. If you copy research.zip to your C:
drive and unzip, the references should all work. After unzipping, the first file to run in the dynamic
programming problem (minwageDP_1.gau) should be located at
C:/research/minwage/minwageDP_1.gau.

3. We use SCF data to generate the initial distribution of the state variables when simulating the

model. Codes for merging the SCF data together are written in SAS, and these data are processed
in SAS and Stata.

4. The codes solving for the decisions at preset points of the state variables are written in the C++

language. We use GAUSS to call the C programs, send them the necessary inputs - including
parameter values and initial values of the state variables - and then run the simulations in GAUSS.

5. If you want to consider some of the alternative specifications described in the paper (Table 8), or

create your own, consult the file “initializations.gau” along with the “Dynamic Programming”
section below.

Calculating Initial Distribution For Simulation

We use SCF data to set the initial distribution of the state variables for the simulation. There are
multiple steps to retrieving the raw data (see Appendix 2), but the final step is running scf.do in
C:/research/minwage/calculatingInitDistForSim, which creates scf.out ; scf.out
gets read in during the simulation (see minwage_Sim_Graph_f.gau; this file contains the simulation
procedure and gets called by minwageSimmerGrapher.gau).

Dynamic Programming
The codes for the dynamic programming, simulation, and final output are in the C:\research\minwage directory. Steps for running them are
outlined in the next page. Further detail can be found in the Appendix of this file or in comments within the code files themselves.

Step1: Calculating Optimal Decision Rules
We simulate minimum wage hikes at 3 different ages: 22, 34, and 50, and also simulate the model with no minimum wage hike. Since we find
decision rules for each of the ages, and for the no hike case, any set of parameters takes 4 runs to implement. Parameters (including utility,
technology, and grid discretization parameters) are set in initializations.gau. MinwageDP_1.gau, minwageDP_2.gau, minwageDP_3.gau,
minwageDP_4.gau read in the settings described in initializations.gau, then calculate decision rules for the case of minimum wage hikes at age 22,
34, 50, and for no minimum wage hike, respectively: you need to run all four files. minwageSimmerGrapher.gau simulates the model for the case
of minimum wage hikes at age 22, 34, 50, and for no minimum wage hike (you need to run the file four times), and graphs the simulated data.

In order to keep track of the parameters in different specifications of the model and also to keep track of the output of these specifications, there is
a parameter initialized in MinwageDP_1.gau, minwageDP_2.gau, minwageDP_3.gau, minwageDP_4.gau called settingsSwitch (of the form ##.1,
##.2, or ##.3. For the baseline specification it is 67.1, 67.2, or 67.3 for each age of the wage hike respectively. For the adjustment cost
specification, it is 65.1, 65.2, 65.3. See Table C). settingsSwitch refers to a given set of parameters in a specification (including utility,
technology, and grid discretization parameters), defined in initializations.gau. The files (minwageDP_1.gau,..,minwageDP_4.gau) call the
procedure set_paramsAndGrids which is also in the file initializations.gau. The two key parameters that MinwageDP_1.gau-
minwageDP_4.gau pass into set_paramsAndGrids are settingsSwitch and hikeSwitch (hikeSwitch indicates whether we turn on
the hike). set_paramsAndGrids then passes back the key utility, technology, and grid size parameters to the decision rules code
(minwageDP_1.gau,..,minwageDP_4.gau) (see the line of code with “set_paramsAndGrids(settingsSwitch,hikeSwitch)”). Note: The
only parameters that differ between settingsSwitch =##.1, settingsSwitch =##.2, settingsSwitch =##.3 are hikeStart (the time of the hike in number
of qtrs after age 18) and wageIncr (the income growth rate caused by the hike – calibrated to give $250 [for each age receiving a wage hike]).

For example: in the baseline case settingsSwitch =67.1 and hikeSwitch=1 in the file minwageDP_1.gau; settingsSwitch =67.2 and hikeSwitch=1
in the file minwageDP_2.gau; settingsSwitch =67.3 and hikeSwitch=1 in the file minwageDP_3.gau; settingsSwitch =67.1 and hikeSwitch=0 in
the file minwageDP_4.gau. If you were to change to the no borrowing against durables case (ie, downpaymentR=1), all the “67”s would be
changed to “72”, so settingsSwitch =72.1 and hikeSwitch=1 in the file minwageDP_1.gau; settingsSwitch =72.2 and hikeSwitch=1 in the file
minwageDP_2.gau; settingsSwitch =72.3 and hikeSwitch=1 in the file minwageDP_3.gau; settingsSwitch =72.1 and hikeSwitch=0 in the file
minwageDP_4.gau.

Step2: Move output to a new folder
MinwageDP_1.gau outputs decisions rules to C:/research/minwage/results/newResults_tmp_1 by default [minwageDP_2.gau outputs decisions
rules to C:/research/minwage/results/newResults_tmp_2, etc]. After minwageDP_1.gau finishes running, you should create a new folder in
C:/research/minwage/results, and copy all output from C:/research/minwage/results/newResults_tmp_1 into it. This way, results don’t get
overwritten next time you run minwageDP_1. Specifically, for the baseline case, you should create a folder called

C:/research/minwage/results/Results_671_hike. This folder should include two subfolders named called “sims” and “graphs” to hold the
simulations’ matrix output and graph equivalents respectively. Do the same for the other 3 runs of the specification (e.g. for the baseline:
newResults_tmp_2  Resuilts_672_hike, newResults_tmp_3  Results_673_hike, newResults_tmp_4  Results_671_nohike).

In naming the folder [and the settingsSwitch], please follow the conventions in Table A so that subsequent programs
(minwageSimmerGrapher.gau, printMatrix.gau, printMedians.gau, and SS_all_regs.do) run properly.

Table A
Naming Conventions for a new run number, ##

Program SettingsSwitch hikeSwitch hikeStart equivalent Age Folder Name Folder Name for baseline specification

minwageDP_1.gau ##.1 1 16 22 Results_##1_hike C:/research/minwage/results/Results_671_hike
minwageDP_2.gau ##.2 1 64 34 Results_##2_hike C:/research/minwage/results/Results_672_hike
minwageDP_3.gau ##.3 1 128 50 Results_##3_hike C:/research/minwage/results/Results_673_hike
minwageDP_4.gau ##.1 0 [no hike] Results_##1_nohike C:/research/minwage/results/Results_671_nohike

Step 3: Simulate the model
Simulations are run by minwageSimmerGrapher.gau. Profiles are output to subfolders [graphs & sims] of the folders created in step 2.

Step 4: Estimate the effects

Table B on the next page clarifies the steps.

Table B Program Run Time Description Actions
ge

t O
pt

im
al

 D
ec

is
io

n
R

ul
es

Initializations.gau
(located in C:\research\minwage\)

(never run, just
updated)

Initializes all the parameters.

1. This step can be skipped if only replicating paper runs.

To create a set of runs with new parameters: Copy the
last elseif section in initializations.gau; change desired
parameters; change settingSwitch to a ##.1 that a hasn’t
been used yet & hikeStart to 16; copy your new section
and paste 2 times, changing hikeStart to 64 [128] &
settingSwitch to ##.2 [##.3]. In each section, also
initialize initialPI & wageIncr according to “targeting
the income hike” above. You’ll have 3 new sections
total. (You do NOT need a separate section for nohike
(hikeSwitch not in this program)).

minwageDP_1.gau,
minwageDP_2.gau,
minwageDP_3.gau,
minwageDP_4.gau
(located in C:\research\minwage\)

2-6 hours each
x4
(up to 36 hours,
depending on
grid size)

(can usually run
3 DP codes at a
time overnight).

Multiple files, identical but for the
folder that results are output to, as
well as settingsSwitch &
hikeSwitch.
Intended for running several files
at once

2. Run 4 files, with:
SettingsSwitch=##.1 hikeSwitch=1
SettingsSwitch=##.2 hikeSwitch=1
SettingsSwitch=##.3 hikeSwitch=1
SettingsSwitch=##.1 hikeSwitch=0

When hikeSwitch=1, hike kicks in at the age specified in
the corresponding settingsSwitch block in
initializations.gau. All 4 runs should be completed before
doing step 4 below.

Results from running the files above will be
stored in the directories
C:\research\minwage\results\newResults_tmp_1,
C:\research\minwage\results\newResults_tmp_2,
C:\research\minwage\results\newResults_tmp_3,
C:\research\minwage\results\newResults_tmp_4

 Directories that collect output
from the minwageDP_1,
minwageDP_2, minwageDP_3,
minwageDP_4 programs
respectively

3. For each “tmp” directory, create a new directory in
C:/research/minwage/results***, named according to
Table A in this file. (e.g. Results_671_nohike).

4. Copy output into your newly created permanent
directories

Si
m

ul
at

e

minwageSimmerGrapher.gau
(located in C:\research\minwage\)

15min x 4 times

Does the simulation & creates
graphs

5. Run 4 times, as follows:
Set basepath =Results_##1_nohike for all 4 runs (where
##=67 for baseline case), and
Set innovationpath= each of the following:
{Results_##1_nohike, Results_##1_hike,
Results_##2_hike, Results_##3_hike}.

 printMatrix.gau
(located in C:\research\minwage\)

5min Makes consM.txt, which is a
matrix of simulated peoples’
nondurables consum, income, &
durables consum

Run Once.
6. [If not running baseline] Change the version number to

“##1” before running

E
st

im
at

e
SS_all_regs.do
(located in C:\research\minwage\)

1min 1) Calls “convert_consM.do” 4
times for each run to convert
consM.txt to .dta so you can run
the regressions
2) Calls “sims_reg_fe.do” 3 times
to run the regressions for each of
the 3 ages separately
3) Calls “pooled_regs_fe.do”
once, to run the pooled regression
containing all ages

7. [If not running baseline] Change the version number
(local macro v) in the file to ##1.

8. Run once in Stata
9. Copy output to “Version Table.xlsx”.

 printMedians.gau
(located in C:\research\minwage\)

1min Finds quartiles for buffer, income,
durables stock, assets, & cash on
hand

Run Once.
10. [If not running baseline] change the version number

to “##1”
11. Run & Copy output to “Version Table.xlsx”.

*** Subsequent programs assume that these permanent directories are created inside the C:/research/minwage/results, however if you need to store them elsewhere, expect to
change multiple pathnames in all the files listed below the blue bar in this table.

Note: Programs were run on a computer with the following specs:

Processor: Intel® Core™ i7-2600 CPU @ 3.40 GHz (8 cores)
Installed memory (RAM): 16.0 GB RAM
System Type: 64-bit Operating System

If you run into trouble running the paper’s specifications, try running with coarser grids. E.g. In initializations.gau, replace the existing grid code lines with the following:

 Astates = setGrid(-180|-35|-10|10|30|150, 10|.75|.5|3|10);
 Sstates = setGrid(.3|2|7|25|50|90|220, .3|.4|.4|1|6|10);
 Cdec = setGrid(Cfloor|2|4|18|27, .1|.1|.1|1);
 Idec = setGrid(0|2|4|7|14|20, .1|.1|.1|.8|1);

NonDP – Analytic Solution

The analytic solution to the model is described in Section III and Appendix C of the paper. The model
is solved in Gauss using MPC_MPI_calc_graph.gau, found in the “C:\research\minwage\nonDP –
Analytic Solution” directory. Simply run the file.

Replicating Paper Figures 5 – 9 and Table 7-8

Figures 5 and 7 use direct output from pooled income and spending graphs.gau, (located in
C:\research\minwage\). Currently the file is set up to run the baseline case: the variable version=”671” (i.e.
settingsSwitch loops over 67.1 to 67.3). For other specifications, you must change version (e.g.,
change from version="671" to version="721" for the case where π = 1.0) Version 67 is our
Baseline model.

The file, pooled income and spending graphs.gau, finds the average difference in {income,
nondurable/durable consumption, and assets) resulting from a minimum wage hike, across
5000 simulated people, at each time period from 10 qtrs before to 10 qtrs after a minimum
wage hike, simulated at 3 different ages.

Figure 6 is direct output from C:\research\minwage\NonDP - Analytic
Solution\MPC_MPI_calc_graph.gau. Specifications used for the paper solution can be found inside
the file.

Figure 8 re-uses the same results (total, durables and nondurables spending) that were found for figures
6 & 7 – Analytic and Baseline. In addition, Debt for the baseline is negative assets change, output in
pooled income and sending graphs.gau. For the analytic solution, Debtt= -[Yt-1 + rAt-1 – (Ct-1+It-1)].
The quantity (Yt-1 + rAt-1) for the baseline is also output from pooled income and spending graphs.gau
(when version=”671”), and can be used for the Analytic model.

Figure 9 reports the output of quantile regressions on the Baseline (v67) and Baseline with adjustment
costs, beta=.91^1/4 (This is v66). (We use beta=.91^1/4 instead of .93^1/4 because the former leads to
buffer quartiles that more closely resemble those of the baseline). The quantile regressions can be run
by un-commenting the last section of SS_all_regs.do.

Table 7 reports the Baseline specifications, which were set in settingsSwitch=67.1 to 67.3 in
initializations.gau

Table 8 reports the results from SS_all_regs.do and printmedians.gau on the following runs
respectively:
 Table C

See initializations.gau for full specifications.

Run # Description
67 Baseline, with extra fine grids
72 π = 1.0, with extra fine grids
73 π = 1.0, β=0.95^1/4
74 σ2e = 0, β=0.95^1/4
75 σ2e = 0.002, σ2u = 0.0, β=0.95^1/4
76 Adjustment cost = 0.05
77 Adjustment cost = 0.05, β=0.91^1/4
80 β=1.01^1/4, σ2e = 0, no borrowing constraints

81 β=1.01^1/4, σ2e = 0, adjustment cost = 0.05,
 no borrowing constraints

Appendix 1:
This appendix contains explanations of the key GAUSS files in the
C:/research/minwage directory. Functions and their arguments are in bold.

List of Files:
minwageDP_1.gau (minwageDP_2.gau, minwageDP_3.gau, minwageDP_4.gau)
initializations.gau
minwage_sim_Graph_f.gau
minwageSimmerGrapher.gau
minwage_functions.gau

Explanations:
minwageDP_1.gau: This is the decision rule solver.
minwageDP_1 first calls set_paramsAndGrids(), from "initializations.gau,"
which has various built in settings that can be specified by changing
the arguments passed in to set_paramsAndGrids.
The next main point is the "dllcall". getDecisionRulesGAUSS is called;
this is the only function GAUSS can see in the DLL. It is the interface
for GAUSS. It calls getDecisionRules() in C++, which actually does the work.
Of all the arguments passed in, which include all the parameters and the grids,
only VM, bestCM, and bestIM are changed, since they are the value function and the
two decision arrays. They are filled in as linear vectors, meaning they start off
as nx1 matrices in GAUSS, where
n=numAstates*numSstates*numPIstates*(numTstates-1). They are reshaped to
be 4 dimensional arrays so we can access the data conveniently.
Next, gauss saves all the data and variables (parameters, grid settings,
etc) to "outpath" which is set at the top of minwageDP.
[It is useful to save everything; occasionally it is later needed.]

minwageDP_2: minwageDP_2 is a copy of minwageDP_1 that does the same thing;
we use it to solve two decision rules simultaneously, because GAUSS
will only run one at a time, and a second GAUSS process can't run a file
that's already being run.

You can typically run three minwageDP gauss files at a time.

Initializations.gau:
Only contains the function set_paramsAndGrids(settingsSwitch, hikeSwitch).

set_paramsAndGrids(settingsSwitch, hikeSwitch):
Basically, this is the function where you “store” settings that you want to use
repeatedly for the simulation. It is two if-blocks; one does all the settings
except for the wagehike, and the other turns the wagehike on or off. The main if-
block sets the length and size of the wagehike, if it is on; the second simply
turns it on or off.
Arguments:
 settingsSwitch is just any number, associated with a group of settings you have
stored in a block of the main if-statement.
 hikeSwitch is 1 if you want the hike on, 0 if off.

minwage_Sim_Graph_f.gau:
This contains only sim_graph().

sim_graph(loadpath, innovationpath, savepathsims,
savetempdirgraphs, rndSwitch, numsims, innovationTime):
sim_graph() does simulations and
graphs the profiles (ie the averages of the data over all the sims)
for the state and decision variables (A,S,C,I,PI) and for S/C, the

ratio of stock to consumption (which should theoretically stay constant),
and now for the buffer (a-afloor), and any other basic graphs that
should be produced as summary for every simulation.
sim_graph() is called by minwageSimmerGrapher.

The arguments:

 loadpath: sim_graph reads in GAUSS (.fmt) matrix files which have the
decision rules as well as all the parameters it needs to run the sim
(i.e., depreciationrate (called delta), etc). loadpath is the directory
which it opens and loads data from to start. The directory specified by
the path should already exist(GAUSS won't create it).

 innovationpath: sim_graph has the possibility of having an "information
innovation" i.e. having the decision rules change mid-run. The first
set of parameters are loaded from the "loadpath" directory (above).
The second are from innovationpath. If they are the same path,
then no innovation occurs, since the same files will be loaded the second
time.

 savepathsims: savepathsims is where the sim output is saved.
The directory specified by the path should already exist (GAUSS won't create it).
Everything having to do with the simulation should be saved here.
That includes the profiles, the simulation settings (initasset levels,
innovationtime, etc), as well as the simulation log file (which includes

 the numbers that generate the graphs).

 savetempdirgraphs: This is used as part of a path for saving the graphs.
$+ means "string concatenation."

 rndSwitch: used to fix the shocks the sims receive. if rndSwitch is passed a 0
then there is a fixed seed that the random number generator will start at,
meaning all the random numbers drawn will be identical each time that a 0
is passed in.

 numsims: Used to vary the number of "sims" (agents) that we see.

 innovationTime: time Value (not index) at which the information innovation
occurs (i.e. when find out about the wage hike).

minwageSimmerGrapher.gau:
This is the file that calls sim_graph(); it is where you
choose the basic simulation parameters you want to run on a given
(already produced) set of decision rules, to produce the standard
Profiles (durables investment, income, etc.).

minwage_functions.gau:
General library file. The functions are listed below but for more explanation see
the comments in the code; if you want to know one of them you probably need all of
them.

output_paramsAndGrids(settingsSwitch, hikeSwitch, Cdec, Idec, Astates, Sstates,
PIstates, TSvals,transitionM, TSprobabilities, wageHike, hikeStart, R,
fixedDurableCost, delta, downpaymentR, PIgrowthR, beta, rho, theta,
CadjustmentLow, CadjustmentHigh, IadjustmentLow, IadjustmentHigh, numTstates,
AfloorFnVersion):
Output_paramsAndGrids prints everything that’s passed into it and prints a few
useful pieces of information (ie an approximation of the number of operations that
will be needed to solve the DP, so a rough estimate of the length of time it will
take).

getFDC(Sval, FDC_multiplier):

getIncome(theTime, assets, stock, permIncome, PIstates, R, PIgrowthR, wageHike,
hikeStart, PIgrowthChangeTime);

getAfloor(stockState, downpaymentR, theTime, periods, fnVersion);

matchArray(baseArray, newArray)

binaryLocate(Xarray, x)

tauch(stdi,rho,m,utail,ltail)

and a few others.

Appendix 2: Generating scf.out from SCF source data
We use SCF data to set the initial distribution of the state variables, to be read in in
minwage_Sim_Graph_f.gau (search for scf.out). The files in the SCF directory and
CalculatingInitDistForSim directory together accomplish this task.

1. Download raw SCF data for the newest release and for all earlier years (there are
changes/updates all the time). Specifically:

a. Download the “COPY/EXPORT version” of the data from the Federal Reserve’s
Survey of Consumer Finances web pages.

b. Modify & run the TRANSPORT.sas file inside the SCF folder to convert the data to
.sas7bdat form.

c. Place the resulting datasets in the folder named “raw”
2. Download the bulletin (bulletin.macro.sas) from the SCF website
3. Create directories nomYEAR and realYEAR, where “YEAR” is the date of your most recent

data pull. (bulletin.macro.sas will spit out datasets into these directories.)
4. Change the libnames at the top of bulletin.macro.sas & add the x- variables we want (Search

inside past custom bulletin files: “Additional variables for Minwage paper”).
5. Save as bulletin.macro.customYR.sas, and run it once; it will build some datasets and summary

statistics (populates the nomYEAR and realYEAR directories).
6. Then run each individual year file scfregdataYEAR.sas, which customizes the data for our use

a. Also be sure to update libnames in all of these files
7. If adding another year, create a scfregdataYEAR.sas file for the latest year of data. Specifically:

a. Copy the most recent scfregdataYEAR.sas file & rename
b. Update libnames and pathnames (search for “yr” where yr is 07 or whatever year’s file

you’re starting from)
c. Update pceconvert (PCE Chain Price Index, or jcbm@USECON from haver) and

federal minimum wage values
d. Run

8. Update readinstata.do as necessary, and run it. It appends all the csv files from the different
years into one dataset

9. The output of all the above steps is C:/research/minwage/SCF/scfregdata8907.dta
10. Finally, run C:/research/minwage/calculatingInitDistForSim/scf.do, which reads in

scfregdata8907.dta and outputs C:/research/minwage/calculatingInitDistForSim/scf.out.
scf.out gets read in during the simulation (see minwage_Sim_Graph_f.gau). scf.do also
generates statistics reported in appendix table A4 of the paper.

Appendix 3: Targeting the income hike caused by the minimum wage hike

To simulate patterns found in the micro data: We want to use an initialPI setting that makes quarterly
income in the year before the hike an average $4500 across the 3 different ages that people are
modeled to get a minimum wage hike. We also want to set wageIncr for each minimum wage hike age
to be the growth rate that makes earnings jump $250 in the first period of the hike. We calibrate these
values using the following programs:

1) test_inits.gau: for a set of parameters, change initialPI, trial and error, until the program
returns an average income of about $4500.

Once you’ve found an initialPI that gives us $4500
2) test_inits.gau: for a set of parameters, start changing wageIncr for each of the different ages of

the wage hike (n==2 thru ==4). Then run test_inits.gau.
3) Run pooled_regs_fe.do, which converts gauss output from test_inits.gau to .dta format and runs

the fixed effect income regression. See if the coefficients on minwagefe for each age equal .250
(i.e. $250). If they don’t, adjust wageIncr values for each age in test_inits.gau as appropriate
and repeat steps 2 & 3.

The values of initialPI and wageIncr for each of the wage hike ages will then be put into
initializations.gau for the appropriate runs.

The values of initialPI and wageIncr for each of the paper runs (see paper Table 8) are summarized in
the file “Version Table.xls”

Appendix 4: Compiling minwageDP_DLL.dll using C++ for windows
Compile the C++ code to a single DLL file using your favorite compiler.
The underlying files are located in \research\minwage\C\:

Instructions are provided here for Microsoft Visual Studio 2010
(mostly based on MSDN’s online instructions here: http://msdn.microsoft.com/en-
US/library/ms235636%28v=VS.80%29.aspx]

1. Open Microsoft Visual Studio. From the File menu, select New and then Project
2. From the Project types pane, under Visual C++, select Win32.
3. From the Templates pane, select Win32 Console Application.
4. [Navigate to …\research\minwage.] Enter minwageDP_DLL in the Name field. Uncheck

Create directory for solution
5. Press OK to start the Win32 application wizard. From the Overview page of the Win32

Application Wizard dialog, press Next.
6. From the Application Settings page of the Win32 Application Wizard, under Application

type, select DLL if it is available or Console application if DLL is not available. Some
versions of Visual Studio do not support creating a DLL project using wizards. You can change
this later to make your project compile into a DLL.

7. From the Application Settings page of the Win32 Application Wizard, under Additional
options, select Empty project.

8. Press Finish to create the project.
9. From the Project menu, select Add Existing Item
10. Browse to …\research\minwage\C and select all of the .cpp and .h files (press shift & click).

Click Add
11. From the File menu, select Save All
12. To build the project into a DLL, from the Project menu, select minwageDP_DLL

Properties…. From the left pane, under Configuration Properties, select General. From the

right pane, change the Configuration Type to Dynamic Library (.dll). Press OK to save the
changes.

13. From the Build menu, select Batch Build. In the window that appears, click Select All, then
Build

14. The compiled file, minwageDP_DLL.dll appears in the release directory. Note that the
minwageDP_#.gau files reference this file, so make sure to move the minwageDP_DLL.dll
file to the C:/research/minwage/C, or update the pathname in the dll call (search “dlibrary”) in
minwageDP_#.gau

Appendix 5: Understanding and Running the Minimum Wage Simulations

The minimum wage simulation programs are a collection of tightly coupled programs spanning several
languages. It is important to understand all of it because if you change one part of it, you’re incredibly
likely to break the rest of it. The program can be thought of in terms of the decision rules (mostly in C,
setup in gauss), the simulations (all in gauss), and the output (partly in gauss, partly in Stata). This
program is supporting the paper “The Consumption Response to Minimum Wage Hikes” by Aaronson,
Agarwal, French and perhaps other papers in the future.

Setup and Directory Structure

All files should come in a zip file named “research.zip”. You can place them in whatever directory
you’d like. I highly recommend the following (a) if you chose “C:\Research\minwage\” then you
won’t have to change a million little details in the code [because it’s mostly coupled to that directory
structure] and (b) if you don’t choose to place it in C:, and decide to change the code, don’t place it in a
directory with spaces in the name (ex: c:\documents and settings\etc) since gauss frequently spazzes
out about this; yes you can get around it but it’s just not worth fighting.

Decision Rules

The decision rules are set up and called from gauss but actually run in C. In order to compile and run
this, you’ll need a windows C compiler (I recommend MS Visual Studio which at the time of this
writing, the fed would provide) and Gauss.

Setting up the decision rules

The decision rules are set up in initializations.gau , found in the base install directory. Here’s the
basic idea, each run set up is given a number in the setting switch, then you call that number later and
you can be assured to run or rerun the exact same settings (plus it’s a lot easier later to trace what you
ran). There’s a huge amount of dubiously useful in line documentation, but here’s what you need to do
if you’re setting up a new run. Start by taking the base case for the paper and copy+pasting that
section into a new part of the program (the section starts with elseif (settingSwitch == 67.1); and
ends the line before the next elseif()) and giving it a new number (ex: 77.1, something that IS NOT
YET IN USE). I picked 67.1 because at the time of this writing it was considered the base case. Why
copy+paste the old one? Because (a) the vast majority of it won’t change between runs and (b) it
makes sure all of the variables you need are initialized.

Now that we have a working spec, let’s take a look inside. The names try to follow the naming
conventions in the paper however some of the names were reserved words in gauss and also the paper
has changed over time. So the run down is rho is what the paper is calling γ or Coefficient of relative
risk aversion. beta is the discount factor and also called β in the paper. theta is the utility weight on
durables and also called θ in the paper. PIgrowthR is the income growth per period and called α1 in
the paper. downpaymentR is called π in the paper and is the downpayment rate. delta is the
durables depreciation rate also called δ in the paper. R is almost what the paper calls r or the quarterly
interest rate, in initializations R is the r+1. fixedDurableCost is the multiplier on today’s stock to
determine fixed cost of buying a durable, the paper calls this “adjustment cost”. numPIStates is the
number of states we’re going to create for the PIstates matrix down below. transitionM, PIstates,
and c are all set below via tauch, they’re just initialized here, for a full explanation of exactly how
these work, Eric has a paper on the tauch function. sse is variance of AR(1) innovations called σ2

E in
the paper. ssu is the variance of transitory innovations called σ2

u in the paper. rho_paper is what the
paper calls ρ or the autocorrelation of income. Skipping down a bit we see hikeStart which is the time
period at which the minimum wage workers in the simulation will get a minimum wage hike.
PIgrowthChangeTime is the time period at which the workers cease getting large pay increases each
period and level off. hikeLength is how long the minimum wage workers getting the wage hike see
that extra hike. Past that, the rest of these variables don’t really manifest in the paper directly but are
here to set up the grids which are getting passed to the decision rules. There are a few functions in this
file but most of them aren’t used or aren’t worth mentioning here, you can read through the in file
documentation for them, but they come up once a year.

When it’s time to run the initialization you’ve set up, you must run the file minwageDP_1.gau in
gauss. You’ll notice a few things, first there are many versions of this file, this is so that you can run
multiple decision rules at the same time, the process can take 8 or more hours, so it may be to your
advantage to leave 3 or more copies running over the weekend. Each copy that you run will need to be
modified in several ways. First, you’ll notice many file paths such as “C:\\Research\\minwage\\....”
etc. These will all need to be changed to your path locations. There seems to have been an attempt to
swap between file paths based on the user, but you’ll notice just how incomplete that attempt was (look
at the #include section for functions, for example). Second, settingSwitch is the variable that you
must set to the number of the initialization you wish to run. Third, hikeSwitch is a true/false (1 =
true, 0 = false) flag for if the decision rules will be calculated for a hike condition or not. That’s about
it for this file, the rest of it is dedicated to initializing even more variables and printing a bunch of the
conditions to the screen for you to visually verify. The line that starts the call to the C code is dllcall
getDecisionRulesGAUSS().

Once the call to the C code is complete, there’s some minor housekeeping to be done. If you have all
of your results saved to a default directory (ex:\\results\\newResults_tmp_1) you should now go to that
directory and copy the results to a permanent directory so that the results are not overwritten. If you’re
changing that path each and every single time you run minwageDP_1.gau, you can skip this step.

The decision rule calculations

This section is a walking tour of the C code. If you open the project in MS Visual Studio, you’ll notice
a bunch of things. First off, most of this code is dead code, it never gets used. Second, this project is
set to compile to a .dll or a library file for windows. Basically this means that the function will be
compiled and gauss can use it but gauss itself doesn’t need to recompile to use the function (don’t
worry about the specifics, but that’s the basic idea). Finally, and this is very important, back in
minwageDP_1.gau dlibrary was set to point to
C:\research\minwage\C\minwageDP_DLL.dll. This means that if you don’t change that path, if
you recompile this project, you’ll have to copy your new .dll file to that directory in order to make this
program run. Inside minwageDP, you can find getDecisionRulesGAUSS() which is the function gauss

is calling [here is where all the variables are getting passed in]. You can see it sets up the data
structures and then calls getDecisionRules(). First note that in getDecisionRules() you’re writing out
to “C:\\Temp\\minwageDP.log” keep that in mind in case you need to change the path or delete the file
or look at the log, etc (If you don’t have a Temp directory in C:\\, create it). Second, the function
basically goes period by period calling getIncome() and then calling getBestDecision() [which is over
in minwageDP.h]. Both of these functions are fairly mechanical and just grind through their equations.
All of this C code can be rather intimidating, but for the most part it’s just a bit jumpy and
disorganized but not too tough to work through. That’s about it, these matrices will be returned to
gauss which will then save them to your path.

Simulations

Simulations are run by running minwageSimmerGrapher.gau in gauss. If you open the file,
you can see almost nothing is in it other than setting up the basePath to match the directory where
your decision rules were saved with no hike, the innovationPath to match the directory where your
decision rules were saved with a hike (or point to the same directory as basePath if you’re running a no
hike scenario). A few of the other paths may have to be updated as well the first time you run the
program, but you should be used to this by now. Basically all this program does is call the function
sim_graph() in the file minwage_Sim_Graph_f.gau.

 The sim_graph() function does all the real heavy lifting in the simulations, let’s take a quick walking
tour through it. After the program reads in the saved matrices from the decision rules, the program
then reads in the scf data that we generated in Stata (see the income2pi section of sim_graph). I’ve
added a ton of in document comments to this section, I encourage you to read them if you’re looking
for exact details. Next the program mashes the matrices from the hike and no hike together at the
specified hikeStart. The next section is rather mechanically iterating through observations and time
periods computing income, checking where the simulated person falls on the decision rule grid, and
setting his/her consumption & investment for the period. There’s a ton of little checks to make sure
someone doesn’t slide off the edge of a grid, etc, but that’s the basic gist of this section. Finally, the
entire 2nd half of this program is just printing out graphs and numbers to the screen.

Output

The final section of the program is a disjointed set of programs that generate output in various formats
for the paper. These are all fairly simple program, but there are enough of them that it’s easy to miss
one.

One key question is “what are the median/quantile values of buffer, assets, and cash on hand just
before people learn of the hike?” This is answered in printMedians.gau. Basically the program
just reads in the matrices, sorts them, and prints the median value to the screen. You’ll have to adjust
version to run the file. Adjust loadPath and loadPathHike according to where you’re storing
permanent versions of the Decisions/Simulations matrices output. I copy+paste these quantile values
from the screen into a spreadsheet called “Version Table”.

Finally, there are a number of regressions in Stata tracking differences in consumption and investment
based on our hike. If you want to run these the first challenge is reading the data into Stata. Since at
the time of writing this, our handy conversion tool for changing gauss files into Stata files was
removed, there’s a fast way to just print the matrices to a flat file and read that into Stata. To print out
the matrices run printMatrix.gau after changing version, which changes loadPath. Next you’ll
need to open SS_all_regs.do. The first portion of the program is devoted to reading in the data.
Stata sometimes treats the data as strings and sometimes as reals. Once the data is read in, the

regression can be run by specifying the two input files (the time period of the rate hike is inferred from
the directory name). I copy+paste the regression output from the screen into a spreadsheet called
“Version Table”.

	Calculating Initial Distribution For Simulation
	Dynamic Programming
	NonDP – Analytic Solution
	Replicating Paper Figures 5 – 9 and Table 7-8
	Appendix 1:
	Appendix 2: Generating scf.out from SCF source data
	Appendix 3: Targeting the income hike caused by the minimum wage hike
	Appendix 4: Compiling minwageDP_DLL.dll using C++ for windows
	Appendix 5: Understanding and Running the Minimum Wage Simulations
	Setup and Directory Structure
	Decision Rules
	Setting up the decision rules

