


Fundamental Economic Shocks and the Macroeconomy

Charles L. Evans and David A. Marshall�

Federal Reserve Bank of Chicago

April 10, 2007

Abstract

This paper asks how macroeconomic and �nancial variables respond to economic im-
pulses. We identify structural economic shocks using a strategy that utilizes measures
of economic shocks explicitly derived from economic models. We use this approach
to identify technology shocks, marginal-rate-of-substitution (labor supply) shocks, and
monetary policy shocks in the context of a Factor Augmented VAR similar to that
developed by Bernanke, Boivin, and Eliasz (2005). We then examine the Bayesian
posterior distribution for the responses of a large number of endogenous macroeco-
nomic and �nancial variables to these three shocks. These shocks account for the
preponderance of output, productivity and price �uctuations. We �nd that technology
shocks have a permanent impact on measures of economic activity, even though this
characteristic of technology shocks is not imposed as an identifying restriction. In con-
trast, the other shocks have a more transitory impact. Labor inputs have little initial
response to technology shocks; the response builds steadily over the �ve year period.
Consumption has a sluggish response to the technology shock, consistent with a model
of habit formation. Monetary policy has a small response to technology shocks, but
�leans against the wind� in response to the more cyclical labor supply shock. This
shock has the biggest impact on interest rates. Stock prices respond to all three shocks.
A number of other empirical implications of our approach are discussed.
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1. Introduction

This paper investigates how macroeconomic and �nancial variables respond to structural

economic shocks. We use a relatively new and unexplored identi�cation strategy that simul-

taneously identi�es multiple impulses. Our strategy is linked to economic theory without

being tied rigidly to a particular theoretical model. Furthermore, it minimizes dependence

on arbitrary choices, such as the choice of variables to be included in a vector autoregression

(VAR).

Current methods for identifying and estimating economic shocks have been well-studied

since Sims�s (1980) important contribution. See Stock and Watson (2001) and Christiano,

Eichenbaum, and Evans (1999) for recent surveys. A stalwart identi�cation method is to

place zero restrictions on a matrix of contemporaneous impact multipliers in a VAR. Al-

though much has been learned through these methods, such zero restrictions rarely conform

precisely to the equilibrium decision rules of any dynamic stochastic general equilibrium

model (DSGE), a point made by Lucas and Stokey (1987) in response to Litterman and

Weiss (1985). Long-run restrictions are more likely to be compatible with a set of DSGE

models, although subtle changes in model trending details can make these implications frag-

ile, as King and Watson (1997) have discussed relative to Lucas�s theory of the natural rate

(1972). Furthermore, economic shocks are often identi�ed one at a time, ignoring potential

correlations across shocks.

We propose an identi�cation strategy that is more closely motivated by the insights

of economic theory without imposing all the restrictions of a particular economic model.

Furthermore, we seek to identify multiple shocks simultaneously, imposing orthogonality

across these shocks.1 Our approach is to use measures of fundamental shocks that are

derived from economic models developed in antecedent literature. We call these�model-

based measures�. In particular, we measure technology shocks as Solow residuals and

monetary policy shocks from a Taylor rule speci�cation. In addition, we construct a measure

of shocks to the marginal rate of substitution (MRS) between consumption and leisure using

a procedure similar to Hall (1997). As Hall notes, these shocks can be interpreted as labor

supply shocks.

These measures are potentially noisy. Speci�cally, since they are mutually correlated

it is problematic for our purposes to treat these as clean measures of the true underlying

structural impulses. Instead, we follow the structural VAR (SVAR) literature in assuming

that all structural shocks are mutually orthogonal. We use our model-based shock measures

1Important recent papers in the literature that identify multiple structural shocks include Gali (1992),
Leeper, Sims, and Zha (1996), and Del Negro, Shorfheide, Smets, and Wouters (2005).
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to derive the linear combination of VAR innovations that best replicates each structural

impulse. This allows us to compute identi�ed impulse response functions, and relate the

evidence to important macroeconomic questions and alternative models.

In using shock measures derived from economic models, our identi�cation strategy ex-

ploits the restrictions implied by economic theory more directly than the typical identifying

strategies used in VAR analysis. However, we do not impose all of the restrictions implied

by these economic models. (For example, we leave the dynamics unrestricted.) In this

sense, our approach is midway between the standard SVAR approach and a fully-articulated

DSGE model. Our approach does require strong assumptions, and we do not assert that it

pointwise dominates other approaches. Nonetheless, it is a plausible approach that di¤ers

from others currently in use, so it could o¤er a di¤erent perspective on economic issues of

interest.2

Evans and Marshall (2003) used a variant of this method to examine a variety of term

structure responses. This paper advances that work along a number of dimensions. First,

we use an alternative, and arguably more robust, set of identifying restrictions. Second,

rather than restricting our information set to a small number of macroeconomic variables, we

incorporate a much larger data set by using the Factor Augmented VAR (FAVAR) approach

of Bernanke, Boivin, and Eliasz (2005). This approach allows us to incorporate enough

information in the VAR residuals to span the true shocks without exhausting our degrees

of freedom. In addition, the approach limits the e¤ect of arbitrary choices regarding which

variables to include in the SVAR. Finally, we move from Evans and Marshall�s (2003) focus

on interest rate responses to examine the responses of a wide range of macroeconomic and

�nancial data. This enables us to explore a number of substantive questions that clearly

can bene�t from a multi-shock context.

Speci�c questions we address include the following:

� Can a small number of shocks account for most output �uctuation?

� How realistic is the traditional focus on technology shocks as drivers of business cycle
variation in output, investment, and labor inputs? (Kydland and Prescott, 1982, and

subsequent RBC literature)

� Is it reasonable to associate technology shocks with permanent shocks to output (Blan-
chard and Quah, 1989; Gali, 1992) or to labor productivity (Gali, 1999; Christiano,

2In linking identi�cation to the insights of economic theory without tying the identi�cation too tightly to
any single economic model, our approach is related to Del Negro, Shorfheide, Smets, and Wouters (2005).
They use a Bayesian approach to identify a VAR in which the prior distribution is derived from a particular
dynamic general equilibrium model. The strength of the prior determines how tightly the identi�cation is
linked to the underlying model.
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Eichenbaum, and Vigfuson, 2003), with other shocks (such as �aggregate demand�

shocks) having only transient e¤ects on these variables?

� What drives procyclical labor productivity: technology shocks or demand shocks (�la-
bor hoarding�)?

� Are technology shocks contractionary for labor hours and employment (as argued by
Basu, Fernald, and Kimball, 2004, and Gali, 1999), or do these measures of labor

inputs rise contemporaneously with an expansionary technology shock (as argued by

Christiano, Eichenbaum, and Vigfuson, 2003)?

� What is the role of monetary policy in aggregate �uctuations? Is monetary policy

driven largely by responses to economic conditions, or is there an important role for

exogenous monetary policy shocks? Does monetary policy respond di¤erently to tech-

nology (�supply�) shocks than to labor supply (�demand�) shocks? Are monetary

policy shocks an important source of business cycle variation (as implied by the esti-

mates of Strongin, 1995) or are they rather minor contributors (as discussed by Sims

and Zha, 1998, and Christiano, Eichenbaum, and Evans, 1999)?

� What drives �uctuations in the price level and in�ation? In particular, what is the

role of real side impulses (such as Phillips curve e¤ects or shocks to marginal costs)?

� Are movements in asset prices driven to a signi�cant extent by macroeconomic im-
pulses? Or are asset prices primarily driven by dynamics internal to the �nancial

markets that are largely orthogonal to the macroeconomy? If macro impulses have a

signi�cant role in �nancial markets, which speci�c impulses are most important?

Our results shed light on these questions. We �nd that the three shocks we identify

account for around 72% of the short-run variation in output and over 84% of the variation

in output at longer horizons. In addition, these shocks account for more than 50% of the

long-run variation in in�ation, although they account for only about 20% of in�ation vari-

ation at the 3-month horizon. The MRS shock is an important driver of short-run output

variation, but the e¤ect of the technology shock is much longer-lived. Thus, our evidence

favors the permanent vs. transitory distinction between technology shocks and other shocks,

even though we do not impose this distinction as an identifying restriction. We �nd that

the procyclical response of labor productivity is due almost entirely to procyclical technol-

ogy shocks. Labor input measures display almost no contemporary response to technology

shocks, but rise gradually in the years following the shock. Similarly, wages have only a
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small initial response to technology shocks, even though the technology shocks boost labor�s

marginal product. Wages then rise monotonically over the next four years.

Monetary policy shocks have a very small impact on real economic activity. While these

shocks do account for a good deal of the short-run variation in the fed funds rate, their impact

is extremely short-lived. Longer-lived policy actions are mostly endogenous responses of the

Fed to other shocks. In particular, the Fed displays a rather small response to technology

shocks, but strongly �leans against the wind�in response to the more cyclical MRS shock.

Finally, while most variation in stock prices is accounted for by sources other than our three

identi�ed shocks, there are a number of intriguing patterns that point to linkages between

�nancial markets and the macroeconomy. In particular: the MRS shock accounts for most

variation in Treasury yields, and all three shocks have signi�cant impacts on stock prices.

The paper is organized as follows. Section 2 describes the basic framework we use.

Section 3 discusses our Bayesian approach to statistical inference. Section 4 describes the

construction of our three model-based shock measures and discusses our FAVAR speci�cation.

Section 5 describes our empirical results, and section 6 concludes.

2. Identifying a Structural VAR using Model-Based Shock Mea-
sures

2.1. Basic Framework

We study the responses of macroeconomic and �nancial variables to a set ofm fundamental

shocks. Let "t denote the m� 1 vector of shocks we wish to identify. It is assumed that "t
is serially uncorrelated, with E"t = 0 and

E"t"
0
t = I (2.1)

A key assumption in our approach is that the econometrician observes a m� 1 vector �t of
model-based measures of these processes. For example, if one element of the "t vector is

an exogenous technology shock, the corresponding observable model-based measure might

be a data series consisting of Solow residuals. Or, if another element of "t were a monetary

policy shock, the corresponding model-based measure might be the residual from an empirical

Taylor rule. These model-based measures may be serially correlated and contaminated with

measurement error. Furthermore, they may not be clean, in the sense that a given element

of �t may be a function of all of the "t�s. For example, the measured Solow residual series

may be contaminated with monetary policy shocks, as argued by Evans (1992). To capture

these possibilities, we assume that the �t vector of model-based shocks is related to the true,
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unobserved shock vector process "t by

�t = D0"t +D1"t�1 + :::+DK"t�K + wt (2.2)

where Dk; k = 0; :::; K; are m � m matrices of parameters and wt is an m � 1 vector of
random measurement errors with covariance matrix �w for which

E"twt�j = 0;8j = 0;�1;�2; ::: (2.3)

We assume that D0 is nonsingular. If D0 is diagonal, then the innovation to a given model-

based shock �i;t is a function only of its own fundamental shock "i;t (plus the measurement

error wt). However, if the ith row of D0 is non-diagonal, then the innovation to the shock

�i;t is a function of two or more elements of "t.

In addition to the �t vector, the econometrician also observes an n � 1 vector Yt of
economic variables, where n � m. The law of motion for Yt has the following structural

representation:

AYt = bB(L)Yt�1 + � "t

t

�
(2.4)

where A is an n�n nonsingular matrix of parameters, bB(L) is an n�n matrix of polynomials
in the lag operator, and 
t is an (n�m) � 1 vector of additional i.i.d. structural shocks
orthogonal to "t. In particular,

E

��
"t

t

��
"0t 


00
t

��
= I (2.5)

In the general case, representation (2.4) could be the reduced form of some linearized or log-

linearized DSGE model. Alternatively, it could be an atheoretic forecasting model. From

the standpoint of our investigation, 
t are �nuisance shocks�that we do not seek to identify.

Equation (2.4) can be written as a VAR:

Yt = B(L)Yt�1 + ut (2.6)

where ut is an n� 1 vector of VAR residuals with covariance matrix �u,

B (L) = A�1 bB(L)
and �

"t

t

�
= Aut (2.7)

It is convenient to partition the rows of A as follows:

A =

�
A"
A


�
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where the m� n matrix A" consists of the �rst m rows of A. Notice that

"t = A"ut: (2.8)

According to equation (2.8), we can recover the structural shocks "t from the VAR residuals

if we can identify the mn elements of the matrix A". To that end, note that we can combine

equations (2.2) and (2.8) to get

�t = C0ut + C1ut�1 + :::+ CKut�K + wt (2.9)

where the n�m matrices Ck; k = 0; :::; K; are de�ned by

Ck � DkA"; k = 1; :::; K: (2.10)

Equation (2.10) with k = 0 means that matrix A" is identi�ed if we can identify the matrices

C0 and D0. In the next subsection we turn to this task.

2.2. Identi�cation of A"

First, note that equations (2.1) and (2.8) imply that

I = A"�uA
0
": (2.11)

Equations (2.10) and (2.11) in turn imply

D0D
0
0 = C0�uC

0
0 (2.12)

which says that D0 is a decomposition of C0�uC 00. To identify D0 from data, we �rst

impose restrictions su¢ cient to ensure that C0�uC 00 can be estimated from the data. We

then impose additional assumptions to ensure that the decomposition in equation (2.12) is

unique.

Let us turn �rst to the estimation of C0�uC 00. Matrix �u can be estimated in the usual

way from the variance-covariance matrix of the VAR residuals. Estimation of C0 requires an

additional assumption:

E
twt = 0 (2.13)

Together, equations (2.3), (2.7), and (2.13) ensure that Eutw0t = 0, so we can estimate

Ck; k = 0; :::; K by regressing �t on ut.
3

3OLS estimation of equation (2.9) is consistent, but not e¢ cient. However, using OLS estimation
simpli�es computation of the Bayesian posterior distribution of the model parameters, which we use for
inference. See the appendix for details.
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While equation (2.13) is a strong restriction, some form of strong exclusion restrictions

must be imposed in virtually any procedure that seeks to identify a small number of shocks

using a large data set. For example, index model approaches, such as Sargent and Sims

(1977) or Stock and Watson (1989), are typically implemented by strongly restricting the

covariances among fundamental shocks and measurement disturbances.

Given the estimates of C0 and �u, equation (2.12) represents m(m+1)=2 restrictions on

the m2 elements of D0. We can identify D0 if we impose another m(m�1)=2 restrictions on
D0. It is useful to formalize these restrictions by specifying m (m� 1) =2 free parameters, ~d,
along with a mapping d : Rm

2 ! Rm(m�1)=2 such that, given
n
~d; C0;�u

o
; D0 is the solution

to the following system of n2 equations:

d (D0) = ~d (2.14)

D0D
0
0 = C0�uC

0
0

For example, one possible set of identifying restrictions could be to require that D0 be lower-

triangular.4 These restrictions would be represented in system (2.14) by having the mapping

d (�) pick out the m (m� 1) =2 upper triangular elements of D0, and then setting ~d equal to

a vector of zeros. (In section 4.2, below, we discuss the speci�cation of d (�) and ~d that we
actually use in the empirical part of this paper.) Having estimated C0 and identi�ed D0, we

can then identify A" using equation (2.10), which implies that A" = D�1
0 C0. The structural

shock vector "t can then be identi�ed using equation (2.8).

To compute impulse responses of Yt to "t, rewrite the reduced form (2.6) as

Yt = B(L)Yt�1 + A
�1
�
"t

t

�
: (2.15)

Computing impulse responses to "t requires that we know the �rst m columns of A�1, which

we can denote �[A�1]"�. This submatrix can be computed from knowledge of A" using the

relation �
A�1

�
"
= �uA

0
" (2.16)

which follows directly from equation (2.11).

Once [A�1]" is identi�ed, we can compute the response of any variable zt, even one not

included in the vector Yt. To do so, we augment system (2.6) and (2.7) with another equation

in zt: �
Yt
zt

�
=

�
B(L) 0
� (L) � (L)

� �
Yt�1
zt�1

�
+

�
A�1 0
F G

�24 � "t

t

�
�t

35 : (2.17)

4Evans and Marshall (2003) pursue this strategy after rejecting the testable hypothesis that D is diagonal.
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In equation (2.17), � (L) and � (L) are respectively 1�n and 1�1 vector polynomials in the
lag operator, F and G are 1�n and 1�1 parameter vectors, and �t is a serially uncorrelated
disturbance that is also uncorrelated with "t and 
t. The zero restrictions in equation (2.17)

ensure that, given knowledge of Yt�1 and its lags along with "t and 
t, neither �t, zt, nor its

lags are needed to determine Yt.

2.3. Expanding the Information Set

As with any structural VAR, a key requirement of our approach is that the true fundamental

shocks "t are spanned by the VAR residuals ut. To ensure that this is indeed the case, one

would want to incorporate a large number of data series in the VAR. However, to do so

directly would quickly lead to degrees-of-freedom problems. As discussed in Bernanke,

Boivin, and Eliasz (2005), VARs typically used in the literature incorporate no more than 6

to 8 variables.5

To address this problem, we follow Bernanke Boivin, and Eliasz (2005) and implement

equation (2.4) as a Factor Augmented Vector Autoregression (FAVAR). Speci�cally, we use

a set Xt of p observable data series (where p is large), and we assume that Xt is a function

of n factors bYt, where n is much smaller than p:
Xt = �bYt + et: (2.18)

We assume that et displays weak cross-correlation in the sense of Stock and Watson (1998).

As in Stock and Watson (1998, 2002) and Bernanke Boivin, and Eliasz (2005), we estimatebYt as the �rst n principal components of Xt. We then use bYt in equation (2.4) in place of
Yt.

Note that this is a two-step procedure: �rst we estimate equation (2.18) to generate bYt,
and then we estimate equation (2.4) and impose the strategy of section 2.2 to identify the

shocks "t. In using this two-step approach we follow Stock and Watson (1998, 2002). In

principle, one could combine these two steps. However, Bernanke Boivin, and Eliasz (2005)

argue that the gains from doing so appear to be rather small, while the computational burden

increases substantially.6

5These degrees-of-freedom problems can be mitigated to some extent by imposing a Bayesian prior. For
example, Leeper, Sims and Zha (1996) use this approach to estimate a VAR with 18 variables.

6There is a technical issue in using bYt in place of Yt in equation (2.17): if zt is one of the elements of the
information vector Xt, then it is not clear that the zero restrictions in equation (2.17) will hold. In their
treatment of dynamic factor models, Stock and Watson (2005) test a variety of restrictions of this form.
While they often reject the zero restrictions in a statistical sense, they �nd that the deviations from the
zero restrictions are of no economic signi�cance in virtually all cases. We will continue to impose the zero
restrictions in equation (2.17) as a maintained assumption
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3. Bayesian Inference

Given the bYt series estimated in the �rst step, the remaining parameters to be determined in
the second step are

n
B;�u; C;�w; ~d

o
, where B contains the coe¢ cients of the lag polynomial

B (L) ; C � fCkgKk=0; and ~d is the vector of free parameters that identi�es the elements of
matrixD0 in equation (2.14). A joint prior distribution can be imposed on these parameters,

and the posterior distribution can then be computed. In doing so, we are explicitly treating

the generated series bYt as known data. 7
Note that the parameter vector ~d di¤ers from the other parameters. Since m (m� 1) =2

restrictions have been imposed on the D0 matrix, the model is exactly identi�ed. Therefore,

the parameters fB;�u; C;�wg exhaust the information in the data, so any speci�cation of
the m (m� 1) =2 elements of ~d is equally likely. Thus the prior on ~d equals the posterior,

so this prior acts as a way of specifying soft restrictions on the D0 matrix.

The appendix contains a detailed description of how one computes the posterior distri-

bution for fB;�u; C;�wg given an uninformative prior on these four parameter elements.
This paper only explores the implications of this uninformative prior. It is straightforward

to amend this procedure for an informative prior.

4. Empirical Implementation

4.1. Model-Based Shock Measures

In our empirical application of the identifying strategy of section 2, we seek to identify three

shocks: a technology shock, a marginal-rate-of-substitution shock that can be interpreted

as a labor supply shock, and a monetary policy shock. To implement the model-based

identi�cation strategy, we need model-based measures of these three shocks. In this section

we describe how we construct these measures.

4.1.1. Technology Shocks

Since Prescott (1986), the driving process for aggregate technology shocks in real business

cycle models has been calibrated to empirical measures of Solow residuals. A large literature,

including Prescott (1986), has noted that a portion of the �uctuations in standard Solow

7Note, in addition, we are treating the model-based measures �t as known, even though, in some cases,
these measures may involve estimated parameters.
An alternative procedure would be to impose a prior on parameter matrices f�;��g in equation (2.18),

and then compute the joint posterior over all the parameters. However, these matrices are extremely large.
In our empirical application, � is 190 � 6 and �� , the covariance matrix of �t, is 190 � 190. As a result,
this alternative procedure borders on the infeasible.
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residual measures is endogenous, responding to macro shocks.8 Basu, Fernald, and Shapiro

(2001b) provide a recent estimate of technology innovations that attempts to reduce these in-

�uences. Ignoring industry composition e¤ects, their aggregate analysis speci�es production

as follows:

Yt = zt gtF (vtKt; etNt)

ln zt = �+ ln zt�1 + �Tech;t (4.1)

where Y , z, v,K; e, andN are the levels of output, technology, capital utilization rate, capital

stock, labor e¤ort, and labor hours.9 The object gt represents costs of adjusting employment

and the capital stock. It is an explicit function of observable data, and is calibrated from

econometric estimates in the literature (see Shapiro (1986) and Basu, Fernald, and Shapiro

(2001a,b)). F is a production function that is homogeneous of degree � � 1, allowing for the
possibility of increasing returns. Basu, Fernald, and Shapiro (2001a,b)) specify an economic

environment where the unobserved variables v and e can be measured as proportional to

the workweek of labor and capital. Assuming � = 1 � constant-returns-to-scale � Basu,

Fernald, and Shapiro (2001b) use time-varying cost shares to compute a quarterly, aggregate

measure of the technology innovation, �Tech;t.

We use Basu, Fernald, and Shapiro�s (2001b) quarterly, aggregate measure of technology

for our model-based empirical measure �Tech of the aggregate technology shock.
10 Although

this quarterly measure includes controls for many latent, endogenous features, data limi-

tations prevent controlling for industry compositional e¤ects. This potentially introduces

measurement error into this series. The data begin in 1965:II and end in 2000:IV.

4.1.2. Marginal-Rate-Of-Substitution Shocks

A shock to the marginal rate of substitution (MRS) between consumption and leisure can

potentially shift aggregate demand for goods and services. Hall (1997), Shapiro and Watson

(1988), and Baxter and King (1990) �nd substantial business cycle e¤ects from empirical

measures of intratemporal marginal rates of substitution between consumption and leisure.

To generate a model-based empirical measure of an MRS shock, we generalize Hall�s (1997)

procedure to allow for time-nonseparable preferences.11 Consider a representative consumer

with the following utility speci�cation:

U(Ct; Nt) = �t

�
Ct � bCt�1

�1�

1� 
 � N

1+�
t

1 + �

8For example, see Burnside, Eichenbaum and Rebelo (1993) and Braun and Evans (1998).
9Throughout this paper, we omit the time subscript t if no ambiguity is implied.
10We thank John Fernald for providing us with this time series on technology shocks.
11Holland and Scott (1998) study a similar MRS shock for the United Kingdom economy.
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ln �t = �(L) ln �t�1 + �MRS;t (4.2)

where C is the consumption by the representative agent, C represents the per-capita aggre-

gate consumption level, N is labor hours, � is a serially correlated preference shifter, and

�MRS is a serially independent shock. The �rst-order conditions for consumption and labor

hours lead to the following intratemporal Euler equation (or MRS relationship)

�t
�
Ct � bCt�1

��

N�
t

=
1

Wt (1� � t)
(4.3)

where Wt is the real wage and � t is the labor tax rate. Taking logs, we obtain

ln �t = � ln Nt � lnWt � ln (1� � t) + 
ln
�
Ct � bCt�1

�
: (4.4)

In equilibrium, the per-capita aggregate consumption equals the consumption levels of the

representative agent, so C = C:

We use equation (4.4) to obtain an empirical measure of ln �t. We then compute our

model-based empirical measure �MRS;t of the MRS shock as the residual from the OLS

estimate of equation (4:2) : Our data are quarterly and extend from 1964:I to 2000:IV. Con-

sumption is measured by per capita nondurables and services expenditures in chain-weighted

1996 dollars. Labor hours correspond to hours worked in the business sector per capita. The

real wage corresponds to nominal compensation per labor hour worked in the business sector

de�ated by the personal consumption expenditure chain price index. The hours and com-

pensation data are reported in the BLS productivity release. Finally, our measure of the

labor tax rate is a quarterly interpolation of the annual labor tax series used in Mulligan

(2002).12 We calibrate the utility function parameters as follows. First, to ensure balanced

growth we set 
 = 1; corresponding to log utility for consumption services. Second, we use

Hall�s (1997) value for � = 1:7, corresponding to a compensated elasticity of labor supply

of 0.6. Finally, we set the habit persistence parameter b = 0:73 as estimated by Boldrin,

Christiano and Fisher (2001).

We measure �MRS as the residual in equation (4.2). We estimate a sixth-order polynomial

for �(L). In addition, theMRS measure � exhibits noticeable low frequency variation, so we

also include a linear time trend in the regression to account for demographic factors that are

beyond the scope of this analysis. If the theoretical variables and data series coincide and

our estimate of �(L) is correct, then our measure of �MRS would equal "MRS: If, however,

our measures of consumption, labor hours, and the spot real wage di¤er from the theory,

then �MRS would represent a noisy measure of "MRS. In order to allow for serially-correlated

12We would like to thank Casey Mulligan for providing us with his labor tax rate data.

11



measurement errors in �t, we use an instrumental variables estimator to estimate �(L).
13

If our model-based measure �MRS were a clean measure of the true structural shock

"MRS, it should be causally prior to any endogenous variables. While we do not use the

model-based measure directly as the structural shock, clearly causal priority is a desirable

characteristic for our �MRS measure. Gali, Gertler, and Lopez-Salido (2001) speci�cally

raise this issue with regard to a series similar to our �MRS measure, questioning whether

it was Granger-causally prior to output, the short-term interest rate, and the term spread.

When we replicate the Gali, Gertler, and Lopez-Salido (2001) causality tests for our �MRS

measure, we �nd no evidence that �MRS is Granger-caused by the variables they consider

(detrended GDP, the federal funds rate, and the term spread). Details of these causality

tests are displayed in Table 1.

Derived this way, our MRS shock has a clear interpretation as a preference shifter. How-

ever, macroeconomic researchers have o¤ered several alternative interpretations for the ran-

dom marginal rate of substitution shifter �t in equation (4:3).
14 First, the home production

literature due to Benhabib, Rogerson, and Wright (1991), Greenwood and Hercowitz (1991),

and Chang and Shorfheide (2003), among others, suggests that �t could be a productiv-

ity shock to the production of home goods. Second, inertial wage and price contracts will

distort the simple intratemporal Euler equation as it is speci�ed in (4:3) : In particular, in

the Calvo pricing environments considered by Christiano, Eichenbaum, and Evans (2005)

and Galí, Gertler, Lopez-Salido (2001), alternative versions of (4:3) hold. Third, Mulligan

(2002) interprets �t as re�ecting labor market distortions, such as changes in tax rates or

union bargaining power. To the extent that these alternative explanations have di¤erent

theoretical implications for impulse response functions, an empirical analysis of our MRS

shock can help shed light on which explanation seems to be consistent with the aggregate

data.

4.1.3. Monetary Policy Shocks

Unlike the previous two shock measures, there is no well-developed theory that derives

monetary policy shocks from an optimizing framework. However, many theoretical models

assume that the monetary authority sets monetary policy via some variant of a Taylor

(1993) rule. That is, the short-term interest rate is set as an increasing function of both

in�ation and the output gap (a measure of the shortfall in economic activity compared to its

13Our shock identi�cation strategy assumes that the measurement errors in our model-based shocks are
independent of the VAR innovations. Consequently, we use real GDP, the GDP price index, and commodity
prices as instruments.
14As Hall (1997) pointed out, the greatest amount of evidence against Eichenbaum, Hansen, and Singleton�s

(1988) preference speci�cations surrounded the intratemporal Euler equation for consumption and leisure.
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potential). In some speci�cations, lags of the short-term interest rate are included in order

to capture the desire of the monetary authority to smooth changes in the interest rate.15

In these models, the natural speci�cation for monetary policy shocks is the disturbance to

the short-term interest rate that is orthogonal to these systematic components of the Taylor

Rule. We adopt this approach for our model-based measure of the monetary policy shock

�MP .

The particular approach we use is to specify a backward-looking Taylor rule, so the

interest rate is a function of current and lagged in�ation, as opposed to expected future

in�ation. In addition, the output gap is not observed, so some empirical proxy for this gap

variable must be used. In the spirit of taking our model-based measures from approaches

proposed in antecedent literature, we use a gap measure derived from work by Staiger,

Stock, and Watson (1997). In particular, we measure the gap as the di¤erence between

the current unemployment rate and the Staiger-Stock-Watson measure of the natural rate of

unemployment.16 In addition, we allow the coe¢ cients on in�ation and on the gap variable

to be regime dependent. Speci�cally, we allow for three regimes: before 1979:Q4, 1979:Q4

- 1982:Q4, and after 1982:Q4. The speci�c model is as follows:

rfft =
4X
j=1

�jrfft�j +
3X
k=1

[�k (Ikugapt) + �k (Ik�t)] + �MP;t (4.5)

where rfft denotes the fed funds rate, ugapt denotes the gap between current unemployment

and the Staiger-Stock-Watson measure of the natural unemployment rate,17 �t denotes the

log change in the GDP de�ator, and Ik is an indicator variable for the three regimes. The

data run from 1959:I through 2000:IV.

4.1.4. Correlations among model-based measures

Table 2 displays the correlations among our three model-based measures f�Tech; �MRS; �MPg.
As can be seen, the correlations are small but non-zero. As a result, we are reluctant to use

them as clean measures of the true structural shocks "t. Instead, we use them as inputs into

the identi�cation strategy described above in section 2.18 In section 5.8, below, we consider

some interpretive problems that would arise if we were to treat the model-based measures

as error-free measures of the structural shocks.
15 A time-varying in�ation target is also sometimes included. See, e.g., Kozicki and Tinsley (2001).
16We have experimented with several other speci�cations for the Taylor Rule, including measuring the gap

as detrended output, and using real-time data. The results are very close to those in our baseline speci�ca-
tion, except the error bands are somewhat tighter when we use the Staiger-Stock-Watson gap measure.
17We obtained data on ugapt from Mark Watson�s website.
18Boivin and Giannoni (2006) develop an alternative approach to handling potential mismeasurement of

structural shocks within a fully speci�ed DSGE model.
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4.2. Identifying restrictions

To identify the model, we must imposem (m� 1) =2 restrictions on matrixD0. Sincem = 3,

we need 3 restrictions. To motivate the restrictions we impose, note that our procedure is

only likely to be informative if the model-based measures contain a good deal of information

about the shocks they seek to identify. Speci�cally, a shock measure �i is informative about

"i only if most of the variation in �i, after controlling for measurement error wt, is accounted

for by "i: Equations (2.2) and (2.1) imply that

vart�1
�
�i;t � wi;t

�
=

mX
j=1

D2
0;ij (4.6)

where D0;ij = (i; j)
th element of matrix D. We will refer to the left-hand side of equation

(4.6) as the �non-noise variance�of �i;t. To ensure that most of this variance is driven by

the own shock "i, we need the fraction of this variance associated with the diagonal element

D0;ii to be fairly large. Our restrictions on D0 are motivated by this consideration. In

particular, we restrict the three diagonal elements such that

D0;
2
iiPm

j=1D0;2ij
= ~di; i = 1; 2; 3 (4.7)

where ~di is drawn from a uniform distribution with support [:80; :95]: This ensures that

between 80% and 95% of the non-noise variance of each model-based measure �i is due to

its own shock "i.19

4.3. FAVAR Speci�cation

In order to ensure that our information set Xt in equation (2.18) is big enough to span the

space of the shocks "t we seek to identify, we use 190 data series in Xt. Thirty-six of these

are quarterly data, while 154 are monthly series that have been quarterly averaged. The data

sample is from 1967:Q2 through 2000:Q4. The data series used are listed in Table 1A in the

Data Appendix, along with the transformations used to induce stationarity.20 We set n = 6,

and we compute bYt in equation (2.18) as the �rst six principal components of Xt.21 Four

19Restrictions (2.12) and (4.7) constitute a system of nine equations in the nine unknown elements of D0.
However, these equations are nonlinear, so there is no guarantee that a solution to this system exists. In
practice, for the estimated matrix C0�uC 00 (or for the draws of this matrix from its postierior distribution),
we �nd no di¢ culties solving the system as long as ~di < 0:95. When ~di is very near unity for i = 1; 2; 3,
however, we �nd that no solution exists. Perhaps this is not surprising, since ~di = 1, 8i, cannot be a solution
to the system if C0�uC 00 is non-diagonal.
20We control for outliers by replacing any data point more than six times the interquartile range (IQR)

above the series median with median+6� IQR (and analogously for data points more than 6� IQR below
the IQR). All transformed series are then de-meaned and standardized.
21When we increase the number of principal components to eight, the results are almost identical to those

when six principal components are used. In no case are the substantive implications changed.
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quarterly lags of each principal component are used in the VAR, equation (2.4). We then use

equation (2.17) (substituting bYt for Yt) to compute the responses to f"TECH ; "MRS; "MPg of
a number macroeconomic and �nancial market variables, using the approach of Zha (1999).

The model-based measures only provide useful information for identifying A if they are

correlated with the VAR residuals ut. Table 3 provides evidence on these correlations in the

data we use. It displays the R2s for the OLS regressions in system (2.9) using our measures

of �t. These R2s show that over 50% of the variation in each model-based measure is

accounted for by the VAR residuals. In addition, the F -statistics testing the hypotheses

that the VAR residuals are uninformative for the �t measures reject these hypotheses at any

desired signi�cance level. Under our identifying restrictions, these statistics imply that our

measures are potentially informative for the true structural shock vector "t.

5. Empirical Results

The data we use are described in the Data Appendix. Our empirical results are displayed in

Table 4 and Figures 1 - 7. For each endogenous variable listed, Table 4 gives the median

fraction of 3-, 12-, and 60-month ahead forecast variance accounted for by the three identi�ed

shocks, f"MP ; "MRS; "TECHg, according to the posterior distribution. The fourth line in each
panel gives the median fraction of each forecast variance accounted for by the three shocks

collectively. The two numbers in parentheses following each median statistic give the 95%

and 5% quantiles of the posterior distribution for each forecast variance fraction. Figures

1 - 7 display the median impulse responses of selected endogenous variables. The upper and

lower dashed lines give the 95% and 5% quantiles of the response distribution, respectively.

All of these statistics were computed using 500 draws from the posterior distribution of the

model�s parameters.

5.1. Long Run Behavior of the Economy

Figure 1 displays the responses of GDP and labor productivity to our three identi�ed shocks

over an 80 quarter horizon. There is clear evidence that technology shocks induce permanent

shifts in the level of GDP and productivity. In contrast, the responses to the MRS shock

and the monetary policy shock appear to display mean reversion, with little evidence of a

permanent level shift for GDP or productivity.

An alternative way of describing the posterior distribution of these long run responses is

in Table 5, which gives the probability that the 80-quarter ahead response exceeds zero. For

the technology shock, we estimate these probabilities at 100% and 99% for GDP and labor

productivity respectively. In contrast, the probability that the 80-quarter ahead responses
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to "MRS exceeds zero is only 61% for GDP and 19% for productivity; the corresponding

probabilities for "MP are 53% for GDP and 73% for productivity. These results support the

identifying assumption, used by Gali (1992, 1999) and Christiano, Eichenbaum, and Vigfuson

(2003), that only technology shocks induce permanent shifts in output and/or productivity.

5.2. Cyclical Behavior of GDP and its Components

According to Table 4, about 72% of the variance of the 3-month ahead forecast error of GDP

is explained by our three identi�ed shocks. This fraction rises to 84% for the 60-month

ahead forecast error. Recall that there are a total of six VAR innovations, so there are three

remaining sources of variation (the 
t vector) in system (2.4). Thus, our identi�ed shocks do

a reasonable job of accounting for output movements. The technology shock and the MRS

shock are about equally important at the twelve-month horizon. However, at the 5-year

horizon, the technology shock is the predominant driver of output variation. In contrast, the

monetary policy shock accounts for a very small fraction of output variation at all horizons.

This result supports results in Sims and Zha (1998) and Christiano, Eichenbaum, and Evans

(1999) that monetary policy shocks account for, at best, only a small fraction of output

�uctuation.

These patterns can also be seen in the GDP responses displayed in Figure 2, which

displays impulse responses over a 20 quarter horizon. Note that the initial responses of GDP

to "TECH and "MRS are similar in magnitude. However, the response to the technology shock

persists, whereas the response to the MRS shock mean-reverts in 1-1/2 to 2 years. Finally,

a contractionary monetary policy shock dampens GDP, although the posterior distribution

of this response is quite spread out.

Turning to the key components of GDP, Table 4 shows that our three identi�ed shocks

account for over 70% of business �xed investment (equipment and software, investment

structures) variation at the 5-year horizon, and over 60% of the corresponding variation in

total consumption expenditures. Figure 2 shows that the responses of these GDP components

look similar to the GDP responses: permanent response to "TECH , transient response to

"MRS, negative but relatively small response to contractionary "MP . In contrast, the response

of residential investment to both "TECH and "MRS mean-revert rather quickly after an initial

positive response. In addition, residential investment displays a more pronounced response

to the contractionary monetary policy shock. These responses re�ect the high interest rate

sensitivity of residential investment. As we shall discuss in section 5.5, below, monetary

policy contracts in response to both an MRS shock and a technology shock, although the
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second response is with a delay of four to six quarters. These interest rate increases reverse

the initially positive responses of residential investment to "TECH and "MRS.

One additional noteworthy result from Figure 2 is the gradual, hump-shaped response of

consumption to permanent income drivers. In particular, real compensation has a gradual

but permanent response to the technology shock, implying an substantial increase in per-

manent income. Thus, it is noteworthy that consumption expenditure has a rather small

response to the technology shock on impact. Thereafter, consumption rises. This sluggish

response of consumption to the technology shock would seem inconsistent with a simple

formulation of the permanent income hypothesis, but would be consistent with the models

of habit formation that are increasingly used in macroeconomic models. (See, for example,

Boldrin, Christiano, and Fisher, 2001; and Fuhrer, 2000.)

5.3. Labor Markets

Figure 3 displays the responses of hours worked, payroll employment, and labor productivity

to our three identi�ed shocks. Note �rst that the MRS shock elicits an immediate rise in both

hours and employment on impact. This e¤ect, however appears to be transient, dissipating

in about two years. In contrast there is virtually no response of hours or employment to

a technology shock on impact. Thereafter, these measures of labor inputs rise steadily,

reaching a new steady state in about 2 to 2-1/2 years. On the face of it, the permanent

response of hours to the technology shock contradicts the theoretical premise that hours per

capita should be stationary. This problem is not unique to our identi�cation strategy, but

generally arises in studies that use unadjusted hours data computed by the Bureau of Labor

Statistics. Per-capita hours derived from these data are non-stationary, displaying a trend

of about 0.6% per year.22

The initial response of labor inputs to technology shocks is a matter of some controversy

in the literature. Basu, Fernald, and Kimball (2004) estimate that hours and payrolls fall

with a technology shock on impact. Intuitively, higher productivity enables �rms to meet

demand with less labor. In contrast, Christiano, Eichenbaum and Vigfuson (2003) estimate

a contemporaneous rise in labor inputs in response to a technology shock. Both of these

papers identify the technology shock using long run restrictions, although the way these

restrictions are implemented di¤ers between the two papers. Our identi�cation strategy

does not impose long run restrictions, and our results are intermediate between these two

earlier papers.

22Ramey and Francis (2006) construct a measure of per capita hours that adjusts for home production
hours, hours spent in school, and other factors. In contrast with the unadjusted BLS data, their measure
appears to be stationary.
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Another question addressed by Figure 3 is whether the observed procyclicality of labor

productivity is due to �labor hoarding� (a sluggish response of labor demand to cyclical

movements in product demand) or simply due to procyclical technology shocks that directly

drive productivity and output in the same direction. The impulse responses in Figure 3

tend to support the second explanation. They imply that labor productivity is driven

almost exclusively by technology shocks. In particular, the productivity response to "TECH
is positive over the �rst year with virtually 100% probability. In contrast, the responses

of productivity to the MRS and monetary policy shocks are small and dissipate quickly.

If labor hoarding were an important factor in explaining procyclical labor productivity, we

would expect to see signi�cant responses of productivity to these non-technology shocks.

Thus, the small responses of productivity to "MRS and "MP provide little support for the

labor hoarding story.

5.4. In�ation

According to Table 4, about 60% of the 5-year ahead variation in in�ation is explained by our

three identi�ed shocks. The top row of Figure 4, which displays the responses of in�ation

to these three shocks, shows that both nominal and real shocks are important for in�ation.

In�ation rises strongly in response to "MRS. The in�ationary response dissipates in two to

three years. As a shock that induces short-term positive responses of both economic activity

and prices, "MRS behaves as what Blanchard (1989) would call an aggregate demand shock.

An expansionary technology shock induces a fall in in�ation for about a year and a half.

This would be consistent with a model of monopolistically competitive �rms that set prices

as a markup over marginal cost. After the �rst 6 quarters or so, in�ation appears to rise,

and monetary policy responds by contracting.

What appears to be driving this in�ation increase is the delayed response of consumption

and business investment demand to the technology shock, discussed above in Section 5.2.

In particular, while the technology shock induces an increase in productive capacity (both

directly and as a result of the investment response), it also induces a rise in demand that

exceeds the rise in capacity over the 5 year horizon displayed in the impulse responses. This

results in an increasing output gap, de�ned as the di¤erence between the actual output and

the long-run sustainable level of output, given current productive capacity. The second row

in Figure 4 displays the response of the output gap (measured as the di¤erence between GDP

and the Congressional Budget O¢ ce�s measure of potential GDP). According to the �gure,

the output gap rises steadily for the two years following a technology shock, and remains

elevated for at least another two years. Standard policy analysis would associate this sort

of sustained output gap with in�ationary pressures. This sort of association can be justi�ed
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theoretically in models that generate a New Keynesian Phillips Curve (such as Gali and

Gertler, 1999, and Eichenbaum and Fisher 2004).23

Finally, a notable result in Figure 4 is that a contractionary monetary policy shock is

clearly de�ationary, as theory would predict. That is, our identi�cation approach shows no

evidence of Sims�s (1992) �price puzzle�. An identi�cation procedure for monetary policy

shocks is said to display a price puzzle if it implies a pronounced and sustained in�ationary

response to a contractionary policy shock. Many procedures used in the literature to identify

monetary policy shocks have this problem. The typical way to avoid a price puzzle is to

include commodity prices, or some other forecaster of in�ation, in the VAR. Our procedure

avoids a price puzzle without explicitly including commodity prices. However, the principal

components used in our FAVAR speci�cation may span the information needed to forecast

in�ation.

5.5. Monetary Policy

As is common practice, we view the federal funds rate as the indicator of monetary policy.

At short horizons, the most important of our three identi�ed shocks for the federal funds

rate is "MP . Speci�cally, "MP accounts for 34% of the 3-month ahead forecast variance of

the federal funds rate at the median of the posterior distribution. (See Table 4.) By way

of comparison, "TECH and "MRS account for just 7% and 14% of this variance, respectively.

Figure 5 displays the responses of the funds rate to our three identi�ed shocks. It shows that

the response of the funds rate to the monetary policy shock is extremely short-lived, fully

dissipating in about two quarters. At longer horizons, the MRS shock is by far the most

important determinant of the stance of monetary policy, accounting for 59% of the 5-year

ahead forecast variance of the funds rate (again, at the median of the posterior distribution).

At this 5-year horizon, the corresponding variance percentage attributable to the technology

shock falls to 9%, and the variance percentage of the monetary policy shock declines to 7%.

The response of the funds rate to "MRS follows the qualitative patterns predicted by

a Taylor rule. In particular, the MRS shock induces a rise in both in�ation and output

without a concomitant increase in potential output. As a result, a Taylor Rule would predict

monetary tightening. This is precisely what we �nd. In response to an "MRS impulse, the

federal funds rate rises by over 100 basis points over four quarters. This response by the

monetary authority is quite long-lived: the median funds rate remains about 70 basis points

above its starting value even after �ve years. By all appearances, this looks like a classic

23While Gali and Gertler (1999) and Eichenbaum and Fisher (2004) associate in�ationary pressures with
increasing marginal costs, Gali and Gertler (1999) note that there is an approximate log-linear relationship
between marginal costs and the output gap.
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countercyclical response to a demand shock. What is puzzling about this result is that

the policy response to "MRS is far longer-lived than the corresponding responses of either

in�ation or the output gap. This could be interpreted as evidence of policy inertia in the

Fed�s response to in�ationary pressures.

Finally, Figure 5 shows that monetary policy becomes slightly accommodative on impact

in response to an expansionary technology shock. In particular, the median response of

the federal funds rate to "Tech is a 30 basis point decline. This is not surprising, given the

de�ationary impact of "Tech that we saw in Figure 4. Policy does not reliably turn restrictive

until the in�ation response turns positive, as described above in section 5.4.

5.6. Treasury Yields

We consider the one-, twelve-, and sixty-month zero-coupon U.S. Treasury yields as computed

in the Fama-Bliss data base from CRSP. According to Table 4, between 66% and 75% of

Treasury yield variation at the �ve-year horizon is explained jointly by our three identi�ed

shocks. The MRS shock is clearly the most important beyond the initial quarters. The last

three rows of Figure 5 give the responses of these yields to the three identi�ed shocks. Notice

that the responses of the intermediate and long rates are similar both in shape and magnitude

to the response of the short rate. As a result, the MRS shock induces approximately a

parallel shift in the yield curve level. The monetary policy shock is only important at the

very shortest horizon for shortest-term rates (the fed funds rate and the one-month yield)

becoming less important for the longer-term rates. Hence, the monetary policy shock shifts

the yield curve slope.

The yield responses to the technology shock are small and the distribution is spread

around zero. For example, the probability that the one-month yield has a positive average

response over the �rst year is 61%. (The corresponding probability for the 12- and 60-

month yields are 66% and 53%, respectively.) So it would seem that treasury yields could

easily respond in either direction. Perhaps this is not surprising. As noted by Evans and

Marshall (2003), a technology shock moves real rates and expected in�ation in opposite

directions, so the theoretical predictions for nominal yields�responses are ambiguous. In

Evans and Marshall (2003), the expected in�ation e¤ect tended to dominate, so technology

shocks induced a fall in yields. In this study, however, we �nd that these two e¤ects are

of approximately the same magnitude, at least over the �rst year or so. As a result, the

technology shock has a small e¤ect on nominal yields.
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5.7. Equity Markets

Our three identi�ed shocks have relatively little explanatory power for stock prices. As

shown in Table 4, they jointly explain only 26% of stock price variation at the �ve-year

horizon (according to the median of the posterior distribution). They explain even less at

shorter horizons: the corresponding variance fraction explained for the three month forecast

error is only 9%. Thus, most variation in stock prices and returns are driven by factors other

than our three identi�ed impulses.

Having said this, the stock market does display signi�cant responses to all three shocks.

Figure 6 displays the responses of the S&P 500 index, the excess return to the market,

and corporate pro�ts. The stock market displays a pronounced positive response to an

expansionary technology shock for about a year and a half. In particular, the median

response of the level of the S&P 500 index over the four quarters averages a bit over one

percentage point, rising to an average of 1.3 percentage points over the �fth through eighth

quarters. The probability that these responses are positive is 96% and 88%, respectively.

This response of the stock price index dissipates in 6 to 8 quarters, perhaps due to the

contractionary response of monetary policy.

The mechanism underlying this stock price response is clear if we regard stock prices

as discounted cash �ows. In response to the technology shock, Figure 6 shows a positive

response of pro�ts (a proxy for cash �ows), while Figure 5 shows a negligible response of

long-term interest rates (a proxy for the discount factor). It follows that the discounted

present value of the cash �ow to equity holders must rise.

The response of the stock market to an expansionary MRS shock is rather di¤erent than

the response to a technology shock. There may be a small initial rise in the stock market

upon impact (the error bands are quite wide), but this response is immediately reversed. The

subsequent movement of the stock market is negative, and the market fails to recover its

pre-shock level even after �ve years. This negative outcome for equity markets appears to be

driven by the strong contractionary response of monetary policy along with the concomitant

increase in longer-term interest rates. In particular, while Figure 6 does show a positive

response of pro�ts to the MRS shock, the response of interest rates is much bigger. The

resulting e¤ect is to decrease the present value of cash �ows to the equity holder. One might

say that while �good news is good news�when the good news is an expansionary technology

shock, �good news is bad news� for the market when the news is an expansionary MRS

shock.24

24Contrast this result with that in Boyd, Hu, and Jagannathan (2005), where the market responds pos-
itively to good economic news in recessions, but tends to respond negatively to good economic news in
expansions.
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Finally, Figure 6 shows a substantial and fairly long-lived negative response of stock prices

to a contractionary "MP shock. In particular, the median response of the S&P500 index in

the eight quarters following the shock is a decline of over 2 percent. The probability of a

negative response over this period is greater than 98%. The excess return to the market

portfolio declines by about 70 basis points on impact with negative excess returns persisting

for at least two quarters. These responses are pure discount-rate e¤ects. (The response

of pro�ts to "MP is small and insigni�cant.) All this conforms roughly to the conventional

wisdom that monetary contraction is bad for the stock market.

5.8. Univariate responses to model-based shock measures

A focus of this paper is to use our model-based shock measures �t to simultaneously identify

all three shocks "t, imposing the restriction that the elements of "t are mutually orthogonal.

An alternative, and simpler, approach would be to compute the responses of macroeconomic

variables directly to the innovation to each element of �t individually. We call this the

�single-� approach�. This simpler approach ignores the correlations among the elements

of �t that are documented in Table 2. It also ignores possible contamination of �i;t by

"j;t, j 6= i, and ignores possible measurement error wi;t. In this section, we brie�y discuss

the implications of the single-� approach, and contrast its implications with the baseline

approach of Section 2.

To implement the single-� approach, we estimate bivariate recursive VARs of the form�
�i;t
zt

�
= �(L)

�
�i;t�1
zt�1

�
+ ��t; E�t�

0
t = I (5.1)

where �i;t is one of our three model-based shock measures, zt is an endogenous variables

whose responses we wish to explore, �t is a bivariate i.i.d. disturbance, and � is a lower

triangular matrix. In this structure, �1;t is interpreted as the shock to �i;t. We use four

quarterly lags in this VAR.

Figure 7 presents selected responses from the single-� approach, and contrasts them with

the corresponding responses using the baseline approach described in sections 2 through 4,

above. While most of the responses to the model-based shock measures in framework (5.1)

are qualitatively the same as in our baseline approach, there are several di¤erences worthy

of note. First, and most notably, the in�ation response to the shock to �MP in framework

(5.1) displays a huge price puzzle. As shown in Figure 7, a contractionary shock to �MP

(�Single-Eta MP shock�) induces a signi�cant positive response to both the price level and

the in�ation rate. In�ation remains elevated for at least �ve years after the initial impulse.
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This contrasts with the negative response to a contractionary "MP in both the price level

and the in�ation rate (also displayed in Figure 7).

Second, measures of consumption and investment appear to display permanent responses

to �MP in framework (5.1), which would seem to violate long run neutrality. Again, these

di¤er from the response patterns to "MP . (Both are displayed in Figure 7.) Third, the

federal funds rate displays essentially no response to �Tech, the Basu-Fernald-Shapiro tech-

nology measure (�Single-Eta Tech shock�in Figure 7). If one believes that an expansionary

technology shock ought to elicit an accommodative policy response, this �nding would be

puzzling.

More generally, if these anomalous responses are interpreted as evidence of misspeci�ca-

tion, then one would not want to use the innovations to �t as empirical counterparts to the

structural shocks. Our baseline procedure would provide a more satisfactory alternative.

6. Conclusions

In this paper, we have proposed an approach to identifying multiple fundamental macroeco-

nomic shocks. In the introduction, we listed a number of questions that could be fruitfully

addressed by a multiple-shock approach. We �nd that the preponderance of variation in

measures of economic activity can be explained as responses to the three shocks we identify:

technology shocks, shocks to the marginal rate of substitution between consumption and

leisure, and monetary policy shocks. In particular, these three shocks explain over 80% of

the long-run variability in GDP and labor inputs, over 70% of the corresponding variabil-

ity in the components of business �xed investment, and over 55% of the variability in the

components of consumption and housing.

The traditional emphasis on technology shocks in macroeconomic modelling seems war-

ranted if the focus is on the determinants of long-horizon variability in economic activity.

In the shorter run, a more cyclical driver (here identi�ed as our MRS shock) also needs to

be considered. The association of technology shocks with permanent shocks to output and

productivity is borne out by our analysis. More transitory responses are associated with

our MRS shock, which is orthogonal to the technology shock.

We �nd no evidence that procyclical labor productivity is driven by �labor hoarding�.

Such an explanation would imply signi�cant responses of productivity to non-technology

shocks such as our MRS shock. In our results however, the only important driver of pro-

ductivity is the technology shock. Furthermore, technology shocks are neither expansionary

nor contractionary on impact for labor inputs. Rather, inputs have a negligible contempo-

raneous response to "TECH . This result is midway between that found by Basu, Fernald,
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and Kimball (2004) and that reported by Christiano, Eichenbaum, and Vigfuson (2003).

Monetary policy shocks account for a rather small fraction of output variation. Further-

more, these shocks are important for monetary policy itself only in the short run. Over a

longer horizon, most variation in the federal funds rate is due to the endogenous response of

monetary policy to an MRS shock. The central bank �leans against the wind�in response

to aggregate demand shocks.

About 60% of long-run variation in in�ation is explained by our three identi�ed shocks.

Both nominal shocks ("MP ) and real shocks ("TECH and "MRS) are important determinants

of price level and in�ation. The preponderance of variation in Treasury yields at all maturi-

ties is explained by our three shocks, with the MRS shock (which we think of as analogous to

an �aggregate demand�shock) most important. In contrast, most variation in stock prices

and returns is driven by factors other than those identi�ed in this study. Nonetheless, there

is evidence that the stock market displays signi�cant responses to all three shocks. As ex-

pected, expansionary technology shocks induce increases in stock prices while contractionary

monetary policy shocks are bad for the market. The market reacts negatively to the �good

news�of an expansionary MRS shock (after 2-3 quarters).

While the results of this paper are intriguing, they raise as many questions as they answer.

Would the results change if more fundamental shocks were added (for example, �scal policy

shocks or investment-speci�c technology shocks)? What is the interpretation of the MRS

shock? We �nd that it behaves rather di¤erently than the technology shock, suggesting that

it probably is not simply a shock to home production technology. But is it best interpreted

as a preference shock (as argued by Hall, 1997), or as a shock to implicit labor taxes or labor

market frictions? Are there other fundamental shocks that can explain the remaining stock

return variation, or does the stock market largely follow its own dynamic, with most of its

volatility orthogonal to the macroeconomy? All of these questions await future work.
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7. Appendix: Estimation of the Posterior Distribution Assuming
an Uninformative Prior

In this appendix, we construct the posterior distribution for the model parameters f�u; B;�w; Cg ;
assuming an uninformative prior. As discussed in Section 3, we treat bYt and �t as known
data.

It is �rst useful to �x some notation. Let eY ([T + l] � n) denote a matrix containing
the factor series bYt used in the VAR. (Here, T denotes the number of usable observations, l
denotes the number of lags in the VAR, and n denotes the number of factors in the VAR.) To

write the VAR in regression notation, let q � nl+ 1, the number of regressors per equation,
let the (T � n) matrix of dependent variables in the VAR be denoted Y;

Y �

266664
eYl+1;1 � � � eYl+1;n
�
�
�

�
�
�eYl+T;1 eYl+T;n

377775
let the (T � q) matrix of VAR regressors be denoted X;

X �

266666664

1 eYl;1 eYl�1;1 � � � eY1;1 eYl;2 eYl�1;2 � � � eY1;2 eYl;3 � � � eY1;n
1 eYl+1;1 eYl;1 � � � eY2;1 eYl+1;2 eYl;2 � � � eY2;2 eYl+1;3 � � � eY2;n
�
�
�

�
�
�

�
�
�

1 eYl+T�1;1 eYl+T�2;1 � � � eYT;1 eYl+T�1;2 eYl+T�2;2 � � � eYT;2 eYl+T�1;3 eYT;N

377777775
;

and let the (T �m) matrix of model-based shocks be denoted H;

H �

266664
�1;1 � � � �1;m
�
�
�

�
�
�

�T;1 �T;m

377775 :

Our goal is to compute the joint posterior density p (C;�w; B;�u) ; which can be written

as follows:25

p (C;�w; B;�u) = p (Cj�w; B;�u) p (�wjB;�u) p (Bj�u) p (�u) (7.1)

25All densities in equation (7.1) are conditional on the data fY;X;Hg. This dependency is not noted
explicitly.
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We assume uninformative priors in the usual way:

prior (�u) / j�uj�(n+1)=2 (7.2)

prior(B) = constant (7.3)

prior (�w) / j�wj�(m+1)=2 (7.4)

prior(C) = constant (7.5)

The reduced form of the VAR is given by the regression equation

Y = XB + U (7.6)

where matrix U contains the n � 1 i.i.d. error process ut as U = (u1; u2; � � �; uT )0, and it is
assumed that

ut � N (0;�u) : (7.7)

In equation (7.6), the coe¢ cient matrix B has dimension (q � n). The rows of B correspond
to the regressors X; the columns correspond to the n equations. Let bB denotes the matrix

of OLS estimates of the VAR slope coe¢ cients

bB � (X 0X)
�1
X 0Y (7.8)

and let S denotes T times the sample covariance matrix of the VAR disturbances

S �
�
Y �X bB�0 �Y �X bB� :

Finally, let Bs and bBs denote the vectors formed by stacking the columns of B and bB,
respectively.

Zellner (1971) shows that, given the priors (7.2) and (7.3), the posterior distribution

p (�u) is inverted Wishart with parameter S. He also shows that, conditional on �u, the

posterior distribution p (Bsj�u) is multivariate normal with mean bBs and variance-covariance
matrix �u 
 (X 0X)�1.

We can use Zellner�s (1971) logic to derive the remaining components of the joint posterior

distribution (7.1). Equation (2.2) can be written

H = eUC +W: (7.9)

In equation (7.9), eU is a matrix whose columns contain contemporaneous and K lags of U ,

W stacks the m� 1 i.i.d. measurement error process wt as W = (w1; w2; � � �; wT )0, and it is
assumed that

W � N (0;�w) : (7.10)
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We follow the same steps as we used to derive p (�u) and p (Bj�u), except that we condition
on B. (It turns out that �u does not directly a¤ect the conditional distribution of C and

�w.) For a given B, let us write

U(B) � Y �XB

bC (B) � �eU(B)0 eU(B)��1 eU (B)0H
and

V (B) �
�
H � eU(B) bC (B)�0 �H � eU(B) bC (B)�

(where eU(B) contains the contemporaneous and K lags of U(B)). The interpretation of

these objects is as follows: U (B) is the matrix of residuals implied by equation (7.6) given

the observed data fY;Xg and a particular choice of B; bC (B) is the estimate of C that

one would obtain from U (B) and H if one estimated equation (7.9) via OLS; V (B) is the

moment matrix of the residuals from this OLS estimation of equation (7.9). Conditional

on B, the objects
n
U(B); bC (B) ; V (B)o are functions of the data, so can be treated as

known quantities. Therefore, by logic analogous to Zellner (1971), posterior distribution

p (�wjB) is invertedWishart with parameter V (B), and posterior distribution p(Csj�w; B) is
multivariate normal with mean bC (B)s and variance-covariance matrix�w
�eU(B)0 eU(B)��1 :
One draws from the posterior distribution for fC;�w; B;�ug as follows:

1. Draw �u from the inverted Wishart density with parameter S, which is a function of

data.

2. Given this draw of �u; draw Bs from the multivariate normal distribution with meanbBs and variance-covariance matrix �u 
 (X 0X)�1.

3. Given this draw of B, draw �w from the inverted Wishart density with parameter

V (B).

4. Given these draws of B and �w, draw Cs from the multivariate normal distribution

with mean bC (B)s and variance-covariance matrix �w 
 �eU(B)0 eU(B)��1 :
8. Data Appendix

We use quarterly data from 1967:Q1 through 2000:Q4.26 As described in the text, we use two

(overlapping) data sets. The �rst data set consists of the 190 series used to construct the

26We start in 1967 because many of the series used to generate the principal components used in the
FAVAR speci�cation are available only from 1967 onward.
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factors in the FAVAR model. Speci�cally, the six factors comprising vector bYt in equation
(2.18) are the �rst six principal components of these 190 data series. 154 of these series

are monthly, and the remaining 36 are quarterly. To facilitate computation of principal

components, each of these data series is rendered stationary. Table 1A lists these data in

detail, along with the stationarity-inducing transformations used.

The second data set is used to construct the series zt (in equation (2.17), whose impulse

responses are to be computed. The data used are as follows:

� Data on real GDP and its components (total consumption expenditure, investment in
equipment and software, investment in structures, residential investment) are quarterly

data (seasonally adjusted in chained 2000 dollars) from the Bureau of Economic Analy-

sis (BEA). The output gap is the log of real GDP minus the log of the Congressional

Budget O¢ ce�s measure of potential GDP.

� Our measure of the price level is the GDP chain-type price index from BEA. The 3

month in�ation rate is the log di¤erence of the price level.

� Labor productivity is seasonally adjusted business sector output per hour of all persons
(seasonally adjusted) from the Bureau of Labor Statistics (BLS)

� Employment is total nonfarm employment, and payroll hours series is the aggregate

total private hours per week index. Both of these are seasonally adjusted data from

the BLS establishment survey.

� The real compensation series is business sector real compensation per hour from the

BEA, de�ated by the GDP chain-type price index.

� The Federal Funds Rate is the e¤ective funds rate from the Federal Reserve Bank of

New York. The 1- 12- and 60-month zero coupon Treasury yields are from the Fama-

Bliss zero coupon bond �les in the CRSP database. The S&P500 Stock Index is from

Standard and Poor�s. All of these �nancial data series are converted to quarterly series

by sampling the last business day of each quarter.

� Our measure of the excess stock market return is the �rst Fama-French factor from
Kenneth French�s web page

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

These data are rendered quarterly by sampling the last month of quarter.
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� Pro�ts is the BEA measure of corporate pro�ts (pre-tax) from current production,

seasonally adjusted.

For all series other than the in�ation rate, interest rates, and excess stock returns, we

estimate the VAR in log-di¤erences, and then we cumulated the impulse responses to display

the responses of log-levels.
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Table 1: Granger-Causality Tests for MRS Measure
Explanatory # Lags Marginal Signi�cance
Variable of F-test

Detrended 4 0.742
GDP 5 0.891

6 0.715
Fed Funds 4 0.356
Rate 5 0.582

6 0.510
Term 4 0.199
Spread 5 0.165

6 0.202

Notes: This table displays the marginal signi�cance of exclusion F-statistics for the

following Granger-Causality regressions

�MRS;t =
NX
j=1

�j�MRS;t�j + �jXt�j + wi;t;

where N = 4; 5; or 6; the explanatory variable X is either detrended GDP, the federal funds

rate, or the term spread (de�ned as the di¤erence between the 5-year Treasury Yield and

the federal funds rate); and the F-statistic tests the hypothesis �j = 0;8j = 1; :::; N:

Table 2: Correlation Matrix of the Model-Based Shock Measures
�MP �MRS �TECH

�MP 1.0
�MRS 0.11 1.0
�TECH -0.037 0.062 1.0
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Table 3: R2s For Regression of Model-Based Shock Measures on VAR
Residuals

Shock Measure R2 when regressed on VAR residuals F -test
�MP 54.1% 29.7

(0.000)
�MRS 53.6% 61.2

(0.000)
�TECH 52.3% 140.7

(0.000)

Notes: The second column displays the R2s for the regressions �t = C0ut+C1ut�1+ :::+
C4ut�4+wt (equation (2.9)), where �t denotes the 3� 1 vector of model-based measures, ut
denotes the 6� 1 vector of VAR residuals, and wt denotes the 3� 1 vector of residuals.. The
third column displays the F-statistic testing the hypothesis that the given row of C0 = 0.
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Table 4 
 

Fraction of Variance of Endogenous Variables Accounted for by the Three 
Identified Shocks 

 
Notes: For each of the variables listed, the table gives the median fraction of 3-, 12, and 
60-month ahead forecast variance accounted for by the three identified shocks,  εMP , 
εMRS , and εTECH, according to the posterior distribution.  The fourth line in each panel 
gives the median fraction of each forecast variance accounted for by the three shocks 
collectively.  The two numbers in parentheses following each median statistic give the 
95% and 5% quantiles of the posterior distribution for each forecast variance fraction.  
These statistics were computed using 500 draws from the posterior distribution of the 
model’s parameters. 
 
 
 
 
 
 Real GDP 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.049 (0.233,0.001)   0.064 (0.224,0.021)   0.124 (0.433,0.014) 
 Shock to  MRS         0.282 (0.514,0.088)   0.328 (0.609,0.087)   0.107 (0.411,0.024) 
 Shock to  Tech        0.344 (0.573,0.151)   0.422 (0.702,0.176)   0.527 (0.774,0.208) 
 Total of 3 Shocks     0.721 (0.779,0.632)   0.861 (0.909,0.763)   0.844 (0.928,0.648) 
 
 
 Total Consumption Expenditures 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.009 (0.076,0.000)   0.112 (0.322,0.014)   0.081 (0.330,0.013) 
 Shock to  MRS         0.305 (0.478,0.121)   0.137 (0.369,0.029)   0.060 (0.284,0.011) 
 Shock to  Tech        0.156 (0.332,0.033)   0.372 (0.593,0.134)   0.399 (0.650,0.162) 
 Total of 3 Shocks     0.492 (0.598,0.365)   0.661 (0.768,0.497)   0.617 (0.791,0.400) 
 
 
 Investment Equip & Software 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.027 (0.116,0.001)   0.027 (0.136,0.008)   0.058 (0.274,0.011) 
 Shock to  MRS         0.339 (0.430,0.221)   0.535 (0.702,0.307)   0.289 (0.576,0.074) 
 Shock to  Tech        0.015 (0.095,0.000)   0.128 (0.357,0.014)   0.303 (0.606,0.070) 
 Total of 3 Shocks     0.404 (0.488,0.307)   0.721 (0.801,0.602)   0.712 (0.864,0.490) 
 
 
 Investment Structures 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.031 (0.095,0.001)   0.034 (0.186,0.002)   0.030 (0.229,0.003) 
 Shock to  MRS         0.074 (0.137,0.028)   0.346 (0.512,0.186)   0.461 (0.717,0.185) 
 Shock to  Tech        0.020 (0.061,0.001)   0.074 (0.246,0.005)   0.179 (0.488,0.016) 
 Total of 3 Shocks     0.138 (0.201,0.089)   0.497 (0.626,0.361)   0.735 (0.861,0.548) 
 
 
 Residential Investment 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.005 (0.048,0.000)   0.232 (0.419,0.086)   0.164 (0.340,0.058) 
 Shock to  MRS         0.245 (0.336,0.133)   0.104 (0.233,0.052)   0.240 (0.513,0.036) 
 Shock to  Tech        0.061 (0.179,0.004)   0.225 (0.412,0.050)   0.147 (0.313,0.039) 
 Total of 3 Shocks     0.328 (0.399,0.257)   0.591 (0.698,0.459)   0.605 (0.808,0.316) 
 
 



Table 4 (continued) 
 
 

 Labor Productivity 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.019 (0.099,0.000)   0.041 (0.190,0.012)   0.044 (0.207,0.007) 
 Shock to  MRS         0.019 (0.118,0.000)   0.025 (0.104,0.005)   0.045 (0.209,0.008) 
 Shock to  Tech        0.464 (0.552,0.347)   0.435 (0.569,0.289)   0.337 (0.537,0.156) 
 Total of 3 Shocks     0.530 (0.600,0.446)   0.536 (0.652,0.413)   0.472 (0.656,0.299) 
 
 
 Payroll Employment 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.098 (0.290,0.007)   0.031 (0.139,0.010)   0.085 (0.369,0.010) 
 Shock to  MRS         0.522 (0.655,0.360)   0.592 (0.764,0.319)   0.212 (0.545,0.050) 
 Shock to  Tech        0.028 (0.186,0.000)   0.161 (0.422,0.029)   0.440 (0.741,0.158) 
 Total of 3 Shocks     0.688 (0.755,0.601)   0.821 (0.882,0.702)   0.831 (0.912,0.639) 
 
 
 Payroll Hours  
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.094 (0.282,0.007)   0.040 (0.147,0.012)   0.072 (0.314,0.013) 
 Shock to  MRS         0.537 (0.673,0.373)   0.595 (0.768,0.347)   0.247 (0.552,0.068) 
 Shock to  Tech        0.016 (0.140,0.000)   0.139 (0.391,0.026)   0.405 (0.715,0.137) 
 Total of 3 Shocks     0.690 (0.764,0.583)   0.816 (0.884,0.679)   0.803 (0.902,0.621) 
 
 
 Real Wage 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.046 (0.094,0.008)   0.050 (0.141,0.006)   0.109 (0.373,0.006) 
 Shock to  MRS         0.002 (0.016,0.000)   0.044 (0.122,0.009)   0.167 (0.443,0.011) 
 Shock to  Tech        0.003 (0.024,0.000)   0.013 (0.042,0.004)   0.095 (0.334,0.005) 
 Total of 3 Shocks     0.055 (0.106,0.018)   0.120 (0.226,0.040)   0.460 (0.691,0.198) 
 
 
 Inflation 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.045 (0.162,0.001)   0.037 (0.117,0.008)   0.216 (0.419,0.067) 
 Shock to  MRS         0.007 (0.061,0.000)   0.095 (0.260,0.022)   0.164 (0.370,0.054) 
 Shock to  Tech        0.130 (0.229,0.035)   0.194 (0.356,0.070)   0.171 (0.341,0.060) 
 Total of 3 Shocks     0.199 (0.307,0.108)   0.362 (0.502,0.210)   0.596 (0.774,0.390) 
 
 
 Federal Funds Rate 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.342 (0.485,0.186)   0.147 (0.302,0.066)   0.074 (0.227,0.024) 
 Shock to  MRS         0.141 (0.329,0.032)   0.511 (0.647,0.345)   0.594 (0.761,0.302) 
 Shock to  Tech        0.068 (0.194,0.002)   0.047 (0.146,0.010)   0.090 (0.351,0.013) 
 Total of 3 Shocks     0.577 (0.648,0.498)   0.726 (0.795,0.628)   0.803 (0.891,0.617) 
 
 
 1-month Treasury Yield 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.164 (0.254,0.084)   0.114 (0.248,0.047)   0.071 (0.203,0.023) 
 Shock to  MRS         0.087 (0.189,0.025)   0.378 (0.511,0.251)   0.540 (0.725,0.262) 
 Shock to  Tech        0.015 (0.064,0.000)   0.032 (0.123,0.009)   0.108 (0.376,0.011) 
 Total of 3 Shocks     0.281 (0.357,0.211)   0.552 (0.641,0.449)   0.751 (0.860,0.575) 
 



Table 4 (continued) 
 
 
 
 12- month Treasury Yield 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.247 (0.373,0.122)   0.150 (0.337,0.048)   0.079 (0.214,0.026) 
 Shock to  MRS         0.152 (0.288,0.052)   0.421 (0.569,0.251)   0.546 (0.741,0.294) 
 Shock to  Tech        0.008 (0.055,0.000)   0.021 (0.128,0.004)   0.077 (0.336,0.008) 
 Total of 3 Shocks     0.422 (0.504,0.334)   0.624 (0.715,0.513)   0.746 (0.867,0.570) 
 
 
 60- month Treasury Yield 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.121 (0.235,0.084)   0.133 (0.314,0.026)   0.076 (0.221,0.023) 
 Shock to  MRS         0.137 (0.245,0.025)   0.339 (0.505,0.192)   0.511 (0.709,0.277) 
 Shock to  Tech        0.005 (0.047,0.000)   0.015 (0.088,0.002)   0.038 (0.210,0.006) 
 
 Total of 3 Shocks     0.287 (0.363,0.196)   0.522 (0.628,0.394)   0.662 (0.823,0.467) 
 
 
 S&P500 Stock Index 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.040 (0.101,0.008)   0.081 (0.172,0.026)   0.086 (0.162,0.038) 
 Shock to  MRS         0.010 (0.046,0.000)   0.059 (0.118,0.028)   0.092 (0.152,0.040) 
 Shock to  Tech        0.033 (0.095,0.003)   0.049 (0.097,0.019)   0.074 (0.138,0.024) 
 Total of 3 Shocks     0.094 (0.176,0.047)   0.199 (0.334,0.117)   0.262 (0.355,0.181) 
 
 
 Excess Stock Market Return 
 Steps ahead:          3-month               12-months             60-months 
 
 Shock to  MP          0.066 (0.141,0.017)   0.078 (0.143,0.031)   0.081 (0.144,0.036) 
 Shock to  MRS         0.006 (0.044,0.000)   0.043 (0.087,0.017)   0.065 (0.112,0.033) 
 Shock to  Tech        0.047 (0.100,0.007)   0.067 (0.116,0.025)   0.079 (0.134,0.038) 
 Total of 3 Shocks     0.132 (0.194,0.076)   0.193 (0.266,0.128)   0.233 (0.311,0.162) 
 
 
 
 



Table 5: Long-Run Responses to 1 SD Shock

GDP Productivity
Technology Shock 58 bps (1.00) 31 bps (0.99)
MRS Shock 7 bps (0.61) -15 bps (0.19)
MP Shock 3 bps (0.53) 12 bps (0.73)

Notes: This table gives the median 80-quarter ahead responses of GDP and labor pro-
ductivity to a one standard deviation impulse to each of the three shocks listed in the

left-most column. The numbers in parenthesis give the probability that this 80-quarter

ahead response is positive according to the Bayesian posterior distribution.
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Table 1A:  Data Used in Constructing FAVAR Factors 
 

  
  
Panel A:  Monthly Data Series   
  
  
Data Description Transformation
Personal Consumption Expenditures (SAAR, Bil.Chn.2000$) log 1st diff 

Personal Consumption Expenditures: Durable Goods (SAAR, Bil.Chn.2000$) log 1st diff 

Personal Consumption Expenditures: Nondurable Goods (SAAR,Bil.Chn.2000$) log 1st diff 

Personal Consumption Expenditures: Services (SAAR, Bil.Chn.2000$) log 1st diff 

Real Disposable Personal Income (SAAR, Bil.Chn.2000$) log 1st diff 

Value of Public Construction Put in Place (SAAR, Mil.Chn. $)  log 1st diff 

Value of Private Construction Put in Place (SAAR, Mil. Chn. $)  log 1st diff 

Manufacturers' Shipments of Mobile Homes (SAAR, Thous.Units) log 

Housing Starts (SAAR, Thous.Units) log 

Housing Starts: Midwest (SAAR, Thous.Units) log 

Housing Starts: Northeast (SAAR, Thous.Units) log 

Housing Starts: South (SAAR, Thous.Units) log 

Housing Starts: West (SAAR, Thous.Units) log 

Industrial Production Index (SA, 1997=100) log 1st diff 

Industrial Production: Consumer Goods (SA, 1997=100) log 1st diff 

Industrial Production: Durable Consumer Goods (SA, 1997=100) log 1st diff 

Industrial Production: Nondurable Consumer Goods (SA, 1997=100) log 1st diff 

Industrial Production: Business Equipment (SA, 1997=100) log 1st diff 

Industrial Production: Materials (SA, 1997=100) log 1st diff 

Industrial Production: Durable Goods Materials (SA, 1997=100) log 1st diff 

Industrial Production: Nondurable Goods Materials (SA, 1997=100) log 1st diff 

Industrial Production: Nonindustrial Supplies (SA, 1997=100) log 1st diff 

Industrial Production: Mining (SA, 1997=100) log 1st diff 

Industrial Production: Final Products (SA, 1997=100) log 1st diff 

Industrial Production: Durable Goods [NAICS] (SA, 1997=100) log 1st diff 

Industrial Production: Manufacturing [SIC] (SA, 1997=100) log 1st diff 

Industrial Production: Nondurable Manufacturing (SA, 1997=100) log 1st diff 

Industrial Production: Final Products and Nonindustrial Supplies (SA, 1997=100) log 1st diff 

Industrial Production: Electric and Gas Utilities (SA, 1997=100) log 1st diff 

All Employees: Construction (SA, Thous) log 1st diff 

All Employees: Durable Goods Manufacturing (SA, Thous) log 1st diff 

All Employees: Financial Activities (SA, Thous) log 1st diff 

All Employees: Goods-producing Industries (SA, Thous) log 1st diff 

All Employees: Government (SA, Thous) log 1st diff 

All Employees: Manufacturing (SA, Thous) log 1st diff 

All Employees: Mining (SA, Thous) log 1st diff 

All Employees: Total Nonfarm (SA, Thous) log 1st diff 

All Employees: Nondurable Goods Manufacturing (SA, Thous) log 1st diff 

All Employees: Total Private Industries (SA, Thous) log 1st diff 



All Employees: Retail Trade (SA, Thous) log 1st diff 

All Employees: Service-providing Industries (SA, Thous) log 1st diff 

All Employees: Aggregate of categories log 1st diff 

Civilian Employment: Nonagricultural Industries: 16 yr + (SA, Thous) log 1st diff 

Ratio: Help-Wanted Advertising in Newspapers/Number Unemployed (SA) log 1st diff 

Average Weekly Hours: Overtime: Manufacturing (SA, Hrs) 1st diff 

Average Weekly Hours: Manufacturing (SA, Hrs) 1st diff 

ISM Mfg: PMI Composite Index (SA, 50+ = Econ Expand) level 

ISM Mfg: Employment Index (SA, 50+ = Econ Expand) level 

ISM Mfg: Inventories Index (SA, 50+ = Econ Expand) level 

ISM Mfg: New Orders Index (SA, 50+ = Econ Expand) level 

ISM Mfg: Production Index (SA, 50+ = Econ Expand) level 

Real Retail Sales: Durable Goods  (SA, Mil.Chain.2000$) log 1st diff 

Retail Sales: Retail Trade (SA, Spliced, Mil.Chn 2000$)  log 1st diff 

Real Retail Sales: Nondurable Goods (SA, Mil.Chain.2000$) log 1st diff 

Real Inventories: Mfg: Durable Goods Industries (SA, EOP, Spliced, Mil Chn 2000$)  log 1st diff 

Real Manufacturing & Trade Inventories: Mfg Industries (SA, EOP, Spliced, Mil.Chn 2000$) log 1st diff 

Real Mfg Inventories: Nondurable Goods Industries (SA, EOP, Spliced, Mil.Chn 2000$) log 1st diff 

Real Inventories: Retail Trade Industries (SA, EOP, Spliced, Mil.Chn 2000$)  log 1st diff 

Real Manufacturing & Trade Inventories: Industries (SA, EOP, Spliced, Mil.Chn 2000$)  log 1st diff 

Real Inventories: Merchant Wholesale Trade Industries (SA, EOP, Spliced, Mil.Chn 2000$) log 1st diff 

Real Inventories/Sales Ratio: Manufacturing Industries (SA, Spliced, Chained 2000$) 1st diff 

Inventories/Sales Ratio: Retail Trade Industries (SA, Spliced, Chained 2000$) 1st diff 

Real Manufacturing & Trade: Inventories/Sales Ratio (SA, Spliced, Chained 2000$) 1st diff 

Inventories/Sales Ratio: Merchant Wholesale Trade Industries(SA, Chained 2000$) 1st diff 

Real Sales: Mfg: Durable Goods Industries(SA, Spliced, Mil.Chn 2000$) log 1st diff 

Real Sales: Manufacturing Industries (SA, Spliced, Mil.Chn 2000$) log 1st diff 

Real Sales: Mfg: Nondurable Goods Industries (SA, Spliced, Mil.Chn 2000$) log 1st diff 

Real Manufacturing & Trade Sales: All Industries (SA, Spliced, Mil.Chn 2000$) log 1st diff 

Real Sales: Merchant Wholesalers: Durable Gds Industrs (SA, Spliced, Mil.Chn 2000$) log 1st diff 

Real Sales: Merchant Wholesale Trade Industries (SA, Spliced, Mil.Chn 2000$) log 1st diff 

Real Sales: Merch Wholesale: Nondurable Goods Industries (SA, Mil.Chn 2000$) log 1st diff 

Real Personal Income Less Transfer Payments (SAAR, Bil.Chn.2000$) log 1st diff 

PCE: Durable Goods: Motor Vehicles and Parts (SAAR, Mil.Chn.2000$) log 1st diff 

Mfrs New Orders: Durable Goods (SA, Mil.Chn.2000.$) log 1st diff 

Manufacturers New Orders: Consumer Goods & Materials (SA, Mil. 1982$) log 1st diff 

Manufacturers New Orders: Nondefense Capital Goods (SA, Mil. 1982$) log 1st diff 

New Pvt Housing Units Authorized by Building Permit (SAAR, Thous.Units) log 

Capacity Utilization: Manufacturing [SIC] (SA, Percent of Capacity) 1st diff 

Index of Help-Wanted Advertising in Newspapers (SA,1987=100) log 1st diff 

Civilian Unemployment Rate: 16 yr + (SA, %) 1st diff 

University of Michigan: Consumer Expectations (NSA, 66Q1=100) level 

Civilians Unemployed for Less Than 5 Weeks (SA, Thous.) level 

Civilians Unemployed for 15-26 Weeks (SA, Thous.) level 

Civilians Unemployed for 5-14 Weeks (SA, Thous.) level 

Average {Mean} Duration of Unemployment (SA, Weeks) level 

Civilians Unemployed for 15 Weeks and Over (SA, Thous.) level 

Civilians Unemployed for 27 Weeks and Over (SA, Thous.) level 



Adjusted Monetary Base (SA, Mil.$) log 2nd diff 

Adjusted Nonborrowed Reserves of Depository Institutions (SA, Mil.$) log 2nd diff 

Adjusted Nonborrowed Reserves Plus Extended Credit (SA, Mil.$) log 2nd diff 

Adjusted Reserves of Depository Institutions (SA, Mil.$) log 2nd diff 

Adj Monetary Base inc Deposits to Satisfy Clearing Bal Contracts (SA, Bil.$) log 2nd diff 

Money Stock: M1 (SA, Bil.$) log 2nd diff 

Real Money Stock: M2 (SA, Bil.Chn.2000$) log 1st diff 

Money Stock: M3 (SA, Bil.$) log 2nd diff 

Nominal Broad Trade-Weighted Exchange Value of the US$ (JAN 97=100) log 1st diff 

Foreign Exchange Rate: United Kingdom (US$/Pound) log 1st diff 

Moody's Seasoned Aaa Corporate Bond Yield (% p.a.) 1st diff 

Moody's Seasoned Baa Corporate Bond Yield (% p.a.) 1st diff 

Moody's Seasoned Aaa Corporate Bond Yield - Federal Funds Rate(% p.a.) level 

Moody's Seasoned Baa Corporate Bond Yield - Federal Funds Rate (% p.a.) level 

S&P: Composite 500, Dividend Yield (%) level 

Stock Price Index: Standard & Poor's 500 Composite  (1941-43=10) log 1st diff 

S&P: 500 Composite, P/E Ratio, 4-Qtr Trailing Earnings level 

Stock Price Index: NYSE Composite (Avg, Dec. 31, 2002=5000) log 1st diff 

Stock Price Index: Standard & Poor's 400 Industrials  (1941-43=10) log 1st diff 

3-Month Treasury Bills, Secondary Market (% p.a.) 1st diff 

6-Month Treasury Bills, Secondary Market (% p.a.) 1st diff 

3-Month Treasury Bills - Federal Funds Rate, (% p.a.) level 

6-Month Treasury Bills - Federal Funds Rate (% p.a.) level 

1-Year Treasury Bill Yield at Constant Maturity (% p.a.) 1st diff 

5-Year Treasury Note Yield at Constant Maturity (% p.a.) 1st diff 

1-Year Treasury Bill Yield at Constant Maturity - Federal Funds Rate (% p.a.) level 

5-Year Treasury Note Yield at Constant Maturity - Federal Funds Rate (% p.a.) level 

10-Year Treasury Note Yield at Constant Maturity - Federal Funds Rate (% p.a.) level 

PPI: Crude Materials for Further Processing (SA, 1982=100) log 2nd diff 

PPI: Finished Consumer Goods (SA, 1982=100) log 2nd diff 

CPI-U: Apparel (SA, 1982-84=100) log 2nd diff 

CPI-U: Commodities (SA, 1982-84=100) log 2nd diff 

CPI-U: Durables (SA, 1982-84=100) log 2nd diff 

CPI-U: Services (SA, 1982-84=100) log 2nd diff 

CPI-U: Medical Care (SA, 1982-84=100) log 2nd diff 

CPI-U: All Items Less Food (SA, 1982-84=100) log 2nd diff 

CPI-U: All Items Less Medical Care (SA, 1982-84=100) log 2nd diff 

CPI-U: All Items Less Shelter (SA, 1982-84=100) log 2nd diff 

CPI-U: Transportation (SA, 1982-84=100) log 2nd diff 

PCE: Durable Goods: Chain Price Index (SA, 2000=100) log 2nd diff 

PCE: Personal Consumption Expenditures: Chain Price Index (SA, 2000=100) log 2nd diff 

PCE: Nondurable Goods: Chain Price Index (SA, 2000=100) log 2nd diff 

PCE: Services: Chain Price Index (SA, 2000=100) log 2nd diff 

Avg Hourly Earnings: Construction (SA, $/Hr) log 2nd diff 

Avg Hourly Earnings: Manufacturing (SA, $/Hr) log 2nd diff 

Commercial & Industrial Loans Outstanding (EOP, SA, Mil.Chn.2000 $) 1st diff 

Money Stock: M2 (SA, Bil.$) log 2nd diff 

10-Year Treasury Note Yield at Constant Maturity (% p.a.) 1st diff 



Federal Funds [effective] Rate (% p.a.) 1st diff 

PPI: Intermediate Materials, Supplies and Components (SA, 1982=100) log 2nd diff 

PPI: Finished Goods (SA, 1982=100) log 2nd diff 

ISM: Mfg: Prices Index (NSA, 50+ = Econ Expand) level 

CPI-U: All Items (SA, 1982-84=100) log 1st diff 

Mfrs' New Orders:Durable Goods Industries With Unfilled Orders (SA,Mil$) log 1st diff 

Manufacturers' New Orders (SA, Mil.$) log 1st diff 

Manufacturers' New Orders: Nondurable Goods Industries (SA, Mil.$) log 1st diff 

Mfrs' New Orders:Nondurable Goods Industries W/Unfilled Orders (SA,Mil$) log 1st diff 

Manufacturers' Unfilled Orders: Durable Goods Industries (EOP,SA,Mil.$) log 1st diff 

Manufacturers' Unfilled Orders (EOP, SA, Mil.$) log 1st diff 

Manufacturers' Unfilled Orders:Nondurable Goods Industries (EOP,SA,Mil$) log 1st diff 

Foreign Exchange Rate: Canada (C$/US$) log 1st diff 

Foreign Exchange Rate: Germany (D. Mark/US$) log 1st diff 

Foreign Exchange Rate: Japan  (Yen/US$) log 1st diff 

Foreign Exchange Rate: Switzerland (Franc/US$) log 1st diff 

Contracts & Orders: Plant & Equipment (SA, Mil.$) log 1st diff 
 
 
 
Panel B: Quarterly Data   
  
Data Description Transformation 
Business Sector: Compensation per Hour of all Persons (SA,1992=100) log 1st diff 

Business Sector: Real Compensation per Hour of all Persons (SA,1992=100) log 1st diff 

Business Sector: Unit Labor Costs (SA,1992=100) log 1st diff 

Business Sector: Unit Non-Labor Payments (SA,1992=100) log 1st diff 

Non-farm Business Sector: Unit Non-Labor Payments (SA,1992=100) log 1st diff 

Non-financial Corporations: Output per Hour, All employees (SA, 1992=100) log 1st diff 

Non-financial Corporations: Compensation per Hour, All employees (SA, 1992=100) log 1st diff 

Non-financial Corporations: Real Compensation per Hour, All employees (SA, 1992=100) log 1st diff 

Non-financial Corporations: Unit Labor Costs, All employees (SA, 1992=100) log 1st diff 

Non-financial Corporations: Unit Non-Labor Costs, All employees (SA, 1992=100) log 1st diff 

Non-financial Corporations: Total Unit Costs, All employees (SA, 1992=100) log 1st diff 

Business Sector: Real Unit Labor Costs (SA,1992=100) log 1st diff 

Non-financial Corporations: Real Unit Labor Costs, All employees (SA, 1992=100) log 1st diff 

Business Sector: Real Unit Non-Labor Payments (SA,1992=100) log 1st diff 

Non-farm Business Sector: Real Unit Non-Labor Payments (SA,1992=100) log 1st diff 

Non-financial Corporations: Real Unit Non-Labor Costs, All employees (SA, 1992=100) log 1st diff 

Non-financial Corporations: Real Total Unit Costs, All employees (SA, 1992=100) log 1st diff 

Government Total Receipts (SAAR, Bil. $) log 1st diff 

Government Total Expenditures (SAAR, Bil. $) log 1st diff 

Government Net Lending or Net Borrowing (SAAR, Bil. $) 1st diff 

GDP Deflator log 1st diff 

Gross Private Domestic Investment: Implicit Price Deflator (SA, 2000=100) log 1st diff 

Private Fixed Investment: Implicit Price Deflator (SA, 2000=100) log 1st diff 

Private Non-residential Fixed Investment: Implicit Price Deflator (SA, 2000=100) log 1st diff 



Private Non-residential Structures: Implicit Price Deflator (SA, 2000=100) log 1st diff 

Private Non-residential Equipment/Software: Implicit Price Deflator (SA, 2000=100) log 1st diff 

Private Residential Investment: Implicit Price Deflator (SA, 2000=100) log 1st diff 

Government Consumption/Gross Investment: Implicit Price Deflator (SA, 2000=100) log 1st diff 

Federal Non-Defense Consumption/Investment: Implicit Price Deflator (SA, 2000=100) log 1st diff 

Imports of Goods & Services: Implicit Price Deflator (SA, 2000=100) log 1st diff 

Exports of Goods & Services: Implicit Price Deflator (SA, 2000=100) log 1st diff 

Non-farm Business Sector: Output per Hour of all Persons (SA,1992=100) log 1st diff 

Non-farm Business Sector: Compensation per Hour of all Persons (SA,1992=100) log 1st diff 

Non-farm Business Sector: Real Compensation per Hour of all Persons (SA,1992=100) log 1st diff 

Non-farm Business Sector: Unit Labor Costs (SA,1992=100) log 1st diff 

Non-farm Business Sector: Real Unit Labor Costs (SA,1992=100) log 1st diff 
 



Figure 1: Long Horizon Responses
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Figure 2: Cyclical Responses
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Figure 3: Responses of Labor Inputs and Productivity
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Figure 4: Responses of Inflation and Output Gap
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Figure 5: Responses of Interest Rates
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Figure 6: Responses of Equity Markets
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Figure 7

Baseline Shocks vs. Single-Eta Shocks
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