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Abstract

We estimate the parameters of a dynamic, forward-looking neighborhood choice
model in 197 metro areas where households have preferences over the racial composi-
tion of neighborhoods. Our inclusion of multiple metro areas in the estimation sample
enables us to develop a new, shift-share IV strategy to estimate the impact of the
racial composition of neighborhoods on location choice that relies only on across-metro
comparisons of similarly situated neighborhoods. For the “shift,” we use national
data to determine the probabilities different types of households live in different neigh-
borhoods in a metro when neighborhoods are ranked only by within-metro income
quantiles. The “shares” are the metro-level population shares of each household type.
Thus, the instrument predicts variation in neighborhood-level racial shares, which for
a given within-metro income quantile is attributable exclusively to variation in metro-
level type shares. The overall IV estimate is a weighted average of the contribution
from all of the income quantiles. We use the tools of Goldsmith-Pinkham, Sorkin, and
Swift (2020) to analyze the comparisons that are weighted most heavily for identifica-
tion and to derive appropriate balance tests. Our key finding is that many households
have very strong preferences to live in same-race neighborhoods. These preferences are
so strong that the current demographic composition of neighborhoods is not stable.
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1 Introduction

America is still largely racially segregated. Figure 1 shows the extent of racial segregation

in the United States in 2010. Each line in this figure shows the fraction of residents of a

given race, the x-axis, that live in a Census tract with less than the same-race share shown

in the y-axis. The blue line shows results for non-Hispanic White households (“White”),

and the black and brown lines show results for non-Hispanic Black (“Black”) and Hispanic

households.1 In 2010, the median White person lived in a Census tract that was at least

88% White and 26% of White people lived in Census tracts that were at least 95% White.

Nearly 30 percent of Black people lived in a Census tract that was at least 70 percent Black;

this same result holds for Hispanic people.

We investigate the extent to which preferences over the racial composition of Census

tracts (“neighborhoods” going forward) influence where people choose to live. We estimate

a dynamic, forward-looking model of neighborhood choice. In this model, households have

preferences over exogenous intrinsic features and endogenous racial composition of neigh-

borhoods. We estimate parameters of the model using data on location choices within 197

metropolitan divisions (metros) in the United States. This amounts to the estimation of 197

separate models of within-metro neighborhood choice, with some parameters held constant

across metros.

The keystone of our analysis is estimation of how household preferences for a neighbor-

hood vary with its demographic composition, and how these preferences vary by household

“type,” which includes race and other household characteristics. Specifically, for each type

of household we want to regress indirect utility of a neighborhood, which determines the

probability that neighborhood will be chosen, on the racial composition of that neighbor-

hood. Identification of how racial composition affects preferences using location-choice data

is confounded by the presence of location-specific amenities that may be unobserved, and

the valuation of these amenities that may differ by household type. Therefore, identifying

preferences over demographic composition of neighborhoods requires an instrument that is

correlated with racial shares at the neighborhood level but uncorrelated with local amenities.

While papers that estimate dynamic models of neighborhood choice have typically focused

on single metro areas, estimating households preferences over neighborhoods from a large

number of metros allows us to employ a new identification strategy for recovering racial

1In the case of perfect racial segregation, each line would be equal to 0% until x=100, at which point each
line would equal 100%. With perfect integration, each line would equal 0% until the x-axis value is equal to
the mean racial percentage in the United States – 64 percent for White, 12 percent for Black, 16 percent for
Hispanic – at which point the line would equal to 100%. The other categories of race that are not shown are
Asian (5 percent of the population) and people identifying as two or more races (4 percent).
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Figure 1: CDFs of Census Tract of Residence by Same-Race Percentage, 2010
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Notes: The x-axis is the same-race racial share and the y-axis is the percentage of residents
of that race living in a Census Tract that has less than the same-race racial share indicated by
the x-axis. The blue line is the CDF for White residents, the black line is the CDF for Black
residents and the brown line is the CDF for Hispanic residents. For example, the median White
person (y-axis of 50%) lives in a Census tract that has a White racial share less than about 88
percent (x-axis); the median Hispanic person lives in a Census tract that has a Hispanic racial
share less than about 46 percent; and the median Black person lives in a Census tract that has
a Black racial share less than 40%.

preferences. The strategy is a new shift-share design in the style of Bartik (1991) that

involves comparing households preferences for neighborhoods from different metros that are

identical in terms of the rank of neighborhood income in the metro neighborhood income

distribution, but that have different racial composition.

Our IV strategy works as follows. We start by ranking each Census tract within a metro

area by income and then assigning to each tract its income quantile within the metro. We

then pool all data across metros and estimate the probability any given household type of

the 54 types of households in our data chooses to live in any particular income quantile. This

gives us a “prediction equation” for where each of the 54 types of households in our data
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are going to live that is based only on national data. This prediction equation, for example,

captures the fact that young, renting, low-credit score Black households disproportionately

live in the lowest income tracts inside any given metro area and old, homeowning, high-credit

score White households tend to live in higher income tracts.

Next, we use the prediction equation based on national data to assign predicted pop-

ulations of each of the types of households in our data to each of the Census tracts in a

given metro. Since each household type is associated with a race, the outcomes of these

assignments are predicted racial shares (Black, Hispanic, White) within each Census tract.

We use the same type-specific prediction equations in each metro. This implies that for each

tract at a given income quantile in every metro, any variation in predicted racial shares is

solely attributable to variation, across metros, in the metro population shares of household

types. As long as these metro-wide type population shares are uncorrelated, across metro

areas, with amenities at each within-metro income quantile, metro-wide type population

shares and combinations thereof are valid instruments.

After controlling for fixed metro and income quantile effects, our IV strategy exploits

comparisons across metros in the location choice probabilities and predicted racial shares

at all income quantiles. According to national data, different household types tend to live

in different income quantiles of a metro. This implies the impact of each type’s metro-level

population share is largest at the income quantiles where that household type tends to live.

Thus, the predicted variation in racial shares across metros changes across income quantiles

because population shares of household types vary across metros.

We use the tools of Goldsmith-Pinkham, Sorkin, and Swift (2020) to understand the

key source of variation underlying our identification strategy, to discuss the requirements for

consistent identification, and to motivate balance tests. Most of the variation that drives

identification of the impact of the Black share of households on neighborhood choice proba-

bilities arises from metro-level variation in the population share of Black renting households

that are young or middle-aged and have a low-credit score. A similar result holds for His-

panic households. Our balance tests show that our instruments are strongly correlated with

actual Black and Hispanic shares, and are not correlated with nearly all features of metros

we consider related to geography, access to public transit, and distance to road networks

that may be correlated with otherwise unobservable amenities.

Perhaps not surprisingly, we estimate that many – but not all – households have pref-

erences exhibiting homophily: for many households, utility in their chosen neighborhood

increases if the share of same-race households in the neighborhood increases. To give a sense

of the size of these preferences, for the average Black household in our data, we find that if

the share of Black households in their neighborhood increases by 1 percentage point, utility
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increases by approximately the same as if the price of rental housing declines by 3 percent.

For the average White household in our data, if the share of Black households increases by

1 percentage point, utility declines by about the same amount as if rental prices increase by

approximately 1 percent.

We believe we are the first to use a shift-share instrument to estimate preferences various

types of households have over White, Black, and Hispanic racial shares of neighborhoods

within the context of a dynamic location-choice model. That said, our work relates to

other design-based studies estimating White households’ migration response to inflows of

Black households. Boustan (2010), who studies post-WWII White migration from central

cities to suburbs, uses a shift-share approach similar to that of Card (2001) to estimate the

impact of Black inflows on White migration.2 Closest to us, Shertzer and Walsh (2019) use

an IV approach similar to Boustan (2010), but with a prediction equation that generates

within-city White migration in response to Black migration between 1900 and 1930.3 While

our estimation approach is new, there is an extensive literature on the racial dynamics

of neighborhood change.4 Kuminoff, Smith, and Timmins (2013) provide a survey of the

literature of estimated location-choice models with endogenous amenities. Recently, in line

with our findings, Aliprantis, Carroll, and Young (2022) find that preferences (homophily)

rather than wealth explain differences in the socio-economic status of the neighborhoods in

which Black and White households reside.5

A subtle but important question is how one should interpret our estimated preferences

for neighborhood racial composition, and in particular whether they should be viewed nar-

rowly as preferences for the skin color of neighbors or broadly as preferences for both skin

color and the endogenous amenities that result from the way that local retailers, employers,

governments, police, and other relevant actors behave toward neighborhoods with different

demographic makeups. Because our IV strategy captures variation in tract racial shares

driven by variation that moves slowly over time as inputs (metro-level race shares inter-

2In related papers, Derenoncourt (2022) studies the impact of southern Black migration to specific north-
ern and western commuting zones on inter-generational income mobility of households in those zones and
Shi, Hartley, Mazumder, and Rajan (2022) study the impact of this migration on urban renewal projects
at the city level. For identification, Boustan (2010), Derenoncourt (2022) and Shi, Hartley, Mazumder, and
Rajan (2022) use southern state-level push factors interacted with historical county-level migration patterns.

3In Shertzer and Walsh (2019), the source of variation arises from differences in Black out-migration
rates from southern states interacted with historical northern city neighborhood destinations of migrants
from those states. Relative to Shertzer and Walsh (2019), we are using different shifts and shares and are
estimating racial preferences within the context of a dynamic model of location choice.

4See Ellen (2000) for an overview and Ellen and Torrats-Espinosa (2019) for a discussion of racial change
in the context of gentrification.

5Christensen and Timmins (2021) and Christensen and Timmins (2022) also show that steering and
barriers to entry may also play a role in determining the neighborhoods in which Black households have
access.
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acted with national-average sorting predictions), we argue that a broad interpretation is

appropriate, and our estimates should capture preferences for the bundle of race and the

endogenous amenities that tend to come with race. For example, if certain retail estab-

lishments tend to locate more frequently in mostly White neighborhoods, the IV procedure

uncovers preferences for the combination of the large fraction of White neighbors and the

retail establishments locating more frequently in those neighborhoods. In some contexts

understanding preferences for race separately from preferences for amenities that follow race

(for whatever reason) may be important, but we do not think this distinction matters for

forecasting how neighborhoods change over time in response to small shocks or changes to

government policy.6

At the end of our analysis, we ask whether our model implies that the current racial

composition of neighborhoods is stable. We first engineer the model to be in a steady state

such that the shares of every type of household in our data and in every neighborhood are

constant over time. Then, we take a stand on how households form expectations and make

decisions in response to a small change in racial shares and evaluate the stability of the

population distribution across neighborhoods in each metro by computing eigenvalues of the

model. The eigenvalues determine if the model will return to its starting steady state in

response to a perturbation in racial shares. The eigenvalues we compute suggest the racial

composition of most neighborhoods in nearly all metros is not stable; that is, in response to

a small perturbation in expected racial shares in one neighborhood in a metro, household

location decisions adjust in such a way that demographic shares in many neighborhoods in

that metro are predicted to move away from the current steady state rather than converge

back towards it. We show this instability arises because many households have very strong

preferences over racial composition and wish to live in more segregated neighborhoods.

Next, we consider the implications of a small policy, implemented simultaneously across

many neighborhoods in a metro area, that mechanically should increase racial integration

absent any migration in response to the policy. Specifically, we impose a policy shock in

which the quantity of housing units financed by low-income housing tax credits (LIHTC)

everywhere increases unexpectedly by 10%. In almost every metro, the new steady state

we compute after the policy is implemented looks very different and is much more racially

segregated than the starting point of the current data due to endogenous resorting of the

population. Finally, we show that the rate of convergence to the new steady state resulting

from the policy shock depends on how households form expectations. If households are my-

6In contrast, Bayer, Ferreira, and McMillan (2007) and Bayer, Casey, McCartney, Orellana-Li, and Zhang
(2022) isolate preferences over race directly (as compared to the bundle of race and amenities that may
accompany race over time), by focusing on comparisons that are geographically close and therefore plausibly
share the same bundle of amenities not related to race.
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opic, it can take decades to converge to the new steady state, consistent with the evidence of

Caetano and Maheshri (2021).7 If households are overly forward looking, that is they incor-

rectly believe the new steady state will happen immediately, perhaps due to “blockbusting”

or any other coordination device (Hartley and Rose, 2023), then convergence to the new

steady state occurs within one decade.

2 Household Decision Model

We model the system of demand for neighborhoods by considering the decision problem

of a particular household head deciding where his or her family (“household”) should live.

As in Kennan and Walker (2011) Bayer, McMillan, Murphy, and Timmins (2015), and Davis,

Gregory, Hartley, and Tan (2021) we model location choices in a dynamic discrete choice

setting. We assume each household takes its metro area m as given. Each year, the household

can choose to live in one of Jm locations in the metro. When we bring this model to the

data, Jm will vary with the metro.

Denote j as the household’s current location in the metro and τ as that household’s

type. We write the value to the household, V τ
m,t (` | j, ε`,m), of choosing to live in location `

in metro m in year t given a current location of j in the metro and current value of a shock

ε`,m (to be explained later) as

V τ
m,t (` | j, ε`,m) = uτm,t (` | j, ε`,m) + β

∑
τ ′

ϕτ,τ
′
Et

[
V τ ′

m,t+1 (`)
]

In the above equation uτm,t (` | j, ε`,m) is the flow utility in year t to the household of choosing

to live in location ` in metro m given a current location of j in the metro and current value of

a shock ε`,m; β is the discount factor on future expected utility; ϕτ,τ
′

is the probability that

the household becomes type τ ′ next year given it is type τ this year; and Et
[
V τ ′
m,t+1 (`)

]
is the

expected value in year t+ 1 of a type τ ′ household of having chosen to live in neighborhood

` in metro m today. The t subscripts explicitly allow that flow utility and expectations may

change over time.

In the model, flow utility depends on neighborhood racial composition and is therefore

endogenous, similar to assumptions made in Caetano and Maheshri (2021) and Almagro and

Dominguez-Iino (2022).8 We model uτm,t (` | j, ε`,m) as follows

7In the original paper by Schelling (1971), households are assumed to solve a sequence of static models
when making decisions, implying expectations are myopic over future neighborhood composition.

8The utility function in Almagro and Dominguez-Iino (2022) does not depend on race but does depend
on neighborhood consumption amenities which are endogenously determined.
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uτm,t (` | j, ε`,m) = δτ`,m,t − κτ · 1`6=j + ε`,m

δτ`,m,t is the deterministic portion of flow utility a type τ household receives in year t from

living in neighborhood ` in metro m. κτ are fixed costs a household of type τ must pay

when it moves to a different neighborhood in the metro i.e. when ` 6= j; 1` 6=j is an indicator

function that is equal to 1 if location ` 6= j in metro m and 0 otherwise; and ε`,m is a random

shock that is known at the time of the location choice. ε`,m is assumed to be iid across

locations, time and people. ε`,m induces otherwise identical households living at the same

location at the same time to optimally choose different future locations.
We assume δτ`,m,t is comprised of disutility from log rental prices (log r`,m,t), a quadratic

function of the share of neighborhood ` that is Black (Sb`,m,t) and is Hispanic (Sh`,m,t), and
exogenous amenities, Aτ`,m,t.

δτ`,m,t (1)

= − aτr log r`,m,t︸ ︷︷ ︸ + aτ1S
b
`,m,t + aτ2

(
Sb`,m,t

)2
+ aτ3S

h
`,m,t + aτ4

(
Sh`,m,t

)2
+ aτ5S

b
`,m,tS

h
`,m,t︸ ︷︷ ︸ + Aτ`,m,t︸ ︷︷ ︸

rents demographics amenities

We do not impose a linear specification in racial shares because we do not want to impose

that the marginal utility of a change in a racial share is constant with respect to the level

of that racial share. A quadratic functional form is a parsimonious specification that allows

for the possibility that households may like some diversity; it also allows, depending on

parameters, that households may not like any diversity.

Denote ε1,m as the shock associated with location 1, ε2,m as the shock with location 2, and

so on. In each period after the vector of ε are revealed (one for each location), households

choose the location that yields the maximal value

V τ
m,t (j | ε1,m, ε2,m, . . . , εJm,m) = max

`∈1,...,Jm
V τ
m,t (` | j, ε`,m) (2)

3 Estimation Overview and Data

We will use a 2-step procedure like Berry, Levinsohn, and Pakes (1995) to estimate our

model of demand for locations. In the first step, we use GMM to estimate the vector of δτ`,m,t
and the moving cost κτ for each τ . This is similar to the procedure of Neilson (2017), who

uses GMM to estimate a similar first stage in a model of school choice. In the second step,

we use an IV procedure to understand how exogenous changes in rental prices and racial
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shares impact δτ`,m,t for each τ .

3.1 Step 1: GMM to Estimate Demand for Locations

In the first step, we use the approach of Hotz and Miller (1993) and employed by Bishop

(2012) and Davis, Gregory, Hartley, and Tan (2021) to set up estimating equations for δτ`,m,t
and κτ . This approach does not require that we solve for the value functions. Instead, as we

show in appendix A, the log probabilities that choices are observed are simple functions of

δτ`,m,t, κ
τ , β and of observed choice probabilities. Note that due to data limitations we discuss

later, we combine data across multiple years when estimating probabilities and preference

parameters. For this reason, going forward we remove time subscripts from value functions,

expectations and elements of utility.

Define Θτ
1 as the full vector of parameters to estimate in step 1 for type τ

Θτ
1 =

{
κτ ,
{
δτ`,m=1

}J1
`=1

,
{
δτ`,m=2

}J2
`=1

, . . . ,
{
δτ`,m=M

}JM
`=1

}
(3)

where δτ`,m is the value of δ for type τ in tract ` in metro m, assumed fixed over the years in

our estimation sample, and M is the number of metros in the sample.

The first moment we target for each household type is the unconditional probability of

not moving. Define the distance between the model predicted non-moving rate and the data

as

Gτ1 (Θτ
1)

=
M∑
m=1

Jm∑
j′=1

P̂ τm
(
j = j′

)︸ ︷︷ ︸ P̂ τm
(
` = j′ | j = j′

)︸ ︷︷ ︸ − M∑
m=1

Jm∑
j′=1

P̂ τm
(
j = j′

)︸ ︷︷ ︸ P τm
(
` = j′ | j = j′; Θτ

1

)︸ ︷︷ ︸
data data data model

(4)

As before, j is the Census tract at the start of the period and ` is the Census tract at the

end of the period. j′ indexes Census tracts that are in metro m and there are Jm of these

tracts.9 In this equation and the next, any variable with a “hat” is computed directly from

the data. P̂ τ
m (j = j′) is the probability that type a τ household starts a period in tract j′

in metro m and P̂ τ
m (` = j′ | j = j′) is the probability that a type τ household that starts a

period in Census tract j′ chooses to remain in Census tract j′. The conditional probability

P τ
m (` | j; Θτ

1) for any ` and j is determined by the model for a given Θτ
1.

The remaining
M∑
m=1

[Jm − 1] moments for each type are that the model matches the prob-

9We start the tract index j′ at 1 within each metro, but obviously tract j′ in metro m will be different
than tract j′ in metro m′.
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ability of choosing any given tract in each metro. There are Jm − 1 moments in each metro

because the probability of choosing a tract must sum to 1, and (as mentioned) households

are assumed to not move outside of their metro. For any given metro m, we can write the

distance for these Jm − 1 moments as

for ` = 2, . . . , Jm Gτ`,m (Θτ
1) =

Jm∑
j=1

P̂ τm (j)︸ ︷︷ ︸ P̂ τm (` | j)︸ ︷︷ ︸ − Jm∑
j=1

P̂ τm (j)︸ ︷︷ ︸ P τm (` | j; Θτ
1)︸ ︷︷ ︸

data data data model

(5)

We normalize δτ1,m = 0 in each metro, which is allowable because utility is relative and

adding a constant to each δτ in the choice set will not affect the probability of any choice.

For each type τ , we find the vector of parameters to minimize the sum of squared errors

of the moments

Θ̂τ
1 = argmin

Θτ1

{
[Gτ

1 (Θτ
1)]2 +

M∑
m=1

Jm∑
`=2

[
Gτ
`,m (Θτ

1)
]2}

The model is exactly identified, so at Θτ
1 = Θ̂τ

1 the term in braces will be zero. For each

type, there are 1 +
∑
m

(Jm − 1) moments and the same number of parameters.

3.2 Step 2: IV to Estimate Impact of Demographics on Demand

Once we have estimates of δτ`,m from the 1st stage, we wish to uncover the parameters aτr

and aτ1, . . . , a
τ
5 from equation (1). We start by taking a value for the impact of rental prices on

flow utility, aτr , from Davis, Gregory, Hartley, and Tan (2021). Define δ̂τ`,m as the estimated

value of δτ`,m from the first stage minus aτr log r̂`,m, where r̂`,m is our estimate of the rental

price for a standardized housing unit in neighborhood ` of metro m computed from data in

the 2007-2011 American Community Survey.10 Then we wish to estimate aτ1, . . . , a
τ
5 in the

following specification that is the same as equation (1), but with time subscripts removed:

δ̂τ`,m = aτ1S
b
`,m + aτ2

(
Sb`,m

)2
+ aτ3S

h
`,m + aτ4

(
Sh`,m

)2
+ aτ5S

b
`,mS

h
`,m + Âτ`,m

Define the vector of parameters that we estimate for each type in this second step as Θτ
2,

Θτ
2 = { aτ1, aτ2, . . . , aτ5 }

Since racial shares are likely to be correlated with unobserved amenities, we use an instru-

10We regress the log of median rent of renting households, measured at the tract level, on average hedonic
characteristics of housing units in the tract. We set r̂`,m equal to the residuals in this regression.
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mental variables approach to estimate Θτ
2. Our approach has two components and both

components take advantage of variation across metro areas. First, we assign a label to each

tract: its income quantile ranking in its metro area. By giving each tract a label (its income

quantile) along a dimension that is comparable across metros, we can include income quan-

tile fixed effects in our analysis. After including income quantile and metro fixed effects, the

specification becomes

δ̂τ`,m = aτ1S
b
`,m + aτ2

(
Sb`,m

)2
+ aτ3S

h
`,m + aτ4

(
Sh`,m

)2
+ aτ5S

b
`,mS

h
`,m + θq(`,m),1 + θm,2 + Ǎτ`,m

where θq(`,m),1 is the fixed effect appropriate for the income quantile corresponding to tract

` in metro m, q (`,m), and θm,2 is a metro fixed effect. After including these fixed effects,

the variation in the data that drives identification is free of metro effects and free of quantile

effects.11

The second component is our IV approach. Using a shift-share approach, we create

instruments that are linear predictors of the tract level Black share, Zb
`,m, and the tract level

Hispanic share, Zh
`,m. The instrument interacts metro-wide shares in household types with

national estimates of how household types sort into neighborhoods that is based only on the

within-metro income quantile of that neighborhood. This exploits across-metro variation

in overall racial shares to generate an instrument that varies within income quantiles across

metros, but is uncorrelated with the variation in amenities that is not accounted for by metro

fixed effects or fixed effects for income quantiles.12 Our five instruments are then Zb
`,m, Zh

`,m,(
Zb
`,m

)2
,
(
Zh
`,m

)2
, and

(
Zb
`,mZ

h
`,m

)
. With these instruments in hand, we estimate Θτ

2 using

2SLS for each type.

Consistency of our estimates of Θτ
2 requires our instruments to be uncorrelated with

Ǎτ`,m. In section 4, we detail construction of the instruments. We then use the new tools of

Goldsmith-Pinkham, Sorkin, and Swift (2020) to identify the sources of variation in our in-

struments and derive appropriate balance tests to show that the instruments are uncorrelated

with observable proxies for Ǎτ`,m.

11Explaining, there may be certain metros that have a relatively large Black population and therefore the
share of Black households in every tract in that metro might be relatively high. The metro fixed effects will
account for the fact that the share of Black households will tend to be high in all tracts in those metros; and,
the variation that remains reflects the relatively desirability of tracts in those metros to Black households.
Similarly, there may be certain income quantiles that disproportionately attract Black households in every
metro. The income-quantile fixed effects account for the fact that the Black share will tend to be high at
that income quantile in all metros. The variation that remains after accounting for the income-quantile
fixed effects reflects the relative desirability of the neighborhoods at that income quantile in certain metros
relative to other metros.

12Blair (2023) also exploits across-metro variation to understand how differences in the nature of outside
options affect tipping points.
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3.3 Data

3.3.1 FRBNY Consumer Credit Panel / Equifax

We estimate the model using panel data from the FRBNY Consumer Credit Panel /

Equifax data set (CCP). The panel is comprised of a 5% random sample of U.S. adults with

a social security number, conditional on having an active credit file, and any individuals

residing in the same household as an individual from that initial 5% sample.13 For years

1999 to 2019, the database provides a quarterly record of variables related to debt: Mortgage

and consumer loan balances, payments and delinquencies and some other variables we discuss

later. The data does not contain information on basic demographics like race, education,

or number of children and it does not contain information on income or assets although it

does include the Equifax Risk ScoreTM which provides some information on the financial

wherewithal of the household as demonstrated in Board of Governors of the Federal Reserve

System (2007).

Most important for our application, the panel data includes in each period the current

Census block of residence.14 To match the annual frequency of our location choice model,

we use location data from the first quarter of each calendar year. In each year, we only

include people living in metro areas – if, for example, a household moves from an eligible

metro area to a rural area, that household-year observation is not included in the estimation

sample. To keep estimation computationally feasible, we assume each household can only

move within its metropolitan division (“metro”). If a household moves to a different metro,

the household-year observation of the move is not included in the estimation sample, but

the years before and after the across-metro move are included.

The panel is not balanced, as some individuals’ credit records first become active after

1999. We restrict the sample to households living in one of 197 metros, each containing

between 50 and 1,000 Census tracts.15 The total number of person-year observations in the

estimation sample is 142,692,072.

We sort households into 54 mutually exclusive types: by age of the head of the household

(young, middle, old), by housing tenure status (renter, owner), by credit score (low, middle,

high), and by race (Black, Hispanic, White/other). Referring to φτ,τ
′
, with the exception

of race a household’s type can stochastically change over time. Borrowing a method from

13The data include all individuals with 5 out of the 100 possible terminal 2-digit social security number
(SSN) combinations. While the leading SSN digits are based on the birth year/location, the terminal SSN
digits are essentially randomly assigned. A SSN is required to be included in the data and we do not capture
the experiences of illegal immigrants.

14We match Census block to Census tract using the year-2000 definition of Census tracts.
15We impose the the limitation on the maximum number of Census tracts in a metro to keep estimation

feasible.
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overlapping generations models in macroeconomics to conserve on state variables, we assume

that households assume they age up (i.e. low to middle, middle to high) or die (high to death)

with a 5% probability each year. Conditional on age and race, we estimate the annual 6x6

matrix of transition probabilities of housing tenure status and credit score using the CCP

data pertaining to our estimation sample.

From the CCP data, we classify a household as young if the age of the household head

is between 25-44, middle aged if 45-64, and old if 65 and older. We classify the household

as a homeowner if the household has a mortgage and a renter if not. Finally, we classify a

household as having a low credit score if the Equifax Risk ScoreTM of the household head

is less than or equal to 599, middle credit score if between 600 and 720 inclusive, and high

credit score if greater than or equal to 721.16

Before we show how we estimate parameters, we first need to explain how we structure

the CCP for estimation and document a shortcoming of the data. For each type, we construct

an estimate of the probability that ` is the end-of-period location given a beginning-of-period

location of j. We compute this estimate by pooling all observations across all time periods

in a way we describe later.

Additionally, while we observe most of the elements of any type τ , we do not directly

observe race. We infer information about a household’s race from the Census block where we

first observe the primary sample person in the household.17 Let the superscript r denote race

(r equals w for White/other, b for Black, and h for Hispanic) and define ωri as our estimate

of the probability that household i is of race r where
∑
r

ωri = 1. For each r = {w, b, h}, we

set ωri for household i equal to that race’s share in the Census block in which household i is

first observed. We then use these probabilities to identify, for each type τ , the conditional

probability that a location `′ is chosen in metro m given a starting location of j′ in metro m

that period. Denote r (τ) as the specific race r associated with type τ . The estimate of that

conditional probability is

P τ
m (`′ | j′) =

∑
t

∑
i

ω
r(τ)
i I (`i,t+1 = `′) I (ji,t = j′)∑
t

∑
i

ω
r(τ)
i I (ji,t = j′)

(6)

16We keep only households with 4 or fewer adult members. A household is defined as a homeowner based
on whether anyone in the household has any type of home loan. The credit score is that of the oldest adult
if the household has 2 or fewer adults, and the oldest adult under the age of 65 of there are 3 or 4 adults in
the household.

17For reference, each Census block has about 100 residents and a Census tract has about 4,000 residents.
If a household is first observed before 2010, then we use racial shares for that household for Census blocks
from the year-2000 Census. If a household is first observed in 2010 or later, we use racial shares for Census
blocks from the year-2010 Census.
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where I (ji,t = j′) is an indicator that is equal to 1 if household i starts period t in location

j′ in metro m and is 0 otherwise, and I (`i,t+1 = `′) as an indicator that household i chooses

period `′ in metro m in period t (or, equivalently, starts period t+ 1 in location `′).

3.3.2 Potential Implications of Imperfect Measurement of Race

The fact that we do not perfectly observe race suggests our estimates of choice proba-

bilities by race may be mismeasured. This may ultimately bias our estimates of δτ`,m. That

said, any bias that arises will make location choices look more similar by race than would

be estimated if race were perfectly measured.

To see this, consider a simple estimate of the probability location ` is chosen by a White

household where race is not always measured correctly.18 This estimate can be written as

P̂w (`) = (1− φw)Pw (`) + φwP−w (`)

In the above, φw is the fraction of respondents labeled as “White” households that are

actually nonwhite, Pw (`) is the true probability White households choose tract ` and P−w (`)

is the true probability nonwhite households choose tract `. The estimated probability White

households choose tract `, P̂w (`), will be a blended average of the probabilities White and

nonwhite households choose tract `. The size of the bias depends on the extent of the

mislabeling and the difference of the choice probabilities of White and nonwhite households:

P̂w (`) = Pw (`) − φw
[
Pw (`)− P−w (`)

]︸ ︷︷ ︸
bias

If Pw (`) > P−w (`), then the bias is negative; estimated choice probabilities by race will

appear to be more similar than would be implied if race were perfectly observed.19

Some simple math shows that any bias that arises due to mismeasurement is likely to be

about one-third the size for White households than for either Black or Hispanic households.

The reason is that White households comprise 76 percent of our sample and Black and

Hispanic households each account for about 12 percent of our sample. Consider a simple

example of a sample of 1000 people with 760 White, 120 Black, and 120 Hispanic. If 10% of

Black and 10% of Hispanic households are incorrectly labeled as White, only 24 out of 760

18In this simple example we hold all aspects of a household’s type other than race as fixed.
19Obviously, other authors have discussed issues with imputing race in large data sets. One recent proposal

for imputing race in administrative data suggests using both full names (or combinations of letters appearing
together) and geography: See Cabreros, Agniel, Martino, Damberg, and Elliott (2022). Note that we do not
observe names in our data.
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White-labeled households will be mislabeled – about 3 percent. For the overall racial shares

in the sample to be accurate, 12 White households will be mislabeled as Black and 12 White

households will be mislabeled as Hispanic, 10% each of Black and Hispanic households. Thus,

φ for White households will be about one-third the size of φ for nonwhite households due to

simple arithmetic.

As we show later, our current estimates imply many households make choices that suggest

they prefer racially segregated neighborhoods. The bias we have discussed pushes estimates

away from this finding of homophily, since it shrinks differences across race in estimated

location-choice probabilities. One of the applications of our structural exercise is a test of

the stability of existing racial shares in neighborhoods. We show the hypothesis that existing

neighborhood racial shares are stable can be rejected because our estimated preferences

for homophily are strong. The fact that our estimates may be biased away from finding

homophily makes the rejection of stability of neighborhood racial shares even more stark.

4 A Detailed Discussion of the IVs

4.1 Background

Since racial shares of neighborhoods are endogenous, instruments are required to identify

preferences households have over the racial composition of neighborhoods. Finding valid

instruments has proven to be difficult. A few recent approaches used to identify preferences

over race include Bayer, Ferreira, and McMillan (2007) who use variation arising from sorting

around school-zone boundaries, Almagro, Chyn, and Stuart (2022) who use past exogenous

public housing demolitions and BLP-style instruments, and Caetano and Maheshri (2021)

who use long lags of racial shares after controlling for inflows in a model-consistent way,

just to name a few.20 These studies use variation entirely within one metro, whereas our

approach uses variation across metros for identification.21

4.2 Creating the Instruments

To start, note that the total population of Census tract ` in metro m can be written as∑
k

popk`,m, where k is an index of household type and popk`,m is the population of type k living

20Card, Mas, and Rothstein (2008) estimate tipping points on racial shares using a regression discontinuity
approach.

21Conceptually similar, Baum-Snow, Hartley, and Lee (2019) and Baum-Snow and Han (2022) also use a
within-metro Bartik IV approach. Baum-Snow and Han (2022) estimate local housing-supply elasticities and
Baum-Snow, Hartley, and Lee (2019) measure the impact of exogenous increases in high-skill labor demand
into a neighborhood on affluence in adulthood of children in that neighborhood.
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in tract ` in metro m.22 Thus the Black share in tract ` in metro m, Sb`,m, can be written as

Sb`,m =

∑
k

I (k ∈ Black) popk`,m∑
k′
popk

′
`,m

In this section we focus on the Black share, but the Hispanic share is computed analogously

throughout. Note that

popk`,m = Nk
mρ

k
`,m

where Nk
m is the total number of type k households living in metro m and ρk`,m is the

probability that a type k household living in metro m chooses to live in tract `. Make

that substitution and divide both the numerator and the denominator by the total metro

population:

Sb`,m =

∑
k

I (k ∈ Black) skmρ
k
`,m∑

k′
sk′mρ

k
`,m

(7)

In equation (7), skm is the share of the metro population that is accounted for by type k

households.

To construct the instrument, we replace ρk`,m, the actual probability a type k household

chooses tract ` in metro m, with a predicted probability density that only varies with the

income quantile of the tract in that metro.23 Denote the income quantile associated with

tract ` in metro m as q (`,m) and denote the predicted probability density that specific tract

is chosen by type k as ρ̂kq(`,m). Given this, our predicted Black share in tract ` of metro m is

Zb
`,m =

∑
k

I (k ∈ Black) skmρ̂
k
q(`,m)∑

k′
sk′mρ̂

k′
q(`,m)

(8)

To construct predicted probability densities, we regress the log of ρk`,m on metro fixed

effects24 and a 7th order polynomial in the income quantile associated with tract ` in metro

22In the notation that follows, we will use k to index household types when discussing the construction
of and properties of the instrument and we will use τ to index household types when discussing parameter
estimates associated with a particular type.

23For notation reasons, we switch from probabilities to probability densities to handle the fact that different
metros have different numbers of tracts.

24We include metro fixed effects to account for the fact that metros vary in the total number of tracts, so
metros with fewer tracts will by construction have higher choice probabilities in every tract. The fixed effect
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m. We run this regression separately for each type, but for each type we pool all tracts in

all metros. Thus, for any type and any income quantile of a tract, the predicted probability

density based on this regression does not vary across metros, except for the metro fixed

effects.25 Denote the predicted value arising from the regression used to predict probability

densities as x̂k`,m. We compute the predicted probability to be used in equation (8) as

ρ̂kq(`,m) =
exp x̂k`,m∑

`′∈m
exp x̂k`′,m

(9)

4.3 A Simple Example

To give some intuition on how instrument construction works, we provide a simple exam-

ple. Suppose there are three types of households in our data – Black, Hispanic, and White

– and that each metro in our sample has exactly three tracts: low-income, middle-income,

and high-income. In the first step, we use national data to estimate the probability that

each type of household lives in one of the three tracts. Estimates from our data for each of

the three types of households in each of the low- middle- and high-income tracts are shown

in the top panel of Table 1.

Now consider predicting the Black, Hispanic, and White shares of each of the three tracts

in two of the metros in our sample. The first metro shown in the middle panel, York-Hanover,

PA, has a population that is 2% Black, 3% Hispanic, and 95% White; and the second metro

(Trenton, NJ) shown in the bottom panel has a population that is 8% Black, 18% Hispanic,

and 74% White. Given these overall metro type shares, the first three columns of the middle

and bottom panels show the predicted racial shares and, for comparison, the final three

columns show the actual racial shares. By construction, the variation in predicted shares at

the tract level is driven only by variation in metro racial shares; the predicted probability

that any given race lives in the low-, middle-, or high-income tract is fixed across metros

and is shown in the top panel of Table 1. As the middle and bottom panels of the table

illustrate, both the predicted and actual racial shares vary considerably, and the predicted

racial shares are correlated with the actual racial shares. For example, in York-Hanover, PA,

the predicted Black share of the low-income tract is 4% (actual is 11%), whereas in Trenton,

NJ, the predicted Black share of the low-income tract is 15% (actual is 38%). In both metros,

the share of Black households in the lowest-income tracts is higher than predicted, but the

scales probabilities in all tracts by a common factor but does not otherwise affect the relative probabilities
of any two tracts in the same metro.

25Note that we construct overall racial shares in each metro and racial composition within Census tracts
using only data from our estimation sample.
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Table 1: A Simple Example of the Shift-Share Instrument

Probabilities over Locations using National Data
Black Hispanic White

Low Income Tract 42% 35% 19%
Middle Income Tract 32% 34% 35%
High Income Tract 26% 30% 46%

Racial Shares by Tract: York-Hanover, PA
Predicted Actual

Black Hispanic White Black Hispanic White
Overall 2% 3% 95% 2% 3% 95%
By Tract:
- Low Income 4% 5% 91% 11% 7% 82%
- Middle Income 2% 3% 95% 4% 2% 94%
- High Income 1% 2% 97% 4% 2% 94%

Racial Shares by Tract: Trenton, NJ
Predicted Actual

Black Hispanic White Black Hispanic White
Overall 8% 18% 74% 8% 18% 74%
By Tract:
- Low Income 15% 26% 59% 38% 18% 44%
- Middle Income 8% 17% 75% 18% 8% 74%
- High Income 5% 13% 82% 6% 6% 88%

instrument exploits the fact that Trenton, NJ has more Black households than York-Hanover,

PA to predict that the share of Black households in low-income tracts is higher in Trenton

than in York.

4.4 Comparison to Bartik (1991)

The original shift-share IV strategy of Bartik (1991) was used to estimate the impact

of employment growth on wages. The dependent variable was the growth in the metro-

level prevailing wage and the regressor of interest was the growth in local employment over

the same time period. In this framework, OLS estimation will yield biased estimates if

the change in employment is correlated with changes in non-wage location amenities that

may also affect wages. The Bartik shift-share instrument is a forecast of local employment

computed as an average of national industry-specific employment growth (“shift”), weighted
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by the local share of employment belonging to each industry in a base time period (“share”).

When this strategy is applied using data from one time period, the regression includes one

observation per metro, and the Bartik IV takes on one value per metro. When this strategy

is applied using data from multiple time periods, the regression includes one observation per

metro per time period. The Bartik IV is also specific to the metro by time period, since the

national industry employment growth rates are time-period specific.

The shares in our shift-share forecast are household-type shares of overall metro pop-

ulation and the shifts are the type-specific probabilities of choosing to live in a tract in a

metro area at specific income quantiles, computed using national data. Similar to how the

Bartik employment instrument can be computed for multiple time periods, our shift-share

tract-racial-share forecasts are computed for multiple income quantiles. In the Bartik IV,

each industry share in each metro is weighted by different national growth rates, one national

growth rate per time period. In our application, each household type share (which varies by

MSA) is weighted by different national probabilities of choosing neighborhoods, where there

is one probability per income quantile of a neighborhood.

4.5 Identification

We now use tools from the work of Goldsmith-Pinkham, Sorkin, and Swift (2020), here-

after GSS, to understand the nature of identification of estimates of Θτ
2 = aτ1, . . . , a

τ
5. GSS

clarify the source of identifying information in a Bartik instrument and suggest several pro-

cedures for investigating the validity of the instrument. In this section, we derive that our

2SLS estimator can be written as a weighted sum of individual IV-regression estimates.

Each IV regression estimate comes from a comparison across metros of indirect utilities at

the same point in the within-metro income distribution and the instrument is the metrowide

population share of a single household type. There are multiple benefits from expressing

our estimator like this. First, we can document what is required for consistent estimation.

Second, we can compute which of the individual IV regressions receives the highest weight

in determining the overall estimate. Finally, and relatedly, these both guide our choice of

diagnostic balance tests.

In this section, we consider a simplified model with one endogenous variable, the tract

Black share, and one instrument, the shift-share-predicted Black share. We do this to make

the intuition transparent. We also assume that each metro area in the sample has the same

number of tracts. This allows us to conserve on notation: Instead of writing q (`,m), we will

simply write q to denote both the tract and the income quantile of the tract. In this setup, in

the first stage of estimation, the actual tract- and metro-level Black share, Sbq,m, is regressed

18



on the shift-share-predicted Black share, Zb
q,m, quantile fixed effects, θq,1, and metro fixed

effects, θm,1. Denote the estimated coefficients from this regression as γ̂, θ̂q,1, and θ̂m,1 and

the residual from this regression as êbq,m. We construct the predicted Black share for each

tract in each metro as

Ŝbq,m = γ̂Zb
q,m + θ̂q,1 + θ̂m,1

Once the predicted Black share is constructed, the second-stage estimating equation to

uncover the impact of the Black share on preferences is

δτ`,m = aτ1Ŝ
b
q,m + θq,2 + θm,2 +Aτ`,m (10)

where θq,2 and θm,2 are fixed effects for income quantiles and metros in the second stage.

Denote X⊥ as the residual of a regression of variable X on the fixed effects θq,2 and θm,2.

The estimating equation for aτ1 can be rewritten as

δτ⊥`,m = aτ1Ŝ
b⊥
q,m +Aτ⊥`,m where Aτ⊥`,m = aτ1 ê

τ⊥
`,m + Aτ⊥`,m (11)

4.5.1 An Illustration of the Comparisons that Drive Identification

To understand how the different income quantiles contribute to identification, use Ŝb⊥q,m =

γ̂Zb⊥
q,m and start with the expression

âτ1 =

∑
q

∑
m

δτ⊥q,mγ̂Z
b⊥
q,m∑

q′

∑
m′

(
γ̂Zb⊥

q′,m′

)2

Now multiply and divide by
∑
m′′

(
γ̂Zb⊥

q,m′′

)2
in the numerator

âτ1 =

∑
q

∑
m

∑
m′′

(
γ̂Zb⊥

q,m′′

)2

 δτ⊥q,mγ̂Z
b⊥
q,m∑

m′′

(
γ̂Zb⊥

q,m′′

)2


∑
q′

∑
m′

(
γ̂Zb⊥

q′,m′

)2

Rearrange terms to get
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âτ1 =
∑
q


∑
m′′

(
Zb⊥
q,m′′

)2

∑
q′

∑
m′

(
Zb⊥
q′,m′

)2


︸ ︷︷ ︸


∑
m

δτ⊥q,mγ̂Z
b⊥
q,m∑

m′′

(
γ̂Zb⊥

q,m′′

)2


︸ ︷︷ ︸

wq âτ1,q

The estimate of aτ1 can be written as the sum over quantiles of the product of an income

quantile specific weight, wq, and an estimate of aτ1 using only information from that income

quantile, âτ1,q.

Figure 2: A Picture Depicting Identification

Figure 2 illustrates how identification operates in our framework for one type of house-

hold. In that figure, each row corresponds to one metro and each metro consists of a set of

neighborhoods, where each neighborhood is pictured as a house. Inside each metro, neigh-

borhoods are ranked left to right from lowest income to to highest income. For a given type

τ , each neighborhood has associated an indirect utility δτ⊥q,m that is a function of endoge-
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nous neighborhood composition (Black share in the picture, Sb⊥q,m) and exogenous amenities

relevant to that type, Aτ⊥q,m. At the location corresponding to that income quantile, the

instrument Zb⊥
q,m is correlated with the Black share and uncorrelated with the type-specific

amenities. To estimate the impact of the Black share on indirect utility from IV, data from

only one income quantile in each metro is needed26 – in the picture, this is shown as the

bolded 3rd income quantile in all metros. The full estimator aggregates contributions from

all quantiles using weights that are proportional to the share of the overall variation in the

instrument accounted for by variation in that quantile.

4.5.2 Linear approximation of Ŝb⊥q,m

So far, we have shown how each income quantile contributes to identification. The

prediction at each income quantile is itself a function of the metro-level type shares weighted

by national-average sorting patterns. Our goal now is to use the tools of GSS to understand

how the metro-level type shares contribute to identification.

To exactly map our work to that of GSS, we need to be able to write our estimator

as a linear combination of the instruments. Equation (8) shows that the predicted Black

share is a non-linear function of the type shares skm: the denominator is the total fraction

of all households in the metro predicted to choose the tract and the numerator is the total

fraction of all Black households in the metro predicted to choose the tract. To directly

relate our results to the work of GSS, we need to take a linear approximation to Ŝb⊥q,m. The

correlation of the linear approximation to the actual instrument is very high. This suggests

the decomposition of contribution to identification of the linearized instrument that we report

later on is very close to that of the actual instrument.
Note that the derivative of Zb

q,m with respect to skm is equal to

∂Zbq,m
∂skm

=
I (k = Black) ρ̂kq∑

k′
sk′mρ̂

k′
q

−
ρ̂kq
∑
k′′
I (k′′ = Black) skmρ̂

k′′

q(∑
k′
sk′mρ̂

k′
q

)2 =

 ρ̂kq∑
k′
sk′mρ̂

k′
q

[I (k = Black) − Zbq,m

]

Now define s̄k as the national average share of type k in a metro, and define Z̄b
q as the

shift-share-constructed Black share in income quantile q when all type shares in a metro are

equal to their national average, i.e.

Z̄b
q ≡

∑
k

I (k ∈ Black) s̄kρ̂kq∑
k′
s̄k′ ρ̂k′q

26With the caveats that γ̂ is the first-stage coefficient when using the entire sample in estimation and
quantile and metro fixed effects have been removed.
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Given this notation, a first-order Taylor series approximation of Zb
q,m around Z̄b

q , call it Z̃b
q,m,

is equal to

Z̃b
q,m = Z̄b

q +
∑
k

∂Zb
q,m

∂skm

∣∣∣∣∣
s̄k∀k

(
skm − s̄k

)
where

∂Zb
q,m

∂skm

∣∣∣∣∣
s̄k∀k

=

(
ρ̂kq
popq

)[
I (k = Black) − Z̄b

q

]
popq is the predicted population of the tract with income quantile q when all type shares in a

metro are equal to the national average: popq =
∑
k′
s̄k

′
ρ̂k

′
q . After simplification, this reduces

to

Z̃b
q,m = Z̄b

q +
∑
k

gkq s
k
m

where gkq =

(
ρ̂kq
popq

)[
I (k = Black) − Z̄b

q

] (12)

Equation (12) gives an approximation of Zb
q,m that is linear in type shares. This implies a

first-order linear approximation to Ŝbq,m, call it
˜̂
Sbq,m, can be written as

˜̂
Sbq,m = γ̂Z̃b

q,m + θ̂q,1 + θ̂m,1

= γ̂

(
Z̄b
q +

∑
k

gkq s
k
m

)
+ θ̂q,1 + θ̂m,1

(13)

In appendix B we show that

˜̂
Sb⊥q,m = γ̂

∑
k

gk⊥q sk⊥m (14)

where gk⊥q and sk⊥m are equal to gkq and skm after subtracting fixed effects for metro area m

and income quantile q.

To check the quality of this approximation, we regress Ŝb⊥q,m on the linear approximation
˜̂
Sb⊥q,m shown in equation (14) for 100 income quantiles for our 54 types of households. The

slope is 0.90 and the R2 of 0.99. The results for the Hispanic share are similar.
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4.5.3 Sources of Identification of aτ1

Returning to equation (11), and after replacing Ŝb⊥q,m with its linear approximation
˜̂
Sb⊥q,m,

the estimate of aτ1, call it ˜̂aτ1 is equal to

˜̂aτ1 =

∑
q

∑
m

δτ⊥q,m
˜̂
Sb⊥q,m∑

q′

∑
m′

(
˜̂
Sb⊥q′,m′

)2 =

∑
q

∑
m

δτ⊥q,mγ̂
∑
k

gk⊥q sk⊥m∑
q′

∑
m′

˜̂
Sb⊥q′,m′ γ̂

∑
k′
gk

′⊥
q′ s

k′⊥
m′

=

∑
q

∑
m
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Multiply and divide by
∑
m′′

˜̂
Sb⊥q,m′′gk⊥q sk⊥m′′ in the numerator
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∑
q
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k
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δτ⊥q,ms
k⊥
m∑

m′′

˜̂
Sb⊥q,m′′sk⊥m′′


=

∑
q

∑
k

wqk˜̂a
τ
1,qk (15)

The second term in equation (15), ˜̂aτ1,qk, is an IV estimate of aτ1 from equation (11),

once Ŝbqk has been replaced with its linear approximation
˜̂
Sbqk and (i) when the estimation

sample only includes the tract (`) in each metro area exactly at income quantile q and (ii)

the instrument is the share of type k households living in metro m. The first term, wqk, is

the Rotemberg weight for neighborhoods with income quantile q and households of type k:

it is the share of the overall variation of the shift-share-generated Black share attributable

to the city-level share of type k households in neighborhoods at income quantile q.
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4.6 Rotemberg Weights

To better understand the source of variation in the instrument, we compute Rotemberg

weights associated with the linear approximation of the shift-share-predicted Black and His-

panic shares, shown by wqk in equation (15). Equation (15) shows exactly how to construct

Rotemberg weights when every metro has exactly the same number of tracts and (therefore)

exactly the same number of income quantiles. In our data, the number of tracts varies across

metro areas. To account for this, we slightly adjust the computation.

We construct weights for each of our 54 types of households for 100 income quantiles,

and compute these weights as follows.27 First, using equation (8) we create a value of Zb
`,m

for every tract ` in every metro m in our sample. Next, we sort each tract into its closest

income-quantile bucket. Let q (`,m) denote the closest income quantile, out of 100, for tract

` in metro m. This means that metros with more than 100 tracts will have multiple tracts

in some income buckets, and metros with less than 100 tracts will have some income buckets

without any tracts.

Once tracts have been sorted this way, we create the ingredients to the linear approxi-

mation to Zb
q(`,m) in equation (12): Z̄b

q(`,m), ρ̂
k
q(`,m), popq(`,m), and therefore gkq(`,m). Since at

this point we have sorted all tracts into income quantiles, going forward we will replace the

notation q (`,m) with q and let Wq,m denote the number of tracts grouped in metro m into

income quantile q. We construct Rotemberg weights for the Black share in our sample – the

Hispanic share is constructed analogously – as28

wqk =

∑
m′′
Wq,m′′Z̃b⊥

q,m′′gk⊥q sk⊥m′′∑
q′

∑
m′
Wq′,m′Z̃b⊥

q′,m′
∑
k′
gk

′⊥
q′ s

k′⊥
m′

(16)

where to compute X⊥ for any variable X in the above equation, we regress that variable on

a full set of metro and income-quantile controls.29

The top panel of table 2 summarizes the Rotemberg weights for predicting the Black

27Note that when we estimate preferences over Black and Hispanic shares, we need to generate a value
of Ŝbq(`,m),m appropriate for each tract in each metro. For the purposes of computing Rotemberg weights to
understand the source of variation in the predicted Black and Hispanic shares, it is acceptable to divide all
tracts in a metro into a fixed number of quantiles based on tract income.

28Including Wq,m reflects the fact that metros with more tracts have a larger influence on coefficient

estimates. Also, note that we have replaced ˆ̃Sb⊥q,m′′ with Z̃b⊥q,m′′ in constructing wqk. This is allowable because
ˆ̃Sb⊥q,m′′ = γ̂

˜̂
Zb⊥q,m′′ as we show in appendix B. γ̂ drops out of equation (16) because it appears in both the

numerator and denominator.
29Specifically, we include a full set of metro dummy variables and a 7th order polynomial in income

quantile. We use a 7th order polynomial rather than a full set of income dummy variables because this is
our control function for income quantiles in our full model that does not use linear approximations.
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share. Black households account for 84.5% of these Rotemberg weights. Hispanic households

account for 12.0% and White households account for only 3.5%. About 40% (740/1,800) of

the Rotemberg weights for predicting the Black share of neighborhoods attributable to White

households are negative, but the sum of these negative Rotemberg weights is quite small at

-1.4%; the other, positive Rotemberg weights for White households sums to 4.9%. The

bottom two rows of this panel show that the Rotemberg weights for predicting the Black

share for Black renting households is 65.7% and for Black home-owning households it is

18.9%.

Table 2: Distribution of Rotemberg Weights

Predicted Black Share
Race Owner/Renter Sum of Rotemberg Weights

Black 0.845
Hispanic 0.120
White∗ 0.035

Black Renter 0.657
Black Owner 0.189

Predicted Hispanic Share
Race Owner/Renter Sum of Rotemberg Weights

Black 0.046
Hispanic 0.883
White 0.071

Hispanic Renter 0.673
Hispanic Owner 0.211

∗ White types have 740 (out of 1800) negative Rotemberg weights for predicted Black shares. The

average weight when negative is −1.86× 10−5 and the sum of these negative weights is -0.014.

The bottom panel of table 2 summarizes the Rotemberg weights for predicting the His-

panic share. All Rotemberg weights for predicting the Hispanic share are nonnegative.

Hispanic households account for 88.3% of these weights, with White households accounting

for 7.1% and Black households accounting for 4.6%. The bottom two rows of this panel show

that the Rotemberg weights for predicting the Hispanic share for Hispanic renting house-

holds is 67.3% and for Hispanic home-owning households it is 21.1%. Overall, both panels

of table 2 show that the Rotemberg weights of renting households for predicting own-race

racial shares sum to about 2/3rds.

The top panel of Figure 3 shows the Rotemberg weights of Black renting households for

predicting the Black share.30 To keep the graph clean, we show the sum of the weights in

30We do not graph the Rotemberg weights for Black homeowning households because these weights are

25



5 percentile income bins, i.e. income percentiles 1-5, 6-10, and so forth. We do not show

results between the 61st and 100th income percentiles since there is minimal variation in

that range. There are 9 lines on this graph, one for each type of Black renting household.

The different colors correspond to different credit bins – black for lowest, blue for middle,

and red for highest – and the different markers refer to different ages – square for youngest,

circle for middle aged, and triangle for oldest. The figure shows that a disproportionate

amount of variation in predicted Black shares is accounted for by young- and middle-aged

Black renting households with low credit scores locating in lower-income tracts, the black

lines with square and circle markers.

The bottom panel of Figure 3 shows the Rotemberg weights for predicting the Hispanic

share for Hispanic renting households. The formatting of the bottom panel is identical

to the top panel. The panel shows that four types of Hispanic households account for a

disproportionate amount of variation in predicted Hispanic shares: young- and middle-aged

Hispanic renting households with low and middle-tier credit scores, the black and the blue

lines with square and circle markers.

4.7 Balance Tests

Equation (15) highlights that a sufficient condition for consistent estimation of aτ1 for a

given type τ is that ˜̂aτ1,qk is a consistent estimator at every value of q and and every type k.

To see this, for each type τ write:

˜̂aτ1,qk =

∑
m

δτ⊥q,ms
k⊥
m∑

m′′

˜̂
Sb⊥q,m′′sk⊥m′′

=

∑
m

aτ1
˜̂
Sb⊥q,ms

k⊥
m∑

m′′

˜̂
Sb⊥q,m′′sk⊥m′′

+

∑
m

Ãτ⊥q,msk⊥m∑
m′′

˜̂
Sb⊥q,m′′sk⊥m′′

= aτ1 +

∑
m

Ãτ⊥q,msk⊥m∑
m′′

˜̂
Sb⊥q,m′′sk⊥m′′

(17)

where we have added the tilde character to Aτ⊥q,m to explicitly note that we are working with

the linear approximation. Again, adding the tilde character to ˜̂eτ⊥q,m, equation (11) implies

Ãτ⊥q,msk⊥m = aτ1
˜̂eτ⊥q,m + Aτ⊥`,m

For consistent estimation,31 as the number of metro areas gets very large γ̂ will converge

relatively very small compared to Black renting households.
31We focus on the requirement for consistent estimation because IV estimates are biased in small samples

as shown by Bound, Jaeger, and Baker (1995).

26



Figure 3: Rotemberg Weights
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(a) Weights for Predicted Black Share, Black Renters
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(b) Weights for Predicted Hispanic Share, Hispanic Renters

Notes: The black line is for the lowest credit score, the blue line is for the medium credit score, the red line

is for the highest credit score, the square marker is for the youngest age, the circle marker is for the middle

age, and the triangle marker is for the oldest age.
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to γ which means that ˜̂eτ⊥q,m will converge to ẽτ⊥q,m. Thus, as the number of metros gets large

plim ˜̂aτ1,qk = aτ1 + aτ1

 cov
(
ẽτ⊥q,m, s

k⊥
m

)
cov
(

˜̂
Sb⊥q,m, s

k⊥
m

)
 +

cov
(
Aτ⊥q,ms

k⊥
m

)
cov
(

˜̂
Sb⊥q,ms

k⊥
m

)
The 2nd term is zero by construction since sk⊥m is a linear input to Z̃b

q,m. Thus, for each

type τ , and for any quantile q and type k, consistency of ˜̂aτ1,qk requires the third term –

the covariance, across metros, of the share of type k households living in metro m and the

amenities valued by type τ at quantile q in metro m – to be zero.

We cannot directly test whether cov
(
Aτ⊥q,m, s

k⊥
m

)
= 0 because Aτq,m is not observable for

any q, m or τ . Instead we try to find variables that may proxy for amenities, and test if

the covariance of these proxies and Black or Hispanic share predicted by our instruments is

zero. To the extent that certain amenities are associated with certain racial groups, and our

estimates for preferences for the Black and Hispanic shares of neighborhoods bundle both

preferences for race and amenities associated with race, we do not want to include proxies

for Aτ⊥q,m that may be influenced by household or government choices potentially related to

racial shares.

To proxy for amenities, we consider seven variables: (1) tract distance to the nearest

river in miles, (2) tract distance to the nearest lake in miles, (3) tract distance to the coast

in miles, (4) the fraction of the tract that is a flat plain, (5) a dummy variable if the tract is

within 0.25 miles of public transit, (6) a dummy variable if the tract is within 0.50 miles of

public transit, and (7) an estimate of the road network density of the tract.32 The top panel

of Table 3 shows results of these balance tests for predicted Black shares. The bottom panel

of the table shows results for predicted Hispanic shares.

Columns (1) and (2) of Table 3 show the means and standard deviations of these variables.

Columns (3) and (5) show estimates from two different regressions of the outcome variable

(i.e. distance to river) on our instrument after controlling for metro fixed effects and a 7th

order polynomial in income; columns (4) and (6) show the standard errors; and columns (7)

and (8) show p-values for the null hypothesis that the coefficient is zero. The column marked

“IV” is for our actual instrument (which can be thought of as the sum of the Rotemberg-

weighted individual instruments) and the column marked “IV2” is the linear approximation

of our instrument from equation (12), but only including Black or Hispanic households that

rent, the source of most of the variation of the instrument according to the Rotemberg

32In the regressions with distance to nearest river, distance to nearest lake, and distance to nearest coast
as the dependent variables, we require that at least one tract in the metro lie within 5 miles of the relevant
body of water for that metro to be included in the analysis.
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weights.

Table 3: Balance Test Results

Panel A: Predicted Black Share

Num. Coefficient on Ŝb⊥`,m p-values

Outcome Metros mean sd IV SE IV2 SE IV IV2
(1) (2) (3) (4) (5) (6) (7) (8)

Distance to river (mi) 192 3.316 3.562 0.712 (1.105) 1.321 (1.649) 0.520 0.423
Distance to lake (mi) 24 26.019 29.416 -6.323 (6.237) -5.878 (6.485) 0.311 0.365
Distance to coast (mi) 66 6.916 9.882 -10.053 (3.158) -9.300 (3.454) 0.001 0.007
Fraction flat planes 197 0.410 0.423 -0.167 (0.113) -0.174 (0.102) 0.141 0.089
Public transit < .25 miles 197 0.023 0.103 0.053 (0.057) 0.033 (0.048) 0.354 0.495
Public transit < .5 miles 197 0.059 0.189 0.085 (0.094) 0.054 (0.084) 0.369 0.522
Road network density∗ 197 2.895 6.165 0.675 (1.402) 0.885 (1.644) 0.630 0.591
Sbj 197 0.156 0.250 1.221 (0.021) 1.226 (0.024) 0.000 0.000
Shj 197 0.112 0.179 -0.426 (0.058) -0.411 (0.054) 0.000 0.000

Panel B: Predicted Hispanic Share

Num. Coefficient on Ŝh⊥`,m p-values

Outcome Metros mean sd IV SE IV2 SE IV IV2
(1) (2) (3) (4) (5) (6) (7) (8)

Distance to river 192 3.316 3.562 1.029 (1.761) 2.015 (1.994) 0.559 0.312
Distance to lake (mi) 24 26.019 29.416 16.084 (40.526) -7.103 (41.569) 0.691 0.864
Distance to coast (mi) 66 6.916 9.882 9.380 (6.418) 6.352 (13.301) 0.144 0.633
Fraction flat planes 197 0.410 0.423 0.517 (0.199) 0.246 (0.235) 0.009 0.294
Public transit < .25 miles 197 0.023 0.103 -0.017 (0.063) -0.091 (0.066) 0.786 0.163
Public transit < .5 miles 197 0.059 0.189 0.041 (0.120) -0.116 (0.130) 0.731 0.374
Road network density∗ 197 2.895 6.165 -3.845 (2.089) -5.097 (2.863) 0.066 0.075
Sbj 197 0.156 0.250 -1.518 (0.177) -1.397 (0.256) 0.000 0.000
Shj 197 0.112 0.179 1.383 (0.022) 1.373 (0.034) 0.000 0.000

∗ Road network density is the intersection density in terms of auto-oriented intersections per sq. mile.

With two exceptions, columns (4), (6), (7) and (8) show that we systematically fail

to reject the null that our instrument is uncorrelated with these variables. We reject the

null that the instrument for Black share is uncorrelated with the distance to coast variable,

although we note this variable does not include two-thirds of the metros from our sample.

Additionally, the instrument predicts Black households live closer to the coasts, which a-

priori may be believed to be a desirable amenity. We also reject the null that the full

instrument for Hispanic share (column 7) is correlated with the fraction of flat plains.

Columns (3) - (8) of the last two rows of the top and bottom panels show the results

from regressing actual Black or Hispanic shares on either predicted Black share (top panel) or

predicted Hispanic share (bottom panel). As before, these regressions also include metro fixed

29



effects and control for tract income quantile.33 Shown in the top panel, the predicted Black

share strongly positively predicts the actual Black share and strongly negatively predicts

the actual Hispanic share. Conversely, the bottom panel shows the predicted Hispanic share

strongly negatively predicts the actual Black share and strongly positively predicts the actual

Hispanic share.

5 Estimates and Implications

Table 4 provides a summary of our estimates of preferences that household types in our

data have over the racial mix of their neighborhood, Θτ
2 = {aτ1, . . . , aτ5}, as described in

section 3.2. As we mentioned in the introduction, we interpret our estimates of preferences

as for the bundle of racial shares and any amenities that tend to accompany racial shares,

for example retail establishments targeted towards certain groups. Column (1) of Table 4

shows the type index and (2) reports the percentage of the estimation sample accounted for

by that type. Columns (3)-(6) show the race, age (y=young, m=middle-aged, and o=old),

homeownership tenure (r=rent, o=own), and credit score bin (l=low, m=middle, h=high)

of the type. Column (7) reports the average share of Black households in the Census tracts

in which that type tends to live and column (8) shows the average derivative of utility that

type would experience from an increase in the share of Black households in the Census tracts

in which that type tends to live. Similarly, column (9) reports the average share of Hispanic

households in the Census tracts in which which that type tends to live and column (10)

shows the average derivative of utility that type would experience from an increase in the

share of Hispanic households in the Census tracts in which that type tends to live. Note that

the values reported in columns (7)-(10) are computed as weighted averages over all tracts in

which the type may live, with the weights being the probability that the type lives in the

tract.34

The top, middle and bottom panels of the table show results for Black, Hispanic, and

White types, respectively. Focusing on the bottom row of each of the panels, Black house-

holds account for 12.3% of our sample, Hispanic households account for 11.6% of our sample,

and White households account for 76.1% of our sample. Table 4 shows that same-race sorting

is a prominent feature of our data. Columns (7) and (9) show that, on average, Black house-

33These regressions are not our actual first stages (which have five instruments), but we find the results
in this table to be informative on the relevance of the instruments.

34For example, suppose there are two tracts A and B; and, thinking about column 8, suppose a particular
type experiences a -1.0 derivative to utility with respect to the Black share in tract A and a +1.0 derivative
to utility with respect to the Black share in tract B. If the probability that that type lives in tract A is 0.20,
then we would report a value in column 8 for that type of 0.6 which we compute as 0.2 (−1.0) + 0.8 (1.0).
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Table 4: Summary of Estimates of Preferences over Race

Type Sample % Race Age Tenure Credit Avg Sb` Avg ∆δ`/∆S
b
` Avg Sh` Avg ∆δ`/∆S

h
` δ95` − δ

5
`

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 2.2% y r l 0.47 1.22 0.10 2.32 1.54
2 1.2% y r m 0.37 1.11 0.11 1.31 1.06
3 0.6% y r h 0.26 0.41 0.10 -0.01 0.47
4 0.4% y o l 0.38 1.21 0.09 1.16 1.19
5 0.5% y o m 0.28 0.59 0.09 0.96 0.58
6 0.6% y o h 0.17 -0.21 0.08 0.37 0.94
7 1.1% m r l 0.50 0.89 0.09 1.64 1.36
8 0.9% m r m 0.43 0.89 0.10 0.46 1.05
9 0.6% Black m r h 0.31 0.42 0.09 -0.51 0.35
10 0.4% m o l 0.47 0.69 0.08 -0.19 1.04
11 0.6% m o m 0.38 0.48 0.08 -0.42 0.58
12 0.9% m o h 0.23 0.38 0.08 -0.42 0.53
13 0.3% o r l 0.56 0.60 0.08 0.90 1.46
14 0.5% o r m 0.52 0.58 0.08 0.04 1.10
15 1.0% o r h 0.39 0.25 0.07 -0.71 0.34
16 0.1% o o l 0.58 1.03 0.07 0.31 1.81
17 0.2% o o m 0.51 0.88 0.07 0.19 1.33
18 0.4% o o h 0.33 0.42 0.07 -0.47 0.41

Sum 12.3% Avg 0.39 0.73 0.09 0.70 0.97

19 1.6% y r l 0.14 1.61 0.37 1.55 1.42
20 1.4% y r m 0.11 0.78 0.36 1.49 1.40
21 0.8% y r h 0.09 -0.85 0.29 1.11 1.74
22 0.3% y o l 0.12 1.21 0.33 1.35 1.23
23 0.5% y o m 0.10 -0.28 0.31 1.29 1.70
24 0.7% y o h 0.07 -1.82 0.22 0.82 1.82
25 0.7% m r l 0.14 1.50 0.37 1.09 1.10
26 0.9% m r m 0.11 0.88 0.38 0.93 0.92
27 0.8% Hisp m r h 0.09 -0.37 0.32 0.93 1.25
28 0.3% m o l 0.13 0.72 0.35 0.79 0.76
29 0.6% m o m 0.10 0.27 0.32 0.77 1.10
30 1.1% m o h 0.07 -0.30 0.23 0.58 1.34
31 0.1% o r l 0.14 1.43 0.41 1.13 1.18
32 0.3% o r m 0.11 0.74 0.40 0.99 0.94
33 1.0% o r h 0.08 -0.47 0.31 0.65 1.08
34 0.0% o o l 0.14 1.94 0.38 1.67 1.38
35 0.1% o o m 0.12 0.54 0.36 1.04 0.96
36 0.4% o o h 0.08 -0.26 0.25 1.16 1.19

Sum 11.6% Avg 0.10 0.31 0.33 1.07 1.30

37 5.6% y r l 0.13 1.05 0.11 1.03 0.81
38 6.1% y r m 0.09 0.50 0.10 0.87 1.40
39 5.4% y r h 0.07 -1.19 0.08 -0.23 2.23
40 1.5% y o l 0.10 1.03 0.09 0.65 1.29
41 3.3% y o m 0.08 -0.86 0.08 0.57 2.07
42 6.8% y o h 0.06 -2.90 0.06 0.08 2.67
43 2.7% m r l 0.13 1.12 0.11 0.52 0.55
44 4.1% m r m 0.09 0.87 0.10 0.25 0.92
45 6.5% White m r h 0.06 -0.22 0.07 -0.35 1.63
46 1.3% m o l 0.10 1.04 0.08 -0.11 0.94
47 3.7% m o m 0.08 0.76 0.08 -0.18 1.44
48 11.5% m o h 0.05 -0.31 0.06 -0.22 2.04
49 0.5% o r l 0.13 1.10 0.11 0.41 0.49
50 1.8% o r m 0.09 0.86 0.09 0.20 0.67
51 10.5% o r h 0.06 -0.27 0.07 -0.51 1.49
52 0.2% o o l 0.12 1.05 0.09 -0.01 0.73
53 0.7% o o m 0.09 1.04 0.08 -0.10 0.95
54 4.0% o o h 0.06 0.26 0.06 -0.37 1.75

Sum 76.1% Avg 0.08 -0.15 0.08 0.05 1.61

For age: y = young, m = middle-aged, o = old. For tenure: r = renter, o = owner. For credit: l = low, m = middle, h = high.
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holds live in Census tracts that are 39% Black, Hispanic households live in Census tracts

that are 33% Hispanic and White households live in Census tracts that are 84% White.

Columns (8) and (10) show the derivative of utility with respect to exogenous changes

in the tract-level Black share (8) or Hispanic share (10). Shown in the bottom row of the

top and middle panels, on average both Black and Hispanic households receive additional

utility from an increase in Black and Hispanic shares. The bottom panel shows that White

households are roughly indifferent to an increase in Hispanic shares and, on average and

with considerable heterogeneity, White households experience disutility from an exogenous

increase in the share of Black households living in their Census tracts. The White type

experiencing the largest disutility are young, homeowning, high-credit score households, type

42, accounting for 6.8% of our sample. The average derivative of utility of this type with

respect to the Black share of the population is -2.90, such that if the Black share increases

by one percentage point, on average utility falls by -0.029. For comparison, a twenty percent

increase in rental prices generates approximately the same decline in utility.

Finally, column (11) illustrates the importance of racial preferences in accounting for

location choice in our data. For column 11, we set aτr = 0 and Aτ`,m = 0 for all τ and all `

and m and then evaluate the the level of utility for each type in each tract; in this calculation,

differences in Black and Hispanic shares entirely determine differences in utility across tracts.

For each type, we sort tracts by the level of utility the tract provides; we then report in column

(11) the level of utility for the type at the location representing the 95th percentile less the

level of utility at the location representing the 5th percentile. These utility differentials

attributable entirely to differences in racial composition across neighborhoods are huge:

0.97 for Black households, 1.30 for Hispanic households, and 1.61 for White households. On

average, there is essentially no change to rent that can compensate types sufficiently to induce

households to move from neighborhoods with their most desired demographic composition

to neighborhoods with their least desired demographic composition.

5.1 Implications

So far, we have generated estimates of how the indirect utility of neighborhoods varies

with racial shares in a dynamic model of neighborhood choice. We wish to use the model

to study whether the current allocation of household types to neighborhoods is stable, and,

relatedly, the consequences of location-based public policies on neighborhood sorting and

selection. Ultimately, we find that the current demographic composition of neighborhoods

is not stable; and, that small place-based policies can cause a metro-wide shuffling of the

population. Both these results occur because a large measure of household types strongly
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prefer to live in racially segregated neighborhoods. Ultimately, we need to take a stand on

how households adjust expectations of the racial composition of neighborhoods in response

to shocks, and much of the discussion that follows is related to assumptions we make when

computing how households update expectations.

5.1.1 Stability of Demographic Composition of Neighborhoods

To start, we wish to understand if our estimates imply that the current demographic com-

position of neighborhoods is stable. This has been studied before by Caetano and Maheshri

(2021) and others, but our methods and definition of stability are going to be different. A

simple look at the data suggests that the racial composition of neighborhoods has not been

stable for many decades. Figure 4 shows the percentage of all Census tracts experiencing a

change in the White, Black, or Hispanic share of residents of at least 5 percentage points

(black line), 15 percentage points (red) or 25 percentage points (blue line) between decades,

starting in 1960. The figure shows that in every decade, at least 40 percent of all Census

tracts experienced a 5 percentage point or larger change to at least one racial share. From

1960 to 1980 about 15 percent of all tracts experienced at least a 25 percentage-point change

in at least one racial share; even after 1980, about 4 percent of all tracts experienced a 25

percentage-point or larger change in at least one racial share in any given decade.35

In our framework, stability ultimately depends on the process by which expectations of

neighborhood composition change. We begin by introducing some notation and defining

what we mean by stability. For a given metro m with Jm total tracts, denote T as a 2Jm×1

vector comprised of starting values of expectations of racial shares, E
[
Sb`,m

]
and E

[
Sh`,m

]
for all tracts. Let g (T ) be an expectations-generating function produced by our model that

takes as a starting input T and produces a different vector of expectations T ′,

T ′ = g (T ) .

We define a steady state of g as a vector of expectations T ∗ that generates, via g, an identical

set of expectations, i.e.

T ∗ = g (T ∗) .

Before describing how we compute g (T ), we now define a steady state that is consistent

with the data in our estimation sample for each metro. We start with the distribution of

35Results are nearly identical when we restrict the set of Census tracts such that 99 percent of the land
area of a tract in the later decade overlaps with the land area of the tract in the earlier decade (not shown).
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Figure 4: Share of Census Tracts with a Change in Black, Hispanic or White Share of at
least 5, 15, or 25 Percentage Points
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Notes: The black line shows the percentage of all Census tracts with changes in at least one
racial share above 5 percentage points, the red line shows changes above 15 percentage points
and the blue line shows changes above 25 percentage points.

types by tract implied by our estimation sample and then simulate the model for 5 periods,

our “burn in” period. During these 5 periods, we assume each household’s type stays fixed.

During the burn in period, we hold δτ`,m fixed for all types and all tracts in all metros. We

use a 5-period burn in to ensure all types populate all tracts in our baseline steady state

implied by the data.36 After the burn-in, we use the resulting distribution of types by tract

to compute our baseline vector for T , E
[
Sb`,m

]
= Sb`,m and E

[
Sh`,m

]
= Sh`,m for all ` and m.

Next, we compute the distribution of types across all tracts that results after running

the decision model for one period such that all location choices are made and all types

probabilistically evolve. For each tract, we compute the required additions (“births”) or

subtractions (“deaths”) of the population of each type such that the resulting measures of

household types in each tract after all decisions are made and all types have stochastically

evolved is constant in all tracts. The addition of type-specific births and deaths to each

tract guarantees that the model-predicted distribution of types across tracts is stable and

the vector T ∗ reflecting our data is a steady state. That is, the decisions implied by the

model are consistent with expectations households have over racial shares and rental prices

in each tract.

Recall that our model has deaths and other type transitions, for example renter to owner.

36The burn-in period smoothes through sampling variability in the data.
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So, for a stable population mix of types, at a minimum we need births but also need to

account for any other asymmetric type transitions. A question then arises of how to allocate

any new households (to neighborhoods) required to keep the distribution of types stable

after one period has elapsed. Any such allocation is arbitrary; we choose the allocation that

guarantees that the current data are in steady state after all choices have been made. We

view this as a conservative choice, since in the absence of any aggregate or neighborhood-level

shocks, the current data will be in steady state, by assumption.37

We now describe the g (T ) function that we use to predict how expectations evolve given

any starting set of expectations T . To start, denote the total number of households and the

rental price in each tract in the data as H`,m and r`,m, respectively. Then, we compute g (T )

as follows:

1. Denote the guess of new rental prices r′`,m.

2. Using equation (1), adjust δτ`,m appropriately for all `, m, and τ given the values of

E
[
Sb`,m

]
and E

[
Sh`,m

]
from T and the guess r′`,m, holding exogenous amenities Aτ`,m

fixed. Households assume this new value of δτ`,m is fixed forever when making decisions.

3. Simulate the model 99 periods and compute new housing demand in each tract in each

metro, H′`,m.

4. Update the guess of rental prices and repeat steps 2-3 until rental prices in each tract

clear markets to satisfy

logH′`,m − logH`,m = ψ`,m
[
log r′`,m − log r`,m

]
(18)

The housing supply elasticity in each tract ` in each metro m, ψ`,m, is given by the

estimates in Baum-Snow and Han (2022) with a floor value of 0.025.38

5. Once we know rental prices r′`,m that clear housing markets given values of E
[
Sb`,m

]
and E

[
Sh`,m

]
from T , compute simulated Black and Hispanic shares in each tract and

call these Sb
′

`,m and Sh
′

`,m.

6. Set the elements of T ′ equal to Sb
′

`,m and Sh
′

`,m.

Given our procedure to compute g (T ), we test the stability of the steady state implied

by the data by computing the eigenvalues and eigenvectors of the model at the steady state.

To see why this is useful, suppose we perturb expectations of racial shares at the steady

state – call these perturbed expectations as T ′ – and then measure how expectations evolve

from this perturbed starting point, i.e. T ′′ = g (T ′). We can do this with a first-order linear

37Even after this, our analysis rejects that this steady state implied by the data is stable, in a way we
precisely define next.

38In a handful of tracts, Baum-Snow and Han (2022) estimate a negative supply elasticity.
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approximation:

g (T ′)− g (T ∗) ≈ G · [T ′ − T ∗]

where G is a 2Jm by 2Jm vector of derivatives of g evaluated at T ∗. Once we make appropriate

substitutions, we get

[T ′′ − T ∗] ≈ G · [T ′ − T ∗]

We compute the elements of G at T ∗ using numerical derivatives. Specifically, define T̃ ∗i
as equal to T ∗ in all elements except for the ith element which we perturb by ∆i units.39

We set the ith column of G equal to
[
g
(
T̃ ∗i
)
− T ∗

]
/∆i. For each metro, we repeat this

computation for all i = 1, . . . , 2Jm elements of T ∗ to populate all the columns of G.

Once we have an estimate of G, we compute its eigenvalues to determine whether the

expectations of racial shares move away from or return to the steady-state expectations

implied by the data in response to a tiny perturbation to expectations. In other words, we

ask if the system predicts expectations return to T ∗ if we start our model using expectations

that are nearly but not exactly identical to T ∗. If all the eigenvalues of G are less than 1,

the expectations converge back to the steady state; if at least one eigenvalue is greater than

1, expectations do not converge back to the starting point and if this is the case, we say the

steady state implied by the data is not stable.

Figure 5: Fraction of Metro Eigenvalues > 1
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(b) Hispanic Share of Metro

Summarizing results, only one metro out of 197 in the sample, Rockingham County-

39For each element i, we set ∆i equal to 1.0× 10−6.
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Strafford County, NH, has zero eigenvalues greater than 1. Every other metro has at least

one eigenvalue greater than 1 and the median metro has 47% of its eigenvalues greater

than 1.40 Ultimately, the reason that the system is not stable is that households have very

strong preferences over the racial composition of their neighbors. To show the impact of

the presence of nonwhite households in a metro on our estimates of eigenvalues, Figure 5

graphs the share of eigenvalues of G that are larger than 1 in each metro on the y-axis

against the percentage of Black households (left panel) or percentage of Hispanic households

(right panel) in each metro on the x-axis. As shown in the left panel, on average the share of

eigenvalues larger than 1 increases rapidly with the Black share of the metro population until

the Black share is about 20%, at which point the share of eigenvalues larger than 1 stabilizes

at about 50%. Nearly the exact same relationship holds with respect to the percetage of

Hispanic households, shown in the right panel.

The racial composition of neighborhoods at the steady state implied by the current data

is unstable because many households want to live in more segregated neighborhoods. This

result is not merely a statement about the direction of racial preferences; it is more of a

statement about the size of these preferences. To show this, we recompute eigenvalues of G
holding δτ`,m fixed for all tracts `, metros m, and types τ , but after multiplying all coefficients

on race in utility, Θτ
2 = {aτ1, . . . , aτ5}, by 0.25 for all types. By holding δτ`,m fixed, we preserve

the relative desirability of all tracts in the baseline, so any changes to eigenvalues only reflect

changes in the strength of preferences for race. The bottom line is that with these scaled-

down preferences for race, stability for all metros vastly improves. Measured at the median

metro, with this rescaling only 3.2% of a metro’s eigenvalues are larger than 1.

5.1.2 Impact of a Small Policy Shock

Next, we use simulations of the model to study the implications of a somewhat small

policy change that simultaneously affects a relatively large number of tracts. Specifically, for

each metro, we simulate the long-run steady-state predicted response if local governments

unexpectedly allow a one-time and immediate 10 percent expansion of all housing develop-

ments previously financed using Low Income Housing Tax Credits (LIHTC).41 The thought

behind this analysis was to ask if local governments could implement a relatively small place-

based policy in many locations at once without causing a lot of disruption. If the policy was

sufficiently small, and implemented in enough locations that already had experience with

40Appenedix table C.1 lists results for the full set of metros. Rockingham County-Strafford County, NH,
is stable because the population is almost entirely White; the Black share is 1.3% and the Hispanic share is
0.8%. The other metros that have a only a few eigenvalues larger than 1 are also almost entirely White.

41As we show in Appendix Table C.2, in many metros LIHTC developments are located in about 20-35
percent of Census tracts.
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government policy via LIHTC developments, perhaps incumbent residents would not move

in response to a small influx of low-credit-score new residents that may be of a different

average racial mix than existing residents.

We implement this counterfactual policy as follows. Denote ∆H as the total number of

new LIHTC units that will be built in the metro as a consequence of this policy. In the first

step, we remove ∆H housing units (in total) from tracts that are currently housing low-

credit-score households in the metro.42 Then, in the second step we simulate the model for 5

periods holding δ`,m fixed and r`,m fixed. After these 5 periods, we compute births and deaths

needed to keep the data (with these ∆H units removed) in a steady state, before adding

the new LIHTC units. Finally, in the third step we add new LIHTC units in proportion to

existing LIHTC units until ∆H units are added. We assume the distribution of types in these

new units is the same as the distribution of types from the ∆H units removed in the first

step. With these three steps, we preserve the metro-wide distribution of types and maintain

the metro-wide aggregate stock of housing, but move ∆H low-credit score households from

tracts without LIHTC units to tracts with LIHTC units. Importantly, the mix of household

types moving into the ∆H new LIHTC units is unlikely the same as the mix of household

types in the tracts where those units are located.

Once we have taken the three steps listed above, we compute a new steady state for each

metro. A steady state has the features that (i) the mix of household types in each tract is

stable (implying shares of Black and Hispanic households in each tract are stable), (ii) the

rent in each tract is stable, and (iii) expected future rents and Black and Hispanic shares in

each tract are equal to realized rents and shares. When households have strong preferences

over the demographic composition of their neighborhood, we cannot rule out the possibility

that there may be multiple feasible steady states in each metro. We therefore compute a

new steady state that is consistent with myopic expectations. The steady state – as well as

the path to the steady state – implied by this assumption about expectations is unique.

Our algorithm to compute the new steady state with myopic expectations is as follows:

a. Set H`,m, r`,m, E
[
Sb

′

`,m

]
, and E

[
Sh

′

`,m

]
equal to their starting values.

b. Given household assumptions of E
[
Sb

′

`,m

]
, and E

[
Sh

′

`,m

]
, simulate one period of house-

hold decisions and find market clearing rents and the new housing stock in each tract

such that the housing-supply-elasticity equation (18) holds. This generates new simu-

lated Black and Hispanic shares, Sb
′

`,m and Sh
′

`,m.

c. Update expected Black and Hispanic shares by setting them equal to realized (simu-

lated) Black and Hispanic shares in each tract, E
[
Sb`,m

]
= Sb

′

`,m and E
[
Sh`,m

]
= Sh

′

`,m.

d. Repeat steps b and c until the distribution of types in each tract does not change with

42The housing units are removed in proportion to the low-credit score population of each tract.
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one additional iteration.

To be completely clear, when households solve for their optimal location, they need to

know utility today and in the future for all possible locations. The current and future values

of δτ`,m in each period have the following as components: (i) fixed amenities Aτ`,m, (2) expected

racial shares, and (3) actual current market clearing rents given those expected racial shares.

At each step in the simulation path, households assume the current and expected value of

δτ`,m is fixed at its current value. But, along each step of the simulation path, the value of δτ`,m
changes as realized racial shares and market-clearing rents change. Thus, when the model

is not in steady state, at each step along the simulation path expected racial shares are not

accurate because they are backwards looking.

5.1.2.1 Change to the Racial Composition of Neighborhoods:

In the simulations, we track three statistics for each metro. The first statistic we compute

is the share of tracts that “tip.” We define a tract to have tipped if either the Black share or

the Hispanic share changes by 5 percentage points or more in the new steady state relative

to the baseline steady state. The other two statistics we compute are Black-White and

Hispanic-White dissimilarity indices. For each metro m, we compute these inidices as

Black-White dissimilarity =
1

2

∑
`∈m

∣∣∣ b`,m
Bm

− w`,m
Wm

∣∣∣
Hispanic-White dissimilarity =

1

2

∑
`∈m

∣∣∣ h`,m
Hm

− w`,m
Wm

∣∣∣
where b`,m, h`,m and w`,m are the numbers of Black, Hispanic, and White households in

tract ` of metro m and Bm, Hm, and Wm are the numbers of Black, Hispanic, and White

households in metro m. If there is perfect mixing of races in each tract, then these indices

will equal 0; and if there is perfect segregation then the indices will equal 1.

Appendix Table C.2 lists all of the results for each metro in our sample. Summarizing

results here, at the median metro, 83% of tracts tip when racial preferences are at our

baseline estimates. When we redo the policy simulations after setting racial preferences

Θτ
2 = {aτ1, . . . , aτ5} equal to 0.25 of the baseline estimates (but keeping the baseline starting

values of δτ`,m unchanged for all types), only 2% of tracts tip. This confirms intuition from

the eigenvalue analysis that the current racial composition of neighborhoods is not stable,

and the lack of stability arises from strong preferences over racial composition.

At the median metro in our data, the Black-White dissimilarity index is 37% and the

Hispanic-White dissimilarity index is 27%. The simulations suggest metros become enor-

mously more segregated after the policy is implemented. Measured at the median metro,
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in the new steady state the Black-White dissimilarity index increases by more than 41 per-

centage points and the Hispanic-White dissimilarity index increases by nearly 48 percentage

points. The result reinforces the idea that households, on net, want to move to more racially

segregated neighborhoods. When we set parameters determining racial preferences equal to

0.25 of the baseline estimates and redo simulations, for most metros the dissimilarity indexes

do not change very much: the median change is 0 percentage points in the Black-White and

0.1 percentage points in the Hispanic-White.

5.1.2.2 The Speed of Convergence to New Steady State:

To understand the importance of expectations in determining the speed at which the

model converges to a new steady state, we study two paths for expectations in response

to the LIHTC policy shock. The first is when expectations look backwards but update

every period, i.e. what we have assumed so far to find the new steady state. We call this

the “backwards-looking path.” In the second, we take the steady state arising from the

backwards-looking path and specify that households assume that particular steady state will

occur in every period. We call this the “forwards-looking path” and it is unique, although

different from the backwards-looking path.

In both the backwards- and forwards-looking paths, the new steady states are identical

but household expectations will be incorrect along the transition path to the new steady

state. It turns out that the “miss” between expected and realized racial shares in both cases

in each tract will be relatively small. The miss is small because realized racial shares change

quite slowly along the backwards-looking path and quite rapidly along the forwards-looking

path.

To illustrate the importance of expectations on the rate of convergence to the new steady

state, we consider two metros, one small and one large: Trenton, NJ and Seattle, WA. In

each case, for Census tracts in which the Black or Hispanic racial share changed by at least 5

percentage points between steady states, Table 5 below reports the median number of years

for those tracts in which 80% of the total change in the racial share occurs. The first two

columns of this table report the metro and that metro’s total number of tracts; the fourth

column reports the number of tracts with a change of at least 5 percentage points in the

racial share of the race reported in the third column; and the final two columns report the

median number of years for 80% of the change in racial share to occur for the tracts that

change in the fourth column. The fifth column reports years for the backwards-looking path

and the sixth column reports years for the forward-looking path.

The top panel of this table reports results when preferences for race are set to our

baseline estimates. Two facts jump out from this panel. First, when expectations are
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Table 5: Expectations and Rate of Change Between Steady States

Median Years for 80%
# Tracts w/ of Change to Occur

Total ≥5 ppt. Chg. Backwards Forwards
Metro Tracts Race in Given Race Looking Looking

Preferences over Race as Estimated
Seattle, WA 506 Black 407 32 years 9 years

Hispanic 198 29.5 years 5 years

Trenton, NJ 72 Black 67 36 years 5 years
Hispanic 38 40.5 years 6 years

Preferences over Race Multiplied by 0.25
Seattle, WA 506 Black 11 174 years 14 years

Hispanic 11 168 years 16 years

Trenton, NJ 72 Black 29 187 years 22 years
Hispanic 8 184.5 years 19 years

backwards looking, convergence to the new steady state occurs much more slowly than when

expectations are forwards looking. In the backwards-looking path, for the median Census

tract with a large demographic change, 80% of the convergence occurs between 30 and 40

years; in the forwards-looking path, it only takes 5-9 years. Second, a large percentage of

tracts in both metros experience a large change in Black and Hispanic racial shares after the

policy is implemented. This arises in part because the racial composition of tracts in these

metros is not stable, as we have shown so far.

The bottom panel of this table reports results when preferences for race are set to our

baseline estimates multiplied by 0.25. The panel shows that the number of tracts where

at least one racial share changes by more than 5 percentage points is much smaller when

preferences are rescaled. When household preferences are multiplied by 0.25, household

utility is less sensitive to changes to neighborhood demographics, households optimally move

less frequently, and change occurs more slowly. However, as before, change occurs much more

slowly along the backwards-looking path than along the forwards-looking path.

6 Conclusion

We use a new shift-share IV approach to estimate the extent to which the racial com-

position of neighborhoods affects household utility and neighborhood choice in a dynamic,

forward-looking location-choice model where households care about exogenous amenities of
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neighborhoods as well as the endogenous racial composition. Using the tools of GSS, we doc-

ument the source of identification of our estimates of preferences over race and discuss the

key requirement for consistent estimation of preferences. We find that many households have

very strong preferences for homophily. Same-race preferences are so strong that the model

predicts the current racial composition of neighborhoods is not stable and that relatively

small public policies can cause a radical resorting of the population.
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Not For Publication Internet Appendix

A Hotz-Miller Expression for Continuation Values

In our estimation sample time window, we assume out of necessity that δτ`,m,t is fixed

for each `, m and τ , such that time subscripts can be removed. Also in what follows, we

will hold the metro fixed such that the metro subscript m can be removed. When the ε are

assumed to be drawn i.i.d. from the Type 1 Extreme Value Distribution, the expected value

function E [V τ (j)] has the functional form

E [V τ (j)] = log

{
J∑
`=1

exp Ṽ τ (` | j)

}
+ ζ (19)

where ζ is equal to Euler’s constant and

Ṽ τ (` | j) = δτ` − κτ · 1`6=j + β
∑
τ ′

ϕτ,τ
′
E
[
V τ ′ (`)

]
(20)

That is, the tilde symbol signifies that the shock ε` has been omitted.

Now, we show that the log probabilities that choices are observed are simple functions of

model parameters δτ` , κτ , β and of observed choice probabilities. To see this, start by noting

the log of the probability that location ` is chosen by type τ given a current location of j,

call it pτ (` | j), has the solution

pτ (` | j) = Ṽ τ (` | j) − log

{
J∑

`′=1

exp
[
Ṽ τ (`′ | j)

]}
(21)

Denote `0 as a reference tract. Subtract and add Ṽ τ (`0 | j) to the right-hand side of the

above to derive

pτ (` | j) = Ṽ τ (` | j)− Ṽ τ (`0 | j) − log

{
J∑

`′=1

exp
[
Ṽ τ (`′ | j)− Ṽ τ (`0 | j)

]}
(22)

Note that equation (20) implies

Ṽ τ (` | j)− Ṽ τ (`0 | j) (23)

= δτ` − δτ`0 − κτ [1` 6=j − 1`0 6=j] + β
∑
τ ′

ϕτ,τ
′
{
E
[
V τ ′ (`)

]
− E

[
V τ ′ (`0)

]}
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But from equation (19),

E
[
V τ ′ (`)

]
− E

[
V τ ′ (`0)

]
= log

{
J∑

`′=1

exp Ṽ τ ′ (`′ | `)

}
− log

{
J∑

`′=1

exp Ṽ τ ′ (`′ | `0)

}

Now note that equation (21) implies

pτ
′
(`0 | `) = Ṽ τ ′ (`0 | `) − log

{
J∑

`′=1

exp
[
Ṽ τ ′ (`′ | `)

]}

pτ
′
(`0 | `0) = Ṽ τ ′ (`0 | `0) − log

{
J∑

`′=1

exp
[
Ṽ τ ′ (`′ | `0)

]}

and thus

log

{
J∑

`′=1

exp
[
Ṽ τ ′ (`′ | `)

]}
− log

{
J∑

`′=1

exp
[
Ṽ τ ′ (`′ | `0)

]}

is equal to

Ṽ τ ′ (`0 | `)− Ṽ τ ′ (`0 | `0) −
[
pτ

′
(`0 | `)− pτ

′
(`0 | `0)

]
= −κτ ′ · 1 6̀=`0 −

[
pτ

′
(`0 | `)− pτ

′
(`0 | `0)

]
The last line is quickly derived from equation (20). Therefore,

E
[
V τ ′ (`)

]
− E

[
V τ ′ (`0)

]
= −

[
pτ

′
(`0 | `)− pτ

′
(`0 | `0) + κτ

′ · 1`6=`0
]

and equation (23) has the expression

Ṽ τ (` | j)− Ṽ τ (`0 | j) (24)

= δτ` − δτ`0 − κτ [1 6̀=j − 1`0 6=j] − β
∑
τ ′

ϕτ,τ
′
[
pτ

′
(`0 | `)− pτ

′
(`0 | `0) + κτ

′ · 1`6=`0
]

Due to data limitations we discuss in the paper, we combine data across multiple years

when estimating probabilities and preference parameters. For this reason, we assume value

functions and expectations are fixed in our sample period.
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B Deriving equation (14)

Start with the relationship
˜̂
Sb⊥q,m = γ̂Z̃b⊥

q,m. We now derive Z̃b⊥
q,m. Recall

Z̃b
q,m ≡ Z̄b

q +
∑
k

gkq s
k
m

Assume there are M metro areas and a fixed Q income quantiles in each metro area.43 Define

X⊥ as the variable X after metro area and quantile fixed effects have been removed. If we

define44

gk⊥q = gkq −
(

1
Q

)∑
q

gkq

sk⊥m = skm −
(

1
M

)∑
m

skm

then Z̃b⊥
q,m =

∑
k

gk⊥q sk⊥m and
˜̂
Sb⊥q,m = γ̂

∑
k

gk⊥q sk⊥m .

To see this, expand
∑
k

gk⊥q sk⊥m

=
∑
k

(
gkq −

(
1

Q

)∑
q

gkq

)
/

(
skm −

(
1

M

)∑
m

skm

)

=
∑
k

gkq s
k
m −

∑
k

gkq

(
1

M

)∑
m

skm −
∑
k

skm

(
1

Q

)∑
q

gkq +
∑
k

(
1

Q

)(
1

M

)∑
q

gkq
∑
m

skm

=
∑
k

gkq s
k
m −

∑
k

gkq s̄
k −

∑
k

skmḡ
k +

∑
k

ḡks̄k (25)

Now verify that for each quantile q, equation (25) is zero once we add across all metros:∑
k

gkq
∑
m

skm −
∑
m

∑
k

gkq s̄
k −

∑
k

ḡk
∑
m

skm +
∑
m

∑
k

ḡks̄k

= M
∑
k

gkq s̄
k − M

∑
k

gkq s̄
k − M

∑
k

ḡks̄k + M
∑
k

ḡks̄k = 0

And for each metro m, equation (25) is mean zero once we add across quantiles:

=
∑
k

skm
∑
q

gkq −
∑
k

s̄k
∑
q

gkq −
∑
q

∑
k

skmḡ
k +

∑
q

∑
k

ḡks̄k

= Q
∑
k

skmḡ
k − Q

∑
k

s̄kḡk − Q
∑
k

skmḡ
k + Q

∑
k

ḡks̄k = 0

43Each income quantile in an metro corresponds to one tract in that metro. Restated, we assume each
metro area has Q tracts.

44We need only remove the average value of gkq across quantiles because gkq does not vary across metros;

and need only remove the average value of skm across metros because skm does not vary across quantiles within
a metro.
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C Extra Tables

C.1 Eigenvalue Analysis

This table shows results of the eigenvalue analysis for the full set of metros in our sample.

Column (1) lists the metro name, (2) lists the population, (3) lists the number of tracts,

(4) lists the Black share of the metro population, and (5) lists the Hispanic share of the

population. Column (6) lists the share of eigenvalues of G of that metro that have a value

greater than 1. Column (7) lists the share of eigenvalues of G that are greater than 1 after

the coefficients Θτ
2 = {aτ1, . . . , aτ5} have been multiplied by 0.25 for all types τ , but δτ`,m is

held fixed for all `, m and τ .

Appendix Table C.1

% Tracts Eigenvalues > 0

Name Pop (000s) Tracts % Black % Hisp Baseline 0.25aτk
(1) (2) (3) (4) (5) (6) (7)

Akron, OH 813 166 0.8% 10.4% 33.4% 3.0%

Albany-Schenectady-Troy, NY 1007 214 2.3% 6.2% 27.7% 1.2%

Albuquerque, NM 878 188 43.7% 3.2% 50.0% 4.8%

Allentown-Bethlehem-Easton, PA-NJ 853 163 6.4% 2.9% 42.9% 0.0%

Amarillo, TX 275 62 18.5% 5.6% 58.1% 3.2%

Anchorage, AK 367 68 4.9% 6.0% 44.9% 0.0%

Ann Arbor, MI 377 97 2.7% 11.9% 39.7% 4.1%

Asheville, NC 487 78 2.6% 3.9% 30.1% 0.6%

Atlantic City-Hammonton, NJ 315 62 11.4% 17.8% 67.5% 8.7%

Augusta-Richmond County, GA-SC 611 95 2.5% 34.6% 50.0% 30.0%

Bakersfield, CA 790 136 40.4% 6.5% 73.2% 11.8%

Barnstable Town, MA 253 50 1.3% 2.3% 1.0% 0.0%

Baton Rouge, LA 817 142 1.8% 29.9% 46.8% 25.0%

Beaumont-Port Arthur, TX 459 100 7.5% 20.9% 72.0% 14.0%

Binghamton, NY 291 65 1.7% 2.9% 15.4% 0.0%

Birmingham-Hoover, AL 1234 226 1.7% 23.6% 39.8% 8.6%

Boise City, ID 539 79 8.3% 0.7% 39.9% 0.0%

37764 799 156 9.4% 2.8% 32.4% 0.6%

Rockingham County-Strafford County, NH 440 79 1.3% 0.8% 0.0% 0.0%

Boulder, CO 309 62 10.9% 1.1% 29.0% 0.0%

14600 688 143 7.2% 7.1% 33.9% 2.1%

Bremerton-Silverdale, WA 257 51 4.2% 3.4% 36.3% 0.0%

Bridgeport-Stamford-Norwalk, CT 992 209 11.4% 10.4% 58.1% 6.9%

Brownsville-Harlingen, TX 408 86 83.3% 0.6% 30.2% 0.6%

Canton-Massillon, OH 467 87 0.9% 6.2% 27.0% 1.1%

Cape Coral-Fort Myers, FL 574 117 10.0% 6.7% 51.7% 4.3%

Cedar Rapids, IA 266 55 1.4% 2.8% 7.3% 0.0%

Champaign-Urbana, IL 253 50 2.5% 9.1% 41.0% 4.0%

Charleston, WV 357 76 0.5% 4.0% 17.1% 1.3%

Charleston-North Charleston, SC 748 117 2.4% 27.0% 51.7% 27.4%

Chattanooga, TN-GA 589 98 1.3% 10.7% 40.8% 7.7%

Gary, IN 802 147 9.2% 14.2% 59.5% 4.8%
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% Tracts Eigenvalues > 0

Name Pop (000s) Tracts % Black % Hisp Baseline 0.25aτk
(1) (2) (3) (4) (5) (6) (7)

Lake County-Kenosha County, IL-WI 964 181 12.3% 7.2% 49.7% 4.1%

Clarksville, TN-KY 324 50 6.0% 20.6% 56.0% 10.0%

Colorado Springs, CO 635 117 11.0% 7.7% 64.1% 3.0%

Columbia, SC 839 144 2.8% 30.5% 51.7% 20.5%

Columbus, GA-AL 396 76 5.2% 38.2% 63.8% 27.6%

Corpus Christi, TX 500 83 51.9% 4.1% 66.3% 10.8%

Davenport-Moline-Rock Island, IA-IL 434 103 5.0% 5.2% 39.8% 1.0%

Dayton, OH 1055 208 1.1% 12.2% 28.1% 3.1%

Deltona-Daytona Beach-Ormond Beach, FL 537 78 7.1% 8.2% 48.7% 3.8%

Des Moines-West Des Moines, IA 583 107 3.5% 3.5% 30.4% 1.4%

Duluth, MN-WI 340 90 0.8% 1.0% 0.6% 0.0%

Durham-Chapel Hill, NC 521 89 6.5% 26.7% 70.2% 20.2%

El Paso, TX 880 126 79.4% 3.0% 53.6% 2.8%

Erie, PA 322 72 1.8% 5.2% 25.7% 1.4%

Eugene, OR 353 78 4.6% 1.4% 22.4% 0.0%

Evansville, IN-KY 418 85 0.9% 4.5% 21.8% 0.6%

Fayetteville, NC 523 55 9.3% 33.3% 85.5% 40.9%

Fayetteville-Springdale-Rogers, AR-MO 385 68 8.2% 1.4% 39.0% 0.0%

Flint, MI 507 131 2.3% 20.0% 37.0% 6.1%

Fort Collins, CO 294 56 7.7% 1.0% 39.3% 0.0%

Fort Smith, AR-OK 310 52 4.2% 3.3% 36.5% 1.0%

Fort Wayne, IN 469 104 3.2% 8.7% 47.1% 3.4%

Fresno, CA 923 158 46.3% 5.7% 71.8% 12.3%

Grand Rapids-Wyoming, MI 816 159 5.5% 7.7% 42.8% 2.8%

Green Bay, WI 336 64 3.1% 0.9% 11.9% 0.0%

Greensboro-High Point, NC 793 142 3.9% 20.5% 62.3% 16.5%

Greenville-Anderson-Mauldin, SC 708 126 2.9% 15.7% 51.6% 8.7%

Gulfport-Biloxi-Pascagoula, MS 322 52 2.1% 15.7% 48.1% 6.7%

Harrisburg-Carlisle, PA 605 111 2.6% 8.6% 32.0% 5.0%

Hickory-Lenoir-Morganton, NC 375 68 3.8% 7.0% 41.2% 0.7%

26180 1067 212 7.0% 3.2% 32.8% 0.0%

Huntington-Ashland, WV-KY-OH 352 75 0.7% 2.2% 5.3% 0.0%

Huntsville, AL 416 87 2.0% 18.8% 48.9% 12.6%

Jackson, MS 608 115 1.0% 43.0% 43.5% 24.8%

Jacksonville, FL 1430 201 4.0% 17.8% 57.2% 11.2%

Kalamazoo-Portage, MI 367 76 3.9% 8.6% 42.8% 2.0%

Killeen-Temple, TX 453 62 15.4% 24.1% 87.9% 21.8%

Kingsport-Bristol-Bristol, TN-VA 356 65 0.6% 1.9% 2.3% 0.0%

Knoxville, TN 786 128 1.1% 4.6% 32.4% 2.3%

Lafayette, LA 277 50 1.6% 24.6% 48.0% 13.0%

Lakeland-Winter Haven, FL 581 110 9.1% 11.9% 77.3% 6.4%

Lancaster, PA 532 94 4.4% 2.6% 33.0% 2.1%

Lansing-East Lansing, MI 547 117 4.0% 7.1% 49.1% 4.3%

Lexington-Fayette, KY 488 95 2.7% 10.9% 37.9% 2.6%

Lincoln, NE 307 62 3.2% 3.2% 18.5% 0.0%

Little Rock-North Little Rock-Conway, AR 759 147 2.1% 20.1% 48.3% 8.5%

Lubbock, TX 303 64 27.2% 7.4% 74.2% 14.1%

Lynchburg, VA 286 56 0.9% 16.7% 42.9% 3.6%

Macon-Bibb County, GA 307 53 1.0% 33.4% 49.1% 20.8%

Madison, WI 572 109 3.1% 4.0% 22.0% 0.0%

Manchester-Nashua, NH 440 81 3.0% 1.5% 11.1% 0.0%

McAllen-Edinburg-Mission, TX 653 80 88.3% 0.6% 33.1% 0.6%
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% Tracts Eigenvalues > 0

Name Pop (000s) Tracts % Black % Hisp Baseline 0.25aτk
(1) (2) (3) (4) (5) (6) (7)

Mobile, AL 507 114 1.1% 26.0% 42.5% 19.3%

Modesto, CA 495 89 32.5% 3.0% 53.4% 4.5%

Montgomery, AL 418 82 1.1% 37.8% 50.0% 28.0%

Naples-Immokalee-Marco Island, FL 291 52 21.4% 5.3% 53.8% 1.9%

New Haven-Milford, CT 931 185 8.8% 11.6% 67.3% 8.1%

Norwich-New London, CT 314 62 5.0% 6.1% 37.9% 2.4%

Ogden-Clearfield, UT 503 93 8.1% 1.4% 39.8% 0.0%

Omaha-Council Bluffs, NE-IA 856 237 5.1% 7.6% 34.4% 0.8%

Oxnard-Thousand Oaks-Ventura, CA 891 155 36.0% 2.4% 56.1% 2.3%

Palm Bay-Melbourne-Titusville, FL 585 92 4.9% 8.6% 40.2% 1.1%

Pensacola-Ferry Pass-Brent, FL 524 77 2.8% 14.1% 47.4% 5.2%

Peoria, IL 412 94 1.4% 7.7% 26.6% 3.2%

Wilmington, DE-MD-NJ 809 166 4.3% 16.4% 59.6% 10.5%

Portland-South Portland, ME 560 108 0.9% 0.9% 0.5% 0.0%

Port St. Lucie, FL 389 60 8.4% 10.8% 54.2% 4.2%

39100 705 131 9.1% 8.2% 63.0% 7.3%

Provo-Orem, UT 423 85 6.7% 0.5% 37.1% 0.0%

Raleigh, NC 1047 128 5.3% 17.6% 66.4% 14.5%

Reading, PA 455 82 6.5% 3.1% 53.7% 3.0%

Reno, NV 419 68 17.6% 2.6% 48.5% 0.0%

Roanoke, VA 323 59 1.1% 10.7% 42.4% 5.1%

Rockford, IL 370 82 7.5% 8.1% 64.6% 4.9%

Saginaw, MI 244 56 6.3% 18.7% 65.2% 6.3%

Salem, OR 405 63 16.0% 1.1% 48.4% 0.0%

Salinas, CA 519 83 53.2% 4.8% 56.0% 6.0%

Salt Lake City, UT 1123 205 12.3% 1.3% 39.8% 0.2%

42060 445 86 36.3% 2.9% 52.3% 4.7%

Santa Cruz-Watsonville, CA 289 52 29.5% 1.6% 50.0% 0.0%

Santa Rosa, CA 507 86 18.1% 2.0% 47.7% 0.0%

Savannah, GA 441 75 2.2% 26.3% 52.0% 24.0%

Scranton–Wilkes-Barre–Hazleton, PA 668 168 1.1% 1.6% 7.4% 0.0%

Tacoma-Lakewood, WA 806 157 6.0% 9.5% 53.8% 0.0%

Shreveport-Bossier City, LA 471 90 1.8% 35.1% 51.1% 26.1%

South Bend-Mishawaka, IN-MI 402 84 3.5% 7.9% 50.6% 7.1%

Spartanburg, SC 326 51 2.5% 17.3% 52.9% 4.9%

Spokane-Spokane Valley, WA 473 106 2.7% 2.2% 8.0% 0.0%

Springfield, IL 229 55 0.8% 7.7% 41.8% 2.7%

Springfield, MA 779 140 9.8% 6.4% 48.2% 5.4%

Springfield, MO 418 85 1.5% 1.6% 7.1% 0.0%

Stockton-Lodi, CA 659 121 30.1% 7.5% 76.9% 14.0%

Syracuse, NY 774 189 1.8% 5.8% 26.5% 1.3%

Tallahassee, FL 385 63 3.7% 29.7% 59.5% 23.0%

Toledo, OH 777 174 4.2% 9.7% 42.8% 4.0%

Topeka, KS 254 54 5.0% 6.7% 41.7% 0.9%

Trenton, NJ 402 72 8.4% 17.5% 74.3% 13.2%

Tucson, AZ 1026 196 30.1% 3.8% 52.0% 2.0%

Tuscaloosa, AL 232 54 1.2% 32.4% 49.1% 22.2%

Utica-Rome, NY 369 92 2.4% 4.2% 17.9% 1.1%

Vallejo-Fairfield, CA 478 79 17.3% 15.2% 90.5% 18.4%

Visalia-Porterville, CA 419 76 52.3% 1.9% 50.0% 6.6%

Waco, TX 238 51 18.3% 15.4% 90.2% 14.7%

13644 1263 209 9.4% 14.7% 71.5% 15.8%
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% Tracts Eigenvalues > 0

Name Pop (000s) Tracts % Black % Hisp Baseline 0.25aτk
(1) (2) (3) (4) (5) (6) (7)

Wichita, KS 686 143 6.6% 7.0% 52.8% 2.4%

Winston-Salem, NC 483 97 5.6% 17.8% 59.3% 11.3%

Worcester, MA-CT 882 163 6.2% 3.2% 29.1% 0.3%

York-Hanover, PA 451 82 2.1% 2.7% 33.5% 2.4%

Youngstown-Warren-Boardman, OH-PA 748 168 1.4% 8.1% 32.7% 1.5%

25th Percentile 367 68 2.1% 3.0% 33.0% 0.6%

Median 483 89 4.4% 7.1% 46.8% 3.2%

75th Percentile 748 131 9.2% 15.4% 53.8% 8.7%
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C.2 Analysis of Small Expansion of LIHTC

This table shows the results from the small policy experiment where the number of

LIHTC housing units (in tracts with existing LIHTC housing units) is increased by 10

percent. Column (1) shows the name of the metro and column (2) shows the percentage

of tracts with some LIHTC units. Column (3) shows the percentage of tracts that tip in

this counterfactual experiment at our baseline estimate of preferences and column (4) shows

the percentage of tracts that tip in this counterfactual experiment after the coefficients

Θτ
2 = {aτ1, . . . , aτ5} have been multiplied by 0.25 for all types τ , but the baseline value of δτ`,m

is held fixed for all `, m and τ . Columns (5) and (7) show the baseline Black (5) and Hispanic

(7) dissimilarity indexes. Columns (6) and (8) show the change in those indexes (measured

at the new steady state) at our baseline estimate of preferences and columns (7) and (9)

show thechange in those indexes when Θτ
2 has been multiplied by 0.25 but the baseline value

of δτ`,m is held fixed for all `, m and τ .

Appendix Table C.2

Tracts Tipping Black-White Dissim Hisp-White Dissim

Name LIHTC % Exp 0 Exp 1 Base ∆ 0 ∆ 1 Base ∆ 0 ∆ 1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Akron, OH 28.4% 77.7% 3.8% 43.5% 48.0 pp -1.4 pp 16.5% 66.8 pp 0.9 pp

Albany, NY 22.3% 47.9% 2.0% 38.3% 47.4 pp -1.6 pp 21.7% 62.3 pp -0.6 pp

Albuquerque, NM 23.8% 99.7% 1.7% 15.3% 62.2 pp 0.0 pp 26.7% 62.3 pp -0.4 pp

Allentown, PA-NJ 27.6% 38.9% 0.0% 29.9% 34.8 pp 0.0 pp 36.0% 48.1 pp -0.1 pp

Amarillo, TX 24.5% 93.5% 1.5% 32.6% 54.9 pp -2.5 pp 27.5% 60.5 pp 0.1 pp

Anchorage, AK 34.2% 53.3% 0.0% 21.2% 47.4 pp 0.0 pp 14.4% 55.0 pp 0.0 pp

Ann Arbor, MI 23.7% 75.9% 3.4% 36.2% 50.6 pp -0.9 pp 15.2% 58.8 pp 0.8 pp

Asheville, NC 32.7% 21.8% 0.8% 26.5% 42.1 pp -0.4 pp 16.0% 56.4 pp -0.1 pp

Atlanta, GA 22.4% 85.3% 1.7% 65.3% 26.3 pp 1.1 pp 46.1% 43.5 pp 2.3 pp

Atlantic City, NJ 4.6% 99.2% 7.7% 42.0% 50.8 pp -5.2 pp 29.7% 62.9 pp -1.9 pp

Augusta, GA-SC 23.4% 99.7% 17.4% 31.8% 61.7 pp -2.6 pp 16.0% 25.0 pp -0.9 pp

Austin, TX 28.5% 95.9% 13.1% 48.8% 37.7 pp 6.8 pp 50.2% 39.6 pp 4.6 pp

Bakersfield, CA 36.9% 99.5% 6.7% 29.3% 62.0 pp 0.4 pp 37.7% 51.7 pp 0.0 pp

Baltimore, MD 23.0% 83.0% 10.9% 64.7% 27.0 pp 6.2 pp 38.8% 28.7 pp 6.1 pp

Barnstable Town, MA 20.9% 0.0% 0.0% 18.0% -0.1 pp 0.0 pp 15.4% -0.1 pp 0.0 pp

Baton Rouge, LA 30.3% 99.4% 19.2% 43.9% 46.3 pp 0.7 pp 17.3% 77.5 pp 3.3 pp

Beaumont, TX 23.3% 96.5% 19.8% 53.8% 36.6 pp 4.2 pp 28.3% 56.8 pp 3.1 pp

Binghamton, NY 31.4% 3.0% 0.0% 26.2% 3.3 pp 0.0 pp 19.4% -2.0 pp 0.0 pp

Birmingham, AL 31.1% 96.1% 11.1% 52.0% 41.0 pp 0.9 pp 21.5% 72.0 pp 2.8 pp

Boise City, ID 43.6% 39.9% 0.0% 9.4% 6.4 pp 0.0 pp 20.0% 46.1 pp -0.1 pp

Boston, MA 28.0% 71.1% 1.8% 82.8% 7.3 pp 0.0 pp 69.7% 22.6 pp 0.1 pp

Cambridge, MA 19.4% 32.8% 3.4% 44.2% 28.0 pp 0.5 pp 46.4% 28.4 pp -0.4 pp

Peabody, MA 24.2% 41.4% 0.0% 32.1% 28.6 pp -0.1 pp 50.3% 33.5 pp -0.1 pp

Rockingham County, NH 36.9% 0.0% 0.0% 12.4% 0.0 pp 0.0 pp 15.5% 0.0 pp 0.0 pp

Boulder, CO 35.5% 41.8% 0.0% 10.7% 21.9 pp 0.0 pp 22.5% 38.7 pp -0.1 pp

Sarasota, FL 13.8% 47.7% 2.8% 33.4% 51.3 pp -0.8 pp 23.1% 63.5 pp 0.2 pp

Bremerton, WA 38.4% 12.0% 0.0% 20.0% 15.6 pp 0.0 pp 10.3% 47.9 pp 0.0 pp
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Bridgeport, CT 17.1% 100.0% 8.3% 48.2% 43.5 pp 0.9 pp 41.0% 52.9 pp 1.6 pp

Brownsville, TX 23.9% 93.0% 0.0% 19.9% 47.5 pp 0.0 pp 31.4% 43.1 pp -0.2 pp

Buffalo, NY 27.1% 35.4% 0.0% 82.3% 8.3 pp -0.1 pp 69.4% 15.7 pp -0.2 pp

Canton, OH 21.1% 26.7% 0.0% 36.3% 23.7 pp 0.0 pp 13.1% 8.1 pp 0.1 pp

Cape Coral, FL 12.4% 80.6% 2.9% 35.5% 53.2 pp -1.1 pp 23.9% 65.3 pp 3.1 pp

Cedar Rapids, IA 33.3% 6.7% 0.0% 24.8% 25.6 pp 0.0 pp 13.2% 1.2 pp 0.1 pp

Champaign, IL 25.6% 76.6% 9.0% 34.2% 57.3 pp 1.6 pp 22.7% 62.2 pp 2.7 pp

Charleston, WV 33.1% 18.0% 0.0% 35.8% 26.1 pp -0.1 pp 18.1% 13.1 pp 0.0 pp

Charleston, SC 34.8% 100.0% 23.3% 27.0% 63.2 pp 3.6 pp 15.8% 63.0 pp 4.0 pp

Charlotte, NC-SC 31.9% 93.7% 26.3% 54.0% 11.1 pp 14.8 pp 46.5% 47.6 pp 13.2 pp

Chattanooga, TN, TN-GA 30.2% 88.1% 16.8% 49.1% 41.6 pp 0.7 pp 16.9% 58.7 pp 3.3 pp

Gary, IN 14.9% 96.7% 3.5% 60.9% 30.9 pp -1.1 pp 32.0% 29.1 pp -0.1 pp

Lake County, IL-WI 20.1% 99.3% 3.5% 45.3% 48.7 pp -1.6 pp 39.5% 53.1 pp -1.3 pp

Cincinnati, OH, OH-KY-IN 25.5% 71.1% 2.1% 75.2% 15.1 pp -0.2 pp 30.3% 40.1 pp 0.8 pp

Clarksville, TN, TN-KY 25.2% 98.3% 2.3% 26.8% 65.0 pp -0.3 pp 26.1% 66.9 pp 0.2 pp

Cleveland, OH 16.5% 67.3% 0.3% 78.4% 9.3 pp -0.1 pp 61.9% 20.6 pp -0.1 pp

Colorado Springs, CO 13.6% 87.4% 0.0% 23.2% 48.1 pp -0.1 pp 16.3% 62.9 pp -0.1 pp

Columbia, SC 34.0% 100.0% 48.1% 35.5% 56.8 pp 1.5 pp 20.1% 38.1 pp 3.4 pp

Columbus, GA, GA-AL 16.0% 100.0% 15.7% 41.5% 52.1 pp -3.1 pp 24.1% 39.1 pp 1.0 pp

Columbus, OH 35.2% 85.6% 7.2% 67.4% 24.8 pp 2.1 pp 41.2% 25.9 pp 3.7 pp

Corpus Christi, TX 23.7% 100.0% 1.9% 21.9% 63.9 pp 0.2 pp 33.1% 54.0 pp -0.3 pp

Dallas, TX 25.4% 94.2% 3.0% 56.4% 28.7 pp 0.7 pp 49.0% 42.0 pp 1.2 pp

Fort Worth, TX 25.1% 66.6% 0.5% 64.5% 21.1 pp -6.8 pp 38.1% 46.1 pp -0.4 pp

Davenport, IA-IL 27.2% 34.1% 0.0% 30.3% 49.6 pp -0.1 pp 23.9% 52.9 pp -0.1 pp

Dayton, OH 41.6% 97.2% 3.2% 53.1% 37.8 pp -1.9 pp 17.0% 61.8 pp 0.7 pp

Deltona, FL 21.4% 70.4% 7.0% 32.8% 55.3 pp -0.9 pp 28.6% 59.2 pp 3.1 pp

Denver, CO 22.9% 88.4% 1.4% 65.1% 22.8 pp -0.1 pp 51.8% 37.7 pp 0.2 pp

Des Moines, IA 50.5% 21.5% 1.5% 28.8% 41.8 pp -0.6 pp 25.6% 50.7 pp -0.3 pp

Detroit, MI 25.6% 53.6% 0.3% 86.5% 5.5 pp 0.1 pp 67.9% 17.6 pp 0.0 pp

Warren, MI 11.8% 88.6% 1.3% 69.5% 21.7 pp -0.1 pp 33.3% 44.4 pp 1.7 pp

Duluth, MN, MN-WI 27.0% 0.0% 0.0% 21.7% 0.0 pp 0.0 pp 14.7% 0.0 pp 0.0 pp

Durham, NC 37.7% 100.0% 17.1% 33.6% 56.4 pp 1.1 pp 29.7% 13.6 pp -0.3 pp

El Paso, TX 45.1% 96.4% 0.1% 21.0% 64.9 pp 0.0 pp 30.5% 48.1 pp -0.2 pp

Erie, PA 23.0% 34.5% 1.0% 41.7% 36.7 pp -0.1 pp 27.2% 37.3 pp 0.0 pp

Eugene, OR 40.5% 4.1% 0.0% 16.4% 2.2 pp 0.0 pp 10.4% 38.1 pp 0.0 pp

Evansville, IN, IN-KY 26.1% 29.3% 0.0% 30.6% 47.5 pp 0.0 pp 14.9% 17.9 pp 0.1 pp

Fayetteville, NC 28.5% 100.0% 16.1% 20.1% 71.9 pp 3.5 pp 15.3% 41.8 pp 3.2 pp

Fayetteville, AR-MO 45.3% 57.8% 0.0% 17.8% 20.8 pp 0.0 pp 24.5% 56.5 pp -0.1 pp

Flint, MI 26.2% 89.6% 3.6% 56.6% 34.3 pp -0.6 pp 16.6% 72.1 pp 0.3 pp

Fort Collins, CO 43.1% 55.6% 0.0% 11.7% -0.8 pp 0.0 pp 8.4% 59.8 pp 0.0 pp

Fort Smith, AR, AR-OK 57.3% 34.6% 0.0% 30.5% 42.8 pp -0.1 pp 30.1% 45.6 pp -0.1 pp

Fort Wayne, IN 28.9% 85.9% 3.4% 42.3% 48.1 pp -2.7 pp 24.9% 64.6 pp -0.9 pp

Fresno, CA 43.8% 98.4% 11.1% 29.7% 61.1 pp 0.4 pp 30.7% 59.7 pp 4.1 pp

Grand Rapids, MI 28.8% 80.1% 0.7% 42.5% 48.8 pp -1.9 pp 32.0% 59.8 pp -0.7 pp

Green Bay, WI 38.9% 4.7% 0.0% 23.3% -2.3 pp 0.0 pp 27.7% 3.0 pp 0.0 pp

Greensboro, NC 33.6% 100.0% 19.1% 37.8% 56.0 pp 2.6 pp 23.6% 50.8 pp 2.6 pp

Greenville, SC 38.2% 97.7% 8.7% 29.6% 60.8 pp 1.0 pp 17.9% 70.9 pp 1.7 pp

Gulfport, MS 59.3% 97.6% 24.0% 27.1% 58.6 pp 0.5 pp 16.6% 68.2 pp 6.5 pp

Harrisburg, PA 33.7% 70.4% 3.5% 49.0% 42.4 pp -0.4 pp 28.8% 58.3 pp 0.3 pp

Hartford, CT 14.7% 63.1% 1.3% 70.2% 15.7 pp -0.6 pp 72.9% 18.7 pp -0.2 pp

Hickory, NC 31.5% 45.9% 1.3% 23.4% 57.4 pp -0.6 pp 19.1% 54.9 pp -0.2 pp

FINDCBSA, XX 16.3% 24.4% 0.0% 24.9% 8.7 pp 0.0 pp 14.1% 33.1 pp 0.0 pp
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Houston, TX 25.0% 93.7% 7.1% 62.4% 12.0 pp 1.2 pp 50.5% 43.4 pp 2.2 pp

Huntington, WV-KY-OH 29.2% 4.0% 0.0% 31.6% 6.0 pp -0.1 pp 16.7% 1.1 pp 0.0 pp

Huntsville, AL 29.1% 99.7% 7.9% 35.3% 57.7 pp -1.8 pp 17.3% 75.4 pp 0.1 pp

Indianapolis, IN 41.6% 73.2% 10.1% 76.2% 14.5 pp 2.1 pp 43.3% 27.6 pp 9.0 pp

Jackson, MS 47.5% 93.7% 26.3% 42.8% 50.8 pp 6.4 pp 17.3% 36.9 pp 10.1 pp

Jacksonville, FL 35.2% 99.2% 15.3% 37.0% 56.7 pp 5.0 pp 14.2% 75.0 pp 5.5 pp

Kalamazoo, MI 44.2% 63.1% 5.3% 31.1% 57.2 pp -2.3 pp 23.4% 65.1 pp 0.8 pp

Kansas City, MO, MO-KS 39.0% 90.2% 6.0% 72.7% 17.5 pp -0.3 pp 43.3% 3.8 pp 9.0 pp

Killeen, TX 17.5% 100.0% 1.8% 30.2% 61.8 pp -0.2 pp 14.2% 76.3 pp 1.1 pp

Kingsport, TN-VA 28.4% 2.0% 0.0% 22.9% 35.9 pp 0.0 pp 13.0% 0.5 pp 0.1 pp

Knoxville, TN 25.4% 45.1% 0.9% 32.0% 57.4 pp -0.5 pp 13.5% 72.3 pp 0.0 pp

Lafayette, LA 25.1% 100.0% 2.3% 33.3% 51.6 pp 0.0 pp 12.7% 38.9 pp 2.4 pp

Lakeland, FL 14.9% 92.7% 11.5% 26.6% 61.9 pp 4.0 pp 17.8% 69.5 pp 4.9 pp

Lancaster, PA 25.1% 31.9% 1.7% 31.5% 52.8 pp -0.8 pp 36.5% 53.6 pp -1.1 pp

Lansing, MI 36.3% 48.8% 1.6% 37.9% 44.7 pp -0.6 pp 23.9% 54.3 pp -0.2 pp

Las Vegas, NV 17.6% 87.7% 8.7% 39.6% 49.1 pp 6.9 pp 49.0% 38.8 pp 4.0 pp

Lexington, KY 19.5% 51.8% 5.2% 31.0% 52.3 pp -2.4 pp 15.6% 72.2 pp -1.3 pp

Lincoln, NE 33.3% 2.5% 0.0% 20.2% 10.8 pp 0.0 pp 16.6% -0.3 pp 0.0 pp

Little Rock, AR 35.5% 100.0% 14.4% 41.0% 50.9 pp -0.4 pp 17.0% 38.8 pp 1.7 pp

Santa Ana, CA 17.6% 77.1% 0.0% 30.1% 48.8 pp -0.1 pp 52.6% 33.9 pp -0.1 pp

Louisville/Jefferson County, KY, KY-IN 26.3% 78.4% 1.7% 67.3% 24.3 pp -0.4 pp 44.8% 11.2 pp 2.1 pp

Lubbock, TX 22.4% 98.4% 21.6% 37.4% 51.7 pp -5.4 pp 29.7% 60.3 pp 4.9 pp

Lynchburg, VA 24.5% 93.6% 0.8% 27.8% 63.5 pp -0.3 pp 14.0% 69.7 pp 0.4 pp

Macon, GA 22.3% 100.0% 39.8% 39.7% 51.7 pp 5.9 pp 14.9% 1.2 pp 9.1 pp

Madison, WI 63.2% 20.6% 0.0% 27.0% 37.4 pp -0.1 pp 18.9% 36.4 pp 0.0 pp

Manchester, NH 33.2% 2.8% 0.0% 16.7% -2.7 pp 0.0 pp 22.0% 29.3 pp 0.0 pp

McAllen, TX 41.4% 96.8% 0.0% 14.2% 18.7 pp -0.1 pp 20.6% 58.4 pp -0.4 pp

Memphis, TN, TN-MS-AR 37.2% 78.6% 64.7% 74.1% 6.4 pp 4.4 pp 43.6% -27.9 pp 14.9 pp

Fort Lauderdale, FL 11.9% 85.1% 25.8% 67.1% 23.5 pp 7.1 pp 38.6% 40.7 pp 13.6 pp

Miami, FL 24.1% 74.8% 7.4% 76.0% -14.1 pp 1.0 pp 55.2% 35.3 pp 2.1 pp

West Palm Beach, FL 11.9% 81.2% 4.8% 65.6% 15.6 pp 1.8 pp 50.5% 19.9 pp -0.5 pp

Milwaukee, WI 32.9% 61.5% 0.7% 83.4% 10.2 pp -0.3 pp 74.8% 11.4 pp -0.2 pp

Minneapolis, MN-WI 33.9% 81.4% 1.8% 57.0% 32.4 pp 0.3 pp 42.1% 33.8 pp 0.4 pp

Mobile, AL 27.7% 94.5% 15.9% 45.3% 45.5 pp 3.5 pp 15.1% 31.8 pp 5.5 pp

Modesto, CA 23.5% 100.0% 0.0% 18.2% 55.4 pp 0.0 pp 21.1% 67.7 pp -0.1 pp

Montgomery, AL 42.6% 98.2% 29.0% 39.0% 52.2 pp 3.8 pp 16.8% -1.1 pp 6.8 pp

Naples, FL 32.2% 74.0% 0.5% 29.5% 55.3 pp -0.3 pp 35.5% 53.4 pp -0.2 pp

Nashville, TN 38.7% 90.1% 23.3% 57.8% 34.6 pp 13.8 pp 55.5% 24.9 pp 10.0 pp

New Haven, CT 20.5% 100.0% 12.7% 46.9% 44.4 pp -0.7 pp 38.4% 41.5 pp 0.1 pp

New Orleans, LA 13.7% 74.3% 7.7% 70.1% 19.8 pp 3.4 pp 47.0% 33.9 pp 4.4 pp

Edison, NJ 2.7% 79.9% 5.6% 54.6% 35.6 pp 3.6 pp 48.3% 41.9 pp 2.2 pp

Nassau County, NY 6.5% 77.7% 4.6% 76.9% 13.4 pp -0.5 pp 52.0% 39.2 pp 1.3 pp

Newark, NJ, NJ-PA 6.8% 85.4% 0.7% 79.5% 8.8 pp 0.3 pp 62.9% 31.2 pp 0.2 pp

Norwich, CT 20.3% 27.4% 0.0% 32.1% 33.1 pp -0.1 pp 27.6% 53.2 pp 0.0 pp

Ogden, UT 21.9% 53.8% 0.0% 20.0% -0.1 pp 0.0 pp 20.6% 49.3 pp -0.1 pp

Oklahoma City, OK 22.5% 78.3% 3.7% 60.7% 26.7 pp 0.4 pp 45.3% 39.8 pp 1.9 pp

Omaha, NE-IA 33.1% 74.7% 0.5% 42.6% 46.6 pp -1.0 pp 28.3% 58.2 pp 0.0 pp

Orlando, FL 35.0% 95.1% 17.0% 60.2% 31.8 pp -0.7 pp 47.7% 45.3 pp 1.5 pp

Oxnard, CA 24.4% 96.0% 1.3% 23.2% 62.1 pp -0.1 pp 41.0% 48.7 pp -0.3 pp

Palm Bay, FL 13.2% 52.9% 0.6% 27.1% 48.8 pp -0.1 pp 13.4% 51.7 pp 0.0 pp

Pensacola, FL 22.3% 83.0% 1.1% 31.1% 57.9 pp 0.2 pp 12.7% 74.4 pp 0.7 pp

Peoria, IL 20.3% 54.8% 1.3% 48.2% 40.2 pp -0.5 pp 19.9% 63.5 pp -0.1 pp
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Camden, NJ 10.1% 85.1% 0.0% 47.1% -8.3 pp 0.1 pp 43.8% -9.7 pp 0.0 pp

Philadelphia, PA 25.0% 85.7% 4.0% 77.8% 5.5 pp -0.5 pp 64.9% 28.8 pp 3.1 pp

Wilmington, DE, DE-MD-NJ 20.8% 99.7% 13.3% 36.7% 55.9 pp 1.5 pp 26.9% 66.1 pp 2.2 pp

Phoenix, AZ 16.0% 89.5% 1.1% 39.0% 41.1 pp 0.4 pp 49.7% 39.8 pp 0.4 pp

Pittsburgh, PA 18.9% 63.0% 0.1% 71.5% 16.6 pp -0.1 pp 33.4% 31.4 pp -0.2 pp

Portland, ME 42.8% 0.0% 0.0% 18.6% -0.1 pp 0.0 pp 12.0% 0.0 pp 0.0 pp

Portland, OR-WA 40.5% 59.1% 2.3% 58.4% 26.8 pp 0.9 pp 34.3% 46.1 pp 1.2 pp

Port St. Lucie, FL 20.9% 87.5% 18.6% 31.4% 57.7 pp 7.3 pp 20.7% 61.4 pp 11.1 pp

New York, NY-NJ-CT-PA 34.6% 97.2% 5.0% 31.7% 57.7 pp 0.5 pp 23.2% 67.9 pp 1.1 pp

Providence, RI-MA 31.7% 71.5% 3.3% 62.6% 29.0 pp -4.7 pp 77.4% 4.0 pp -7.9 pp

Provo, UT 16.3% 38.7% 0.0% 13.5% 2.6 pp 0.0 pp 13.9% 42.2 pp 0.0 pp

Raleigh, NC 55.0% 100.0% 12.1% 26.5% 66.7 pp 0.3 pp 15.5% 78.5 pp 1.3 pp

Reading, PA 21.6% 58.2% 1.0% 34.1% 53.8 pp 0.1 pp 47.8% 42.5 pp -0.1 pp

Reno, NV 38.7% 98.2% 0.0% 13.9% 36.1 pp 0.0 pp 20.2% 64.9 pp -0.1 pp

Richmond, VA 28.7% 91.8% 20.1% 58.1% 33.9 pp 7.0 pp 44.1% 49.8 pp 10.9 pp

Riverside, CA 23.3% 94.3% 27.3% 48.1% 17.1 pp 2.4 pp 45.0% -10.1 pp 3.4 pp

Roanoke, VA 26.3% 83.1% 8.4% 41.4% 49.7 pp -3.6 pp 15.9% 67.5 pp -0.3 pp

Rochester, NY 45.6% 54.1% 5.1% 75.1% 14.9 pp 1.1 pp 58.9% 29.2 pp -0.6 pp

Rockford, IL 19.1% 79.2% 3.9% 37.7% 50.3 pp -2.6 pp 25.1% 65.3 pp -1.0 pp

Sacramento, CA 36.0% 89.9% 16.2% 56.0% 32.5 pp 5.0 pp 37.7% 50.2 pp 3.2 pp

Saginaw, MI 31.8% 92.9% 13.7% 55.0% 37.8 pp -0.5 pp 32.8% 58.0 pp 0.6 pp

St. Louis, MO, MO-IL 30.5% 59.0% 1.6% 77.1% 12.3 pp -0.1 pp 30.9% 46.0 pp 2.4 pp

Salem, OR 36.5% 97.6% 0.0% 12.9% 38.7 pp 0.0 pp 25.4% 60.3 pp -0.1 pp

Salinas, CA 36.2% 83.7% 1.5% 29.9% 52.2 pp -0.2 pp 46.3% 41.1 pp -0.5 pp

Salt Lake City, UT 28.2% 63.0% 0.0% 16.2% 13.4 pp 0.0 pp 25.1% 47.1 pp -0.1 pp

San Antonio, TX 22.9% 81.9% 30.0% 52.3% 32.2 pp 15.6 pp 51.7% 34.5 pp 13.6 pp

San Diego, CA 21.1% 97.2% 8.1% 53.2% 23.6 pp 0.1 pp 53.7% 20.3 pp 0.7 pp

Oakland, CA 35.1% 98.6% 2.7% 59.8% 24.9 pp 0.2 pp 43.0% 50.4 pp 0.8 pp

San Francisco, CA 23.7% 50.6% 0.0% 29.5% 49.4 pp -0.1 pp 26.8% 52.0 pp -0.1 pp

San Jose, CA 33.4% 73.1% 3.5% 29.4% 43.9 pp 1.1 pp 49.7% 35.8 pp 1.2 pp

FINDCBSA, XX 32.0% 100.0% 0.0% 22.6% 59.3 pp -0.2 pp 29.7% 58.1 pp -0.5 pp

Santa Cruz, CA 37.6% 89.2% 0.0% 12.0% 66.9 pp 0.0 pp 44.8% 44.1 pp -0.2 pp

Santa Rosa, CA 46.7% 96.7% 0.0% 15.2% 47.4 pp -0.1 pp 18.1% 63.6 pp -0.2 pp

Savannah, GA 18.0% 100.0% 35.1% 37.9% 55.5 pp 3.1 pp 18.1% 74.5 pp 7.1 pp

Scranton, PA 9.9% 3.9% 0.0% 28.4% 3.6 pp 0.0 pp 29.4% -1.1 pp 0.0 pp

Seattle, WA 39.0% 94.0% 5.2% 62.7% 24.6 pp 0.2 pp 26.5% 12.2 pp 3.7 pp

Tacoma, WA 23.7% 57.5% 0.0% 26.4% 39.6 pp 0.0 pp 14.7% 60.7 pp 0.0 pp

Shreveport, LA 45.1% 97.6% 31.4% 42.0% 51.4 pp -0.1 pp 15.0% 77.2 pp 5.8 pp

South Bend, IN-MI 20.8% 79.8% 0.7% 37.9% 52.0 pp -0.4 pp 28.4% 61.2 pp -0.2 pp

Spartanburg, SC 34.7% 100.0% 0.0% 25.1% 67.0 pp 0.0 pp 17.0% 74.8 pp 0.0 pp

Spokane, WA 33.3% 1.0% 0.0% 13.8% -0.2 pp 0.0 pp 8.9% -0.3 pp 0.0 pp

Springfield, IL 24.5% 52.4% 3.6% 36.7% 47.8 pp -1.5 pp 15.5% 63.5 pp -0.1 pp

Springfield, MA 29.0% 76.3% 8.7% 48.5% 42.1 pp -0.9 pp 46.5% 46.0 pp 0.8 pp

Springfield, MO 52.1% 0.0% 0.0% 18.4% -0.2 pp 0.0 pp 11.2% -0.1 pp 0.0 pp

Stockton, CA 18.7% 100.0% 1.4% 26.5% 61.8 pp -0.7 pp 18.9% 70.2 pp 0.3 pp

Syracuse, NY 20.9% 53.5% 0.8% 46.3% 43.8 pp -0.7 pp 25.1% 59.3 pp -0.4 pp

Tallahassee, FL 31.1% 100.0% 58.9% 31.4% 62.2 pp 5.4 pp 14.9% 62.9 pp 7.2 pp

Tampa, FL 16.9% 85.0% 2.1% 59.8% 26.1 pp 1.9 pp 51.1% 37.8 pp 1.8 pp

Toledo, OH 26.2% 94.5% 2.3% 49.0% 41.5 pp -0.6 pp 20.9% 56.1 pp 0.1 pp

Topeka, KS 53.2% 43.2% 0.0% 31.5% 37.3 pp -0.2 pp 25.4% 48.6 pp -0.1 pp

Trenton, NJ 10.5% 100.0% 39.3% 48.1% 46.6 pp 3.4 pp 32.8% 61.9 pp 6.0 pp

Tucson, AZ 16.4% 96.7% 0.7% 19.2% 59.0 pp 0.0 pp 34.0% 54.8 pp -0.2 pp
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Tulsa, OK 23.4% 62.9% 3.5% 61.5% 27.8 pp 3.0 pp 45.3% 44.4 pp 2.6 pp

Tuscaloosa, AL 42.0% 98.5% 52.1% 38.6% 54.9 pp 10.2 pp 16.4% -1.6 pp 9.7 pp

Utica, NY 22.5% 18.5% 1.0% 39.6% 36.1 pp -0.6 pp 31.7% 50.6 pp -0.1 pp

Vallejo, CA 31.0% 100.0% 0.0% 22.8% 66.7 pp -0.2 pp 16.1% 75.5 pp -0.1 pp

Virginia Beach, VA-NC 29.6% 94.4% 28.0% 48.2% 34.1 pp 15.1 pp 33.9% -24.3 pp 11.4 pp

Visalia, CA 45.8% 99.8% 0.9% 19.3% 46.9 pp -0.2 pp 24.9% 62.5 pp -0.9 pp

Waco, TX 16.5% 100.0% 17.7% 36.8% 52.4 pp -0.7 pp 30.0% 53.2 pp 2.3 pp

Bethesda, MD 24.3% 100.0% 15.1% 29.0% 64.7 pp 0.6 pp 29.4% 64.9 pp 0.7 pp

Washington, DC-VA-MD-WV 28.6% 90.5% 5.9% 66.5% 25.0 pp 2.2 pp 42.8% 50.0 pp 4.3 pp

Wichita, KS 39.7% 89.6% 1.7% 38.0% 54.0 pp -1.1 pp 23.3% 69.3 pp -0.3 pp

Winston, NC 30.3% 98.5% 26.5% 41.0% 51.9 pp 4.6 pp 27.2% 42.4 pp 4.0 pp

Worcester, MA, MA-CT 23.0% 35.8% 0.0% 29.9% 10.1 pp -0.1 pp 34.3% 42.8 pp -0.1 pp

York, PA 27.6% 33.2% 0.9% 28.0% 56.4 pp -1.2 pp 28.4% 59.3 pp -1.1 pp

Youngstown, OH-PA 25.9% 60.5% 0.9% 48.5% 40.3 pp -0.5 pp 29.0% 53.9 pp -0.1 pp

25th Percentile 21.9% 53.5% 0.0% 27.0% 22.8 pp -0.4 pp 17.0% 33.1 pp -0.1 pp

median 27.1% 83.0% 2.0% 36.7% 41.5 pp 0.0 pp 26.9% 47.6 pp 0.1 pp

75th Percentile 34.8% 96.8% 8.7% 53.1% 52.3 pp 0.7 pp 41.0% 60.5 pp 2.3 pp
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