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Introduction and summary

The holy grail of the study of business cycles is identify-
ing the source of economic fluctuations that affect an
economic region. For anyone participating in the quest,
there are three paths. First, shocks might be region-spe-
cific, affecting only one region of a broader economy.
An obvious example is a weather-related shock. Second,
they might be common to all regions, such as a change
in federal tax rates or monetary policy. Finally, they
might initially be region-specific, originating in one re-
gion, but eventually spill over to another. The high level
of business cycle comovement among U.S. regions sug-
gests that region-specific shocks have a minor role in re-
gional business cycles, leaving spillovers and common
shocks playing the major parts in regional business
cycles. Despite the growing literature on the subject
of regional business cycles, the question of whether
the high level of regional business cycle comovement
is the outcome of spillovers of shocks from one region
to another or common shocks remains unanswered.

The purpose of this article is to determine the ex-
tent to which fluctuations in regional economic activ-
ity are driven by common and region-specific shocks
(including spillovers of shocks across regions). The
scope of my analysis is limited to real quarterly per capita
income data for the eight U.S. Department of Commerce,
Bureau of Economic Analysis (BEA) regions,1 cover-
ing the period from 1961:Q1 to 2000:Q4. I use these
data to estimate a model of regional business cycles.
This model allows me to decompose a region’s cyclical
innovations into a part that is common across regions
and a residual component that is region-specific. At
the same time, the model’s structure is rich enough to
allow me to formally test whether these region-spe-
cific shocks spill over to other regions with at least a
lag of one quarter.

Using this framework, I find that spillovers of
region-specific shocks across regions account for a

statistically insignificant share of the business cycle
variation of regional per capita income across the eight
BEA regions, while common shocks account for a large
and statistically significant share of the business cycle
variation of regional income. Based on these findings,
I conclude that the high degree of business cycle co-
movement across U.S. regions over the last 40 years
reflects the fact that regions are influenced by com-
mon sources of disturbance, rather than any signifi-
cant spillover of shocks across regions.

Given the different industry mix and strong inter-
regional trade across U.S. regions, these results provide
evidence against theories of the business cycle that
suggest it owes to cyclical fluctuations being trans-
mitted through trade or production linkages. At the same
time, my findings support the notion that the U.S. is
an optimum currency area, since they reveal that the
BEA regions are largely subject to common sources
of disturbance to which they have common responses,
which suggests that a common monetary policy is
the ideal choice for U.S. regions.

Business cycle properties of per capita
U.S. regional income

The starting point for any business cycle analysis
is the age-old problem of decomposing fluctuations
of economic time series into trend and cycle compo-
nents. There are many competing methods. I begin
my analysis of regional cycles by applying a popular
approach to trend/cycle decomposition known as a
band-pass filter, which limits the cyclical component
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to that part of the time series occurring at frequencies
of 18 months to eight years to real per capita income
of U.S. regions.2 I concentrate on these frequencies of
the data since they are arguably of most interest to pol-
icymakers (especially those charged with formulating
monetary policy). I construct real regional per capital
income using the BEA’s eight-region nominal quarter-
ly personal income from 1961:Q1 to 2000:Q4, divided
by the size of the regional population and deflated by
the national Consumer Price Index.3 With these cycli-
cal components in hand, I can make a preliminary as-
sessment of sources of disturbance to U.S. regions by
simply calculating the correlation between regional
business cycles. A high correlation implies common
sources of disturbances and similar responses to distur-
bances across U.S. regions, while a low correlation in-
dicates differences in the sources of disturbances and/
or different responses to disturbances across U.S. regions.

Estimates reported in table 1, panel A indicate a
high level of comovement across U.S. regions, with
the contemporaneous correlation between regional and
aggregate U.S. income (last row of table 1, panel A)
ranging from 0.77 for the Southwest to 0.97 for the
Southeast. A similar picture emerges for the interregional

correlation statistics. Regions that are geographically
close tend to have higher correlation coefficients than
other regions. For example, the correlation between
New England and Mideast business cycle fluctuations
is 0.91, while the correlation between New England
and Southwest business cycle fluctuations is 0.51.

Panel B of table 1 reports the correlation coefficients
for leads and lags of regional income. The results along
the diagonal from the top left corner of the first row
to the bottom right of the last row reveal the persistence
of regional fluctuations. Coefficients close to one in-
dicate highly persistent cyclical fluctuations, while co-
efficients close to zero indicate very little persistence in
regional fluctuations. Regional cycles are roughly as
persistent as the aggregate cycle, with own-lag-correla-
tion coefficients of between 0.90 and 0.94. The off-
diagonal cells of this panel, in contrast, highlight whether
one region’s business cycle leads (or lags) that of the
other regions. For instance, if the lead/lag coefficient
for regions i and j exceeds their corresponding con-
temporaneous correlation coefficient in panel A, this
implies that i’s business cycle leads j’s business cycle.
The coefficients reported in panels A and B of table 1
do not reveal a strong lead/lag relationship for U.S.

TABLE 1

Regional business cycle comovement and persistence

A. Contemporaneous correlation
Income at time t

New Great
Income at time t England Mideast Lakes Plains Southeast Southwest Rocky Mt. Far West U.S.

New England 1.00 0.91 0.76 0.61 0.83 0.51 0.54 0.80 0.85
Mideast 0.91 1.00 0.82 0.68 0.90 0.67 0.66 0.89 0.93
Great Lakes 0.76 0.82 1.00 0.84 0.92 0.65 0.72 0.82 0.94
Plains 0.61 0.68 0.84 1.00 0.82 0.64 0.80 0.68 0.84
Southeast 0.83 0.90 0.92 0.82 1.00 0.75 0.82 0.85 0.97
Southwest 0.51 0.67 0.65 0.64 0.75 1.00 0.77 0.71 0.77
Rocky Mountains 0.54 0.66 0.72 0.80 0.82 0.77 1.00 0.68 0.80
Far West 0.80 0.89 0.82 0.68 0.85 0.71 0.68 1.00 0.92
U.S. 0.85 0.93 0.94 0.84 0.97 0.77 0.80 0.92 1.00

B. Lead/lag correlation
Income at time t+1

New Great
Income at time t England Mideast Lakes Plains Southeast Southwest Rocky Mt. Far West U.S.

New England 0.94 0.84 0.73 0.58 0.77 0.40 0.43 0.71 0.78
Mideast 0.87 0.93 0.78 0.63 0.84 0.54 0.55 0.80 0.86
Great Lakes 0.70 0.75 0.94 0.75 0.84 0.52 0.60 0.71 0.85
Plains 0.56 0.65 0.80 0.90 0.75 0.52 0.70 0.59 0.77
Southeast 0.79 0.84 0.88 0.78 0.93 0.61 0.71 0.76 0.90
Southwest 0.54 0.68 0.68 0.65 0.76 0.92 0.72 0.71 0.78
Rocky Mountains 0.56 0.67 0.73 0.78 0.80 0.70 0.92 0.64 0.79
Far West 0.79 0.86 0.84 0.68 0.83 0.60 0.62 0.94 0.89
U.S. 0.82 0.88 0.91 0.79 0.91 0.65 0.70 0.83 0.93

Note: Regional and aggregate income data filtered using the quarterly business cycle band-pass filter described in Baxter and King (1999).
Source: Author’s calculations using data from the BEA.
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regional business cycles at one quarter, since there are
only a couple of cases where a lead/lag correlation ex-
ceeds the corresponding contemporaneous correlation.
The lead/lag relationship is somewhat weaker at longer
horizons of two to four quarters. Overall, these results
suggest that U.S. regions have common sources of inno-
vation and similar responses to these disturbances or
strong spillovers of shocks across regions that occur
at business cycle frequencies. An obvious weakness
of this simple approach is that it does not allow for a
comparison of the sources of disturbances or responses
to disturbances across regions.

A structural model of U.S. regional
economic fluctuations

One way of overcoming the limitations of the sim-
ple correlation analysis is to use a structural model of
the trend and cycle. With appropriate parameter restric-
tions, a structural model can identify common and re-
gion-specific sources of innovation, and identify the
shape of responses to common shocks and region-spe-
cific shocks. I follow the unobserved components (UC)
approach of Watson (1986) in decomposing U.S. re-
gional per capita income fluctuations into their trend
and cycle components. Unlike the band-pass filter, this
approach requires assumptions about the data-gener-
ating process. For example, in his analysis of the cy-
clical characteristics of U.S. aggregate output, Watson
modeled the trend of the log of output as a random
walk with drift and the cyclical component as a sta-
tionary second-order autoregression. Watson’s approach
explicitly assumes that the current log of output de-
pends on the most recent past observation plus some
random component and a constant term. The constant
term, typically called drift, measures the underlying
trend growth rate. That is, in the absence of random
fluctuations, trend output grows at a rate equal to the
drift term. In contrast, positive random fluctuations
lead to trend growth in excess of the drift, while neg-
ative random fluctuations cause the trend to grow by
less than the drift. Using this method, Watson gener-
ated a cyclical component for U.S. aggregate output
with peaks and troughs that closely match those re-
ported by the National Bureau of Economic Research’s
(NBER) Business Cycle Dating Committee. Elsewhere,
I have shown that this method generates a cyclical
component for U.S. aggregate output that closely
matches that generated by a band-pass filter.4

Unobserved components model
Following Watson’s approach, I assume that log per

capita income for region i at time t, y
it
 , is composed

of a trend τ
it
 and cyclical c

it
 component,

1) y
it
 =  τ

it
 + c

it
 , for i = 1, …, 8.

The trend is assumed to be a unit root with drift,

2) τ
it
 = δ

it
 + τ

it–1
 + µ

it 
, for i = 1, …, 8,

where the drift term, δ
it
, measures the trend growth rate

of per capita income in region i at time t; µ
it
 is the

innovation to the trend of region i’s per capita income
at time t, which is distributed as an independent nor-
mal random variable with mean zero and variance

2 ;iµσ and the µ
it
s are assumed to be orthogonal for all

t. In this setting, trend output grows at the rate of the
drift term in the absence of random fluctuations. Pos-
itive shocks lead to trend growth above the drift, and
negative shocks lead to trend growth below the drift.
Elsewhere, I have shown that the trend growth rate of
U.S. aggregate output has changed over time, so I
extend Watson’s model by allowing the drift to vary
over time according to predetermined break points.
I consider three periods that are widely considered
by empirical researchers, such as Gordon (2000), to
be periods in which the trend growth rate of produc-
tivity changed significantly: the productivity slowdown
era from 1972:Q3 to 1995:Q4; the new economy era
from 1996:Q1 to 2000:Q4; and the pre-productivity
slowdown era from 1961:Q1 to 1972:Q2.

I also build on Watson’s approach by assuming
the cyclical component is made up of two parts, a
common cycle across regions, x

nt
 , and a regional cycle,

x
it
. I permit regions to have different sensitivity to the

common component governed by a parameter γ
i
:

3) c
it
 = γ

i
 x

nt
 + x

it 
.

Under this assumption, regions that do not have
a region-specific cycle x

it
 would have income y

it
 that

was directly proportional to the common component
x

nt
 and their business cycles would be perfectly cor-

related. The dynamics of the common component x
nt

follow Watson’s specification for the U.S. aggregate
cycle of a stationary second-order autoregression:

4) x
nt 

= ρ
1
x

nt–1
 + ρ

2
x

nt–2 
+ ε

nt 
,

where ρ
1 
and ρ

2
 are scalar coefficients and  ε

nt
 is the

innovation to the common cyclical component at
time t, which is distributed as an independent normal
random variable with mean zero and variance 2 .nσ
For ease of exposition, I allow X

t
 = [x

1t
, x

2t
, …, x

8t
]′.

I assume that the dynamics of the regional cycles fol-
low a first-order vector autoregression:

5) X
t
 = ΦX

t–1
 + ε

t
 ,
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where Φ is an 8 × 8 matrix of coefficients and ε
t
 =

[ε
1t
,ε

2t
, …, ε

8t
]′ is the vector of innovations to the re-

gional cycle, which is distributed as an independent
normal random vector with a zero mean vector and
covariance matrix Λ. I identify the region-specific cycli-
cal innovations by limiting the analysis to the case where
shocks to x

it
 do not affect x

jt
, for all i ≠ j, at time t. In

other words, the covariance matrix of regional inno-
vations Λ is assumed to be a diagonal. In this case, the
extent of spillovers of cyclical shocks from one region
to another is indicated by the off-diagonal elements
of the coefficient matrix, Φ. Details of the estimation
strategy are provided in box 1.

Results

With the estimated model in hand, I present two
sets of results. The first set focuses on measures of
U.S. and regional business cycles. The second set con-
centrates on answering the question of whether the

strong pattern of regional cyclical comovement is due
to common shocks or spillovers. For completeness,
I report all model parameters in tables 2 to 5. I discuss
previous approaches to modeling regional income
fluctuations in box 2.

Measuring business cycles
The mainstream academic view of business cycles

emphasizes that they consist of expansions at about the
same time in many economic activities/regions, fol-
lowed by similarly general contractions. In other words,
the U.S. business cycle can be measured by common
cyclical fluctuations in regional activity, while varia-
tion in regional activity that is not explained by the
common cycle serves to highlight region-specific sources
of disturbance.

U.S business cycle
Figure 1 (on page 35) plots the common cyclical

component of per capita income across U.S. regions

BOX 1

Estimation strategy

The model described by equations 1 to 5 is a variant
of Watson and Engle’s (1983) general dynamic mul-
tiple indicator-multiple cause (DYMIMIC) model. This
framework allows unobserved variables to be dynamic
in nature, as well as being associated with observed
variables. DYMIMIC models are typically estimated
using maximum likelihood. In this setting, the likeli-
hood function is evaluated using the Kalman filter
on the model’s state space representation.1

One of the requirements of maximum likelihood
is that the data used in the estimation must be station-
ary. Augmented Dickey-Fuller unit root tests applied
to the log-levels and log-first-differences of real per
capita income for the eight BEA regions suggest that
the null of a unit root cannot be rejected for any of
the level data series at the 5 percent level of signifi-
cance. However, the null of a unit root is rejected for
the first-difference data at the same level of signifi-
cance. In light of this, I specify and estimate the mod-
el using the log-first-differences of real per capita
regional income.

Under this transformation of the data, the state
space representation of the model is described by the
following measurement equation:

[ ]

61:1,72:2

61:1,72:2 72:3,95:4 96:1,02:4 72:3,95:4

96:1,02:4

8 8 ,

t

nt
t

t

D

Y D

D

x
I

X×

 
  ∆ = δ δ δ +   
  

∆ 
γ + µ ∆ 

and transition equation:

1 21 2

1 2

0 0

0 0 0
nt nt nt nt

t t t t

x x x

X X X
− −

− −

ερ ρ          
= + +           εΦ          

,

where Y
t
 = [y

1t
, y

2t
, …, y

8t
]′; δ

t1,t2
 = [δ

1t1,t2
, δ

2t1,t2 
…,

δ
8t1,t2

]′; D
t1,t2

 is one for t1 ≤ t ≤ t2 and zero for all other
t; γ = [γ

1
, γ

2
, …, γ

8
]′; µ

t
 = [µ

1t
, µ

2t
, …, µ

8t
]′; I

8×8
 is an

8 × 8 identity matrix and ∆z
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Identification of the model’s parameters requires
two additional restrictions on the parameter space.
First, the vector governing the sensitivity to the com-
mon income component γ is identified by normaliz-
ing one γ

i
 to unity. I use the Southeast as the benchmark

region, largely because the volatility of fluctuations
of the quarterly growth rates of Southeast income is
the same as that of aggregate U.S. income. Second,
all innovations are assumed to be orthogonal.

1I estimate my DYMIMIC model using the recursive EM al-
gorithm described by Watson and Engle (1983). To avoid lo-
cal optimization problems, I examined a wide range of starting
values and imposed severe convergence criteria on the param-
eter space of 1 × 10–7. Standard errors of the parameters are
estimated using a standard gradient search algorithm to evalu-
ate the matrix of second derivatives of the likelihood function
at the EM parameter estimates.
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BOX 2

Previous approaches to modeling regional income fluctuations

The most closely related study is Carlino and Defina
(1995), hereafter CD.1 They use a structural model
to estimate the effects of region-specific spillovers of
real per capita income of the eight BEA regions that
is virtually identical to the one described by equations
1 to 5. However they deviate along one significant
dimension, using observed data rather than unobserved
components to decompose regional output into its
trend and cycle parts. In particular, they assume that
the common cyclical component of regional per capita
income is proportional to log U.S. per capita income,
which allows them to simply estimate the region-
specific cycle as the difference between log per capita
regional income and log U.S. per capita income. To
see the implications of this assumption, it is important
to note that log U.S. per capita income is well approx-
imated by a weighted sum of the log per capita region-
al income, where the weights are equal to the share
of regional per capita income in aggregate per capita
income sy

i
. In terms of my notation, CD assume:

.t i it
i

x sy y=∑

In the context of both models this implies:

( ).t i i t it
i

x sy x x= γ +∑

CD also assume that regional sensitivity to the com-
mon cyclical component is the same across regions
(that is, γ

i
  = 1 for all i), which according to my anal-

ysis cannot be rejected at typical levels of statistical

(expressed as a percentage deviation from the South-
east’s trend), against the NBER’s business cycle peaks
and troughs. I find, just as Watson did with U.S. ag-
gregate income, that the UC approach generates a
measure of the U.S. business cycle that has turning
points that closely match those of the NBER.

According to this figure, the U.S. economy has
been operating below its trend for most of the 1990s,
which on first glance is difficult to reconcile with the
fact that U.S. output grew strongly in the mid- to late
1990s. This counterintuitive finding is resolved by the
fact that the UC model attributes much of the strong
growth in income over the second half of the 1990s
to an increase in the trend growth rate of regional per
capita income (see table 3). One interpretation of these
results is that the U.S. experienced a permanent rather
than a temporary increase in its productivity growth
rate in the 1990s.

Table 2 reports the differences in regional sensi-
tivity to the U.S. business cycle captured by the γ

i
s in

equation 3. As discussed in box 1, γ
i
 for the Southeast

is normalized to 1. The point estimates of these coef-
ficients indicate that the Plains is the only region that
is more sensitive than the Southeast. The Great Lakes
has roughly the same sensitivity to the U.S. business
cycle as the Southeast, while all the other regions are
less sensitive than the Southeast. However, a formal
statistical test cannot reject the hypothesis that the γ

i

values are equal to one, suggesting that differences in
regional sensitivity to the U.S. business cycle are not
statistically significant.

Regional cycles
Figure 2, in contrast, highlights differences in

the cyclical fluctuations of U.S. regions by plotting
the region-specific cycles (expressed as a percentage

significance (see table 2). However, this restriction
implies that the share-weighted sum of the regional
cyclical components at all dates is zero:

( )t i t it t i it
i i

x sy x x x sy x= + = +∑ ∑ , or

0i it
i

sy x =∑ ,

which is clearly rejected by my and CD’s analyses,
since a failure to reject this assumption would mean
that the regional cyclical components were collinear,
thereby making it impossible to identify the spillover
matrix Φ in equation 5. In other words, CD’s model is
misspecified, because their simplifying assumption
that the common cycle is explained by observed fluc-
tuations in aggregate income is not consistent with the
rest of the model. My unobserved component model
overcomes this weakness, since the common and re-
gion-specific components are by design consistent
with all aspects of the model.

1See Carlino and DeFina (1998) for an extensive literature re-
view of empirical studies of regional business cycles. From a
methodological standpoint, Rissman (1999) is the most closely
related study to mine. Her unobserved components model of
regional fluctuations, which is estimated using regional employ-
ment data, differs significantly from the model of this article
along a number of dimensions that make direct comparison of
the estimated coefficients impossible. Despite these differences,
her analysis delivers similar conclusions to this article with
regard to the sources of innovation in regional activity. In par-
ticular, she finds, as I do, that fluctuations in regional activity
are largely driven by common sources of innovation.



35Federal Reserve Bank of Chicago

deviation from the region’s trend). Ac-
cording to this figure, the Southeast has
the weakest region-specific cycle, suggest-
ing that its cyclical behavior is largely ex-
plained by movements in the common
cyclical component. This reflects the fact
that the Southeast has an industrial struc-
ture that is virtually identical to that of
total U.S. income (see table 6 on page 40).
The remaining seven regions fall into
two distinct groups.

The first comprises regions, the South-
west, Rocky Mountains, and Plains, that
devote a disproportionate share of their
industrial activity to the production of
commodities. Region-specific cycles of
this group are dominated by fluctuations
in commodity prices that are to a large
extent exogenous to the region. For exam-
ple, the oil-intensive Southwest’s idiosyn-
cratic cycle clearly reflects the large oil
price movements of the 1970s and early
1980s, while the mineral-intensive Rocky
Mountains’ region-specific fluctuations
are influenced by movements in prices of
oil substitutes over this same period. The
idiosyncratic cycle of the Plains, in con-
trast, takes on the highly volatile pattern
of agricultural prices, including the boom
that occurred in 1973.

Region-specific cycles of the remain-
ing regions appear to be heavily influenced
by the creation and destruction of produc-
tive inputs in response to economic slow-
downs, changes in defense spending, and
technical innovation. Two examples clear-
ly stand out in figure 2, the Rust Belt era of
the Great Lakes and the Massachusetts
Economic Miracle episode of New England.

The Great Lakes’ Rust Belt era began
with a strong downturn in regional activity
in the late 1970s and ended with a regional
recovery in the early 1990s. There is a
widely held view that because it had de-
veloped much earlier than that of other
regions, manufacturing technology in the
Great Lakes was of an earlier vintage and
relatively less efficient. As a result, the Great
Lakes’ manufacturing sector experienced
a relatively larger decline in demand for its
products following the economic slowdown

TABLE 3

Trend parameters

δδδδδit

Region 1961–72 1973–95 1996–2001 σσσσσµµµµµi

New England 3.36 2.42 3.35 0.02
Mideast 3.21 2.16 2.84 0.01
Great Lakes 2.78 1.95 2.47 0.02
Plains 3.42 2.06 2.94 0.01
Southeast 4.46 2.43 2.27 0.00
Southwest 3.75 1.98 3.13 0.03
Rocky Mountains 2.80 2.03 3.49 0.01
Far West 3.01 1.65 2.98 0.05

Notes: δit is the drift term. σµi is the standard deviation of the innovation to
the regional trend.
Source: Author’s calculations using data from the BEA.

FIGURE 1

U.S. business cycle

percent deviation from trend

Note: Shaded areas indicate recessions as defined by the National Bureau
of Economic Research,
Source: Author’s calculations based on BEA data.
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TABLE 2

Sensitivity to common cycle

Coefficient Standard t-statistic
Region (γi) error  (γi = 1)

New England 0.93 0.16 –0.43
Mideast 0.90 0.11 –0.92
Great Lakes 0.99 0.16 –0.04
Plains 1.10 0.20 0.51
Southeast 1.00
Southwest 0.81 0.16 –1.18
Rocky Mountains 0.82 0.12 –1.47
Far West 0.80 0.15 –1.32

Note: γi indicates the parameter for regional sensitivity.
Source: Author’s calculations using data from the BEA.
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FIGURE 2

Region-specific cycles
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Source: Author’s calculations based on BEA data.
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caused by the oil price shocks, since a significant por-
tion of its market share was lost to regions with newer
plants. Ultimately, the downturn drove out a signifi-
cant share of the older plants in the region and paved
the way for plants with relatively more efficient tech-
nologies to gain market share during the recovery
from the recession of the early 1990s.

The Massachusetts Economic Miracle describes the
unexpected hi-tech boom of the late 1970s that more
than offset the decline in activity brought about by the
rapid erosion of New England’s manufacturing sector
that started in the early 1970s. The era came to an end
in the 1980s as New England’s hi-tech sector eventu-
ally lost its competitive advantage to other regions, such
as the Far West, and the end of the Cold War brought
about a dramatic decrease in demand for the region’s
defense-related products. The Far West’s regional cy-
cle shows that the region was affected by the same
cuts in defense spending that led to the downturn in
New England.

Finally, the Mideast’s idiosyncratic cycle also re-
flects the erosion of its industrial sector that started in the
early 1970s. In contrast, the Mideast’s region-specific
cycle improved because of a growing demand for finan-
cial services. That trend has persisted since the mid-
1980s, leaving the Northeast overall with the largest
regional share of activity in finance, insurance, and
real estate (FIRE) in table 6. (For a more detailed
discussion of these events, see Kouparitsas, 2002).

FIGURE 3

Response of regional income
to common shock

percent deviation from trend

number of quarters after shock

Southeast
Great Lakes
Plains
Mideast

New England
Far West
Rocky Mountains
Southwest

Common shocks versus spillovers
I assess the source of high comovement of U.S.

regional business cycles along two dimensions. First,
by studying the cyclical impulse response functions
generated by the vector autoregression (VAR) described
by equation 5, I assess whether cyclical shocks that
originate in one region have a significant effect on the
cycles of other regions and at what horizon. Second,
I determine the importance of common and region-
specific disturbances by decomposing the variance
of regional output at business cycle frequencies by
source of innovation.

Impulse response functions
Figure 3 describes in detail the way that the eight

BEA regions respond over time to a common cyclical
shock, normalized to 1 percent of Southeast per capita
income. The response of the Southeast is dictated by
the coefficients of the second-order autoregressive model
reported in table 4. The responses of the other regions
reflect differences in the regional sensitivity to com-
mon cyclical innovations as reported in table 2.

Figure 4 describe how the level of per capita in-
come (expressed as a percentage deviation from trend)
in all eight BEA regions responds over time to an in-
novation that originates in one of the regions. All shocks
are normalized to 1 percent of the per capita income
of the region in which the shock originates. For ease
of exposition I do not report confidence intervals in
this figure; instead I report in the text the few cases
where the impulse response functions are significant.5

According to my parameter estimates, the South-
east is the only case where shocks that originate in that
region have a statistically significant effect on the in-
come of other regions, namely New England and the
Mideast. Elsewhere, shocks that originate in one region
have a significant positive effect on their own per
capita income, but not on the income of other regions.
These regions can be divided into two groups accord-
ing to the persistence of the response to their region-
specific income shocks. New England, Great Lakes,

TABLE 4

Common cycle parameters

Coefficient Value

ρ1 1.09
ρ2 –0.18
σn 0.73

Notes: ρ1 and ρ2 are the autoregressive coefficients.
σn is the standard deviation of the innovation of the
common cycle.
Source: Author’s calculations using data from the BEA.
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FIGURE 4

Responses of regional income to region-specific shocks
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Southwest, and Far West have persistent responses to
their region-specific income shocks that are statisti-
cally significant five to seven quarters after the shock
date, while shocks originating in the Mideast, Plains,
and Rocky Mountains die out one to two quarters af-
ter the shock date.

Returning to the Southeast case in figure 4, note
that the response functions of the Southeast and New
England are statistically significant two quarters after
the shock, while the Mideast response is significant
for four quarters after the shock. According to this figure,
a 1 percent shock to the Southeast’s per capita income
causes per capita income of New England and the
Mideast to rise by 0.7 percent in the following quarter
and an additional 0.2 percent in the subsequent quar-
ter. The confidence interval surrounding these point
estimates ranges from 0.2 percent to 1.5 percent, which
implies that the spillovers from the Southeast are po-
tentially significant from an economic standpoint.
However, note that a typical Southeast shock from
1961:Q1 to 2000:Q4 had a standard deviation of
0.25 percent (see the column labeled σεi

 in table 5),
which suggests that spillovers from the Southeast to
the Northeast were probably not an economically
significant source of innovation over this period.6

Variance decomposition at business cycle
frequencies

Table 7 ties together the sources of, sizes of, and
responses to disturbances by decomposing the variance
of regional output at business cycle frequencies.7 Each
column breaks down the variance of regional income
by source of shock. For example, the first number in
the first column reveals that innovations to the com-
mon cyclical component account for a statistically sig-
nificant 56 percent business cycle fluctuations in New
England per capita income. The next number in that

column reveals that 5 percent of New England’s busi-
ness cycle variation is explained by shocks that origi-
nate in New England, although this is not statistically
different from zero at typical levels of significance.
Moving down the column uncovers the influence of
shocks that originate in other regions. In all cases, the
estimates are not statistically different from zero.
Overall, the results suggest that spillovers of shocks from
other regions are not a statistically significant source
of business cycle variation for the New England region.

The remaining columns tell a similar story for the
other seven U.S. regions, with a large (statistically
significant) share of their business cycle fluctuations
explained by the common component. The only other
statistically significant sources of business cycle varia-
tion in these regions are innovations that originate in
the region. For example, region-specific shocks ex-
plain almost 30 percent of the business cycle varia-
tion of per capita income of the Plains and Southwest,
which is not surprising given that they derive a dis-
proportionately large share of their income from com-
modities, whose price fluctuations are largely exogenous
to the U.S. On the other hand, region-specific shocks
account for an insignificant share of the business cycle
variation of per capita income in the Southeast, which
reflects the fact that their industrial composition is
virtually identical to that of aggregate U.S. income.

Conclusion

This article develops an empirical model to study
the sources of business cycle variation of the eight U.S.
BEA regions. Using unobserved component modeling
techniques, I identify both common and region-spe-
cific sources of innovation in U.S. regional per capita
income data. I show that spillovers of region-specific
shocks to other regions account for a statistically in-
significant share of the business cycle variation of

TABLE 5

Regional cycle parameters

ΦΦΦΦΦ
New Great Rocky

Region England Mideast Lakes Plains Southeast Southwest Mountains Far West σσσσσεεεεεi

New England 1.05 –0.07 0.10 0.18 0.68 0.14 0.18 0.09 0.22
Mideast 0.09 0.77 0.03 0.06 0.64 0.05 0.09 0.06 0.36
Great Lakes –0.15 0.00 0.85 0.00 0.39 –0.02 –0.16 –0.03 0.43
Plains –0.09 –0.10 –0.18 0.67 –0.61 –0.07 –0.48 –0.20 0.75
Southeast 0.04 0.05 –0.03 0.09 0.53 0.02 –0.06 –0.02 0.25
Southwest –0.13 –0.10 –0.12 –0.04 –0.35 0.88 –0.33 –0.02 0.46
Rocky Mountains –0.21 –0.06 –0.24 –0.12 –0.44 –0.06 0.37 –0.17 0.51
Far West 0.03 –0.19 –0.01 0.09 0.31 –0.01 –0.03 1.01 0.38

Notes: Φ indicates the 8 × 8 coefficient matrix. σεi is the standard deviation of the innovation to the region-specific cycle.
Source: Author’s calculations using data from the BEA.
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regional per capita income across the eight BEA re-
gions, while common shocks account for a large and
statistically significant share of the business cycle varia-
tion of regional income. Overall, these findings sug-
gest that the high degree of business cycle comovement
across U.S. regions reflects the fact that the regions are
influenced by common sources of disturbance, rather
than any significant spillover of shocks across regions.
Given the different industry mix and strong interre-
gional trade across U.S. regions, this is evidence against
theories of the business cycle that suggest it owes to
cyclical fluctuations being transmitted through trade
or production linkages.

TABLE 6

Percent of regional gross state product accounted for by major industry

Manufac- Transport. &
Region Agriculture Mining Construction turing public util.  Trade  FIRE Service Govt.

New England 1.03 0.08 4.62 23.81 7.04 16.11 18.73 17.88 10.68
Mideast 0.77 0.35 4.20 17.66 9.06 15.92 20.41 18.48 13.14
Great Lakes 1.94 0.86 3.69 28.55 9.07 16.16 14.40 14.76 10.58
Plains 5.90 1.53 4.05 20.13 10.43 17.20 14.02 14.49 12.25
Southeast 2.15 4.09 4.80 19.73 9.54 16.96 14.35 13.71 14.67
Southwest 1.77 12.98 5.36 13.14 9.72 16.39 14.71 13.57 12.36
Rocky Mountains 2.88 8.07 5.48 11.91 11.09 15.81 15.12 14.49 15.16
Far West 2.29 2.79 4.63 15.37 8.25 16.75 18.48 17.79 13.65

U.S. 2.04 3.26 4.49 19.38 9.13 16.46 16.54 15.81 12.89

Note: FIRE is finance, insurance, and real estate.
Source: Author’s calculations based on BEA data.

TABLE 7

Variance decomposition of U.S. regional income at business cycle frequencies

Percentage of total variation due to innovation

New Great Rocky
Source of innovation England Mideast Lakes Plains Southeast Southwest Mountains Far West

Common 56* 66* 76* 62* 94* 55* 71* 60*
New England 5 1 1 0 0 0 1 0
Mideast 2 14* 1 0 0 1 1 6
Great Lakes 1 1 16* 1 0 1 2 0
Plains 18 7 0 28* 1 2 11 7
Southeast 5 6 2 3 4 3 5 2
Southwest 5 2 1 0 0 29* 1 0
Rocky Mountains 8 3 3 5 0 7 8 2
Far West 0 0 0 1 0 2 1 21*
Total, all shocks 100 100 100 100 100 100 100 100

Note: Numbers in columns may not total due to rounding. * indicates significance at the 5 percent level.
Source: Author’s calculations using data from the BEA.

The findings of this article also have implications
for the choice of regional monetary policy. In partic-
ular, the techniques developed here can be used to
address the question of whether a set of regions (or coun-
tries) meets Mundell’s (1961) criteria for an optimum
currency area, by showing that the importance of com-
mon sources of innovation in the test region is the same
as that of a well-functioning currency union, such as
the U.S. For example, one could test whether the
European Monetary Union (EMU) was an optimum
currency area by repeating the analysis of this article
for the EMU countries, then testing to see if the com-
mon component across EMU countries is as important
a source of variation as it is for U.S. BEA regions.8
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NOTES

6I leave a careful examination of the other impulse responses to
the reader.

7I do this by way of a linear filter that allows me to map from the
covariance of the first-difference of regional per capita income to
the covariance of the business cycle components of per capita re-
gional income. The mapping is carried using standard spectral/
Fourier analysis tools. While, the precise form of the liner filter
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8See Kouparitsas (2001) for an extended discussion of regional
business cycles in the context of optimum currency area criteria.


