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ABSTRACT

This paper considers an optimal taxation environment where household income is private informa-
tion, and the government randomly audits and punishes households found to be underreporting.
We prove that the optimal mechanism derived using standard mechanism design techniques has a
bad equilibrium (a tax riot) where households underreport their incomes, precisely because other
households are expected to do so as well. We then consider three alternative approaches to designing
a tax scheme when one is worried about bad equilibria.
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1. Introduction

Two common characteristic of tax systems are that households must voluntarily re-

port their incomes, and that governments randomly audit and punish households found to be

underreporting. Furthermore, net taxes (taxes minus transfers) generally respond to aggre-

gate shocks, usually for simple budgetary reasons. That is, the transfers a government can

afford given many households reporting low incomes is not as great as those a government can

afford given many households reporting high incomes. This paper focuses generally on the

design of tax systems in such an environment and particularly on the question of existence

of bad equilibria or “tax riots” where households underreport income precisely because other

households are expected to underreport income.

The approach of the paper is to initially derive tax policies using standard mechanism

design tools. As is well known, these tools ensure only that truthful revelation of income is

one of possibly multiple equilibria of the game induced by the optimal tax mechanism. In this

paper, we document several forces that make the optimal mechanism subject to “tax riots:”

equilibria in which households find it optimal to misreport their income because they expect

other households to do so. In common with the literature on crime prevention (see e.g. Bond

and Hagerty [2]), tax riots emerge as a consequence of the limited resources available to the

government to investigate suspicious reports. In addition, we find the optimal tax system

to be increasingly redistributive in states in which many households are hit (or claim to be

hit) by negative shocks. This feature provides a rationale for the many instances in which

governments provide more generous benefits when many households face a common shock.

As an example, the duration of unemployment insurance benefits has been routinely raised in

response to increases in unemployment (see e.g. Moffitt [14]). While part of an optimal plan



if the potential for multiple equilibria is neglected, the additional insurance available to poor

people when there are more of them is a new engine of “tax riots:” when more of the other

households are expected to claim adverse shocks, the benefits from misreporting increase and

make it optimal for each household to deviate from truth telling.

The potential for an optimal direct mechanism to be subject to multiple equilibria is

well known in the theoretical literature, and a significant body of research has studied the de-

sign of mechanisms that uniquely implement desirable outcomes.1 In our analysis, we consider

three possible solutions to the emergence of multiple equilibria. First, we consider a more

general mechanism, that offers lotteries to induce households to indirectly report their beliefs

about the strategy followed by their peers. This mechanism is successful in implementing

outcomes arbitrarily close to the best, but it relies very heavily on the households’ knowledge

of the parameters of the economy and their sophistication in anticipating very precisely their

peers’ strategies. Our second solution considers the polar opposite case: we analyze the op-

timal ex post mechanism, which has (essentially) a unique equilibrium and is very robust to

the households’ (and the planner’s) knowledge of parameters and beliefs about other players’

strategies. This robustness comes at a significant loss. The extent of insurance is severely

limited; furthermore, contrary to the optimal ex-ante incentive-compatible allocation, less

redistribution is implemented in states in which more people claim low endowment. Finally,

we consider a maximin mechanism, in which the government chooses the direct mechanism

that achieves the highest worst-equilibrium utility. This mechanism resembles the optimal

ex post mechanism, and in some cases it coincides with it.

1See e.g. the surveys in Moore [15] and Jackson [10], and the analysis of Bayesian implementation in
Jackson [9].
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The forces at work in our paper are present, in differing degrees, in a range of optimal

taxation models far wider than the one we present. Mechanism design tools have been a useful

tool in public finance since the pioneering work of Mirrlees [13]. More recently, the same tools

have been adopted to study dynamic settings by Golosov, Kocherlakota and Tsyvinski [7],

Golosov and Tryvinski [8], Albanesi and Sleet [1] and Da Costa and Werning [3]. Our analysis

suggests that the optimal design of an optimal tax system may be significantly impacted if

preventing multiple equilibria is an important consideration.

In section 2, we describe the economic environment that we consider. Section 3 char-

acterizes the optimal direct mechanism which, by construction, has as an equilibrium that

all households report truthfully. Our main result is that when the number of households is

large, there always exists another equilibrium of this mechanism where households with high

endowments underreport their income. In section 4, we derive a non-direct mechanism which

implements the truthful equilibrium uniquely. In section 5, we consider ex post implementa-

tion, and in section 6, a maximin direct mechanism approach. Section 7 contains a numerical

example, and section 8 concludes.

2. The Model

Consider a static world populated by a large finite number, N + 1, of identical house-

holds. Each household receives an endowment e ∈ {e, e}. With probability p, a household

draws a low endowment e = e and with probability (1−p), it draws a high endowment e = e.

This probability p is an aggregate random variable with support [p, p] ⊂ [0, 1] and density
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f(p).2 (We will also consider the degenerate case where p = p, or p is known.3 Given p, house-

hold realizations are independent. Households and the government do not directly observe

p or the endowment realizations of other households. We do assume, however, there exists

an ability for high endowment households to prove they are indeed high endowment house-

holds (say by displaying their endowment), but no corresponding ability for low endowment

households to prove they are indeed low endowment households.

After endowment realizations, the government implements some tax mechanism and

uses the revenues to make transfers to households. After taxes and transfers occur, the

government can, at zero cost, audit a fraction π of households and observe the endowments

of those audited. If it wishes, the government can, at this point, punish a household by

destroying its ability to consume the consumption good. (This is assumed to be a pure

“wasteful” punishment. The government cannot transfer the household’s consumption to

other households.)

Household preferences are represented by u(c), where c is the household’s private

consumption level. Assume u(0) = 0, u′(c) > 0, u′′(c) < 0, and limc→∞ u′(c) = 0. Further

assume that −u′′(c)/u′(c) is weakly decreasing in c. (Decreasing absolute risk aversion, or

DARA).

3. Optimal Direct Mechanisms

Given the above model, a natural question to ask is how a government interested in

maximizing ex-ante expected utility should tax, audit and spend. The revelation principle

2Though this is not essential, we assume that the support has “no holes”, i.e., the probability of any
subinterval of [p, p̄] is strictly positive.

3With this assumption, our model is close to the multiple agent model of Krasa and Villamil [11].
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allows this search among mechanisms to be restricted to a simple class – direct mechanisms

– but is subject to one crucial (and well known) caveat: while truth-telling will be, by

construction, an equilibrium of the mechanism, it may not be the only equilibrium. Our

strategy is to use standard mechanism design methods to characterize an optimal tax/audit

mechanism and then ask whether these other equilibria indeed exist.

In a direct mechanism, households report their endowment realization to the govern-

ment, and taxes and transfers depend on these reports. Optimal auditing and punishing is

particularly simple: audit only those households which reveal the low endowment (by assump-

tion, households which reveal e = e cannot be lying) and audit as many of them as possible

given the assumption that at most a fraction π of households can be audited. Without loss

of generality, if a household is audited and found to have lied, its consumption is set to zero.

A household’s probability of being audited will depend on the number of households

which announce a low endowment. Let n(N) be the largest integer such that n(N)
N+1

≤ π, and

n the number of households which report the low endowment. If n ≤ n(N), it is optimal

to audit all n households. If n > n(N), n(N) households will be audited. This auditing

mechanism implies that a household which reports a low endowment has probability π( n
N+1

) ≡

min{1, n(N)
n

} of being audited. (As N → ∞, π(m) converges uniformly to min{1, π
m
} for

m ∈ [0, 1].)

A (symmetric) direct tax system is a vector of functions (τ , τ 0, τ 1)(m) which represents,

respectively, the tax paid by those who reveal e = e, the tax paid by those who reveal e = e

and are not audited, and the tax paid by those who reveal e = e, are audited, and found

to have been truthful, all as functions of the fraction of households which report the low

endowment, m. Taxes may be negative or positive, but must be no more than the endowment
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of the people they are levied upon.4 Note that the functions (τ , τ 1, τ 0)(m) implicitly depend

on the number of agents. This will become important later as we take N → ∞.

A tax mechanism is considered feasible if aggregate taxes weakly exceed 0 for each

realization of n = 0, . . . , N + 1,

(1)

n

N + 1

[
π

(
n

N + 1

)
τ 1

(
n

N + 1

)
+

(
1 − π

(
n

N + 1

))
τ 0

(
n

N + 1

)]
+

(
1 − n

N + 1

)
τ

(
n

N + 1

)
≥ 0.

A tax mechanism is considered incentive compatible if, for a high endowment house-

hold, the expected utility of revealing the high endowment weakly exceeds the expected

utility of falsely revealing a low endowment. Let ∆(m) denote the difference in expected util-

ity between truthfully announcing a high endowment and falsely claiming a low endowment,

conditional on a fraction m of households realizing a low endowment. Thus,

(2) ∆

(
n

N + 1

)
≡ u

(
e − τ

(
n

N + 1

))
−

(
1 − π

(
n + 1

N + 1

))
u

(
e − τ 0

(
n + 1

N + 1

))
.

To be incentive compatible, an allocation (τ , τ 1, τ 0)(m) must satisfy the incentive constraint

(3)

∫ p̄

p

N∑
n=0

Q(n|p, N)∆

(
n

N + 1

)
(1 − p)f(p)dp ≥ 0,

where Q(n|p, N) ≡ (
N
n

)
pn(1 − p)N−n denotes the probability of exactly n out of N agents

realizing the low endowment when each has an i.i.d. probability p of doing so. Note that

4τ0(m) is only defined for values of m such that m > π̄. To save on notation, we will sometimes write
(1 − π(m))τ0(m) even for m ≤ π̄; this should be interpreted as 0. Similarly, τ̄(m) is undefined when m = 1,
and τ1(m) is undefined when m = 0, but (1 − m)τ̄(m) should be interpreted as 0 when m = 1, and mτ1(m)
should be interpreted as 0 when m = 0.
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(1−p)f(p) is a household’s updated density of p conditional on it receiving a high endowment

(up to a constant).

An optimal symmetric allocation (τ ∗, τ ∗
1, τ

∗
0)(m) maximizes the utility of a given agent,

or solves

(4)

max
(τ ,τ1,τ0)(m)

∫ p̄

p

N∑
n=0

Q(n|p, N)
[
(1 − p)u

(
e − τ

(
n

N + 1

))
+

p
[
π

(
n + 1

N + 1

)
u

(
e − τ 1

(
n + 1

N + 1

))
+

(
1 − π

(
n + 1

N + 1

))
u

(
e − τ 0

(
n + 1

N + 1

))]]
f(p)dp

subject to (1) and (3).

The objective function is continuous in the tax functions, and the constraint set is

compact, hence a solution to this problem exists.5 While the constraint set (3) is not convex,

the appendix shows that changing variables from taxes to utility entitlements makes the

objective function linear and the constraint set convex, and that the maximum is unique.

We will assume that the solution is interior and that full risk sharing is not an incentive-

compatible allocation, at least for all values of N above some threshold.6

By construction, if all other households report truthfully, it is in the (weak) interest

for each household to report truthfully. Thus one equilibrium of the optimal tax mechanism

(τ ∗, τ ∗
0, τ

∗
1) is for all households to tell the truth. But what if others are expected to lie?

Is it optimal to lie if all other households are lying? The key to answering this question is

5Notice that the tax functions have finite domain, (for a given N , there is only a finite number of possible
realizations of the fraction of agents which report a low endowment). This implies the tax functions are
finite-dimensional vectors.

6The results carry easily over to the case in which the solution may be at a corner, but the notation
becomes significantly more cumbersome. A technical appendix for that case is available upon request from
the authors.
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characterizing the optimal allocation (τ ∗, τ ∗
1, τ

∗
0). In particular, an optimal allocation will

imply a function ∆∗(m; N) — the difference in utility between truthfully announcing a high

endowment and falsely claiming a low endowment, conditional on a fraction m of households

reporting a low endowment. Whether other equilibria exist depends on the shape of ∆∗(m; N)

which itself depends on how taxes vary in response to the aggregate realization of m. We show

that when N and m are large, ∆∗(m; N) < 0. This precisely implies that high endowment

households wish to lie if they expect other high endowment households to lie as well.

We start characterizing (τ ∗, τ ∗
0, τ

∗
1) by deriving the first-order conditions for optimality.

We write the Lagrange multipliers on the constraints (1) as

µ

(
n

N + 1

) ∫ p

p

Q(n|p, N + 1)f(p)dp,

and let λ be the multiplier on the incentive-compatibility constraint (3).

The first order conditions with respect to τ , τ 1 and τ 0 are

(5) u′ (ē − τ̄ (m)) − µ (m)

1 + λ
= 0, for m = 0,

1

N + 1
, . . . ,

N

N + 1

(6) u′ (e − τ 1 (m)) − µ (m) = 0, for m =
1

N + 1
, . . . ,

N

N + 1
, 1

(7)

u′ (e − τ 0 (m)) − µ (m) − λ u′ (ē − τ 0 (m))

∫ p̄

p
1−p

p
[pm(1 − p)1−m]N+1f(p)dp∫ p̄

p
[pm(1 − p)1−m]N+1f(p)dp

= 0,

for m =
n̄(N) + 1

N + 1
, . . . ,

N

N + 1
, 1.
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The resource constraint, which binds at an optimum, is

(8) m [π (m) τ 1 (m) + (1 − π (m)) τ 0 (m)] + (1 − m) τ (m) = 0, for m = 0,
1

N + 1
, . . . , 1

From now on, we use * superscripts to denote the optimal tax plan and the La-

grange multipliers that solve the first-order conditions. Further, let (τ ∗, τ ∗
1, τ

∗
0)(m; N) denote

the optimal tax system for a given value of N . Note that for a given N , a tax system

(τ , τ 1, τ 0)(m; N) is defined only for those fractions m which are compatible with N . (That

is, m ∈ {0, 1
N+1

, . . . , 1}). However, for each N , the first order conditions are nevertheless well

defined for all m ∈ [0, 1] and we can consider their pointwise limits as N → ∞.

Proposition 1. There exists a unique value λ∞, and unique functions τ̄∞(m), τ∞
1 (m),

µ∞(m) defined on [0, 1] and τ∞
0 (m) defined on [π̄, 1], that satisfy the limits of first-order

conditions (5), (6), (7), and (8), as N → +∞, and the limiting incentive-compatibility

constraint

(9)

∫ p̄

p

(1 − m)∆∞(m)f(m)dm = 0,

where ∆∞(m) = u(e− τ∞(m))− (1− π(m))u(e− τ∞
0 (m)) represents, for the limiting alloca-

tion, the difference in expected utility between truthfully announcing a high endowment and

falsely claiming a low endowment, conditional on a fraction m of households realizing a low

endowment.

The functions τ̄∞, τ∞
1 , µ∞, and τ∞

0 are continuous everywhere and continuously dif-

ferentiable everywhere but points π, p, and p̄, where they have finite left and right derivatives.
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Finally, let (mN , N)∞N=1 be a sequence converging to (m,∞). Then τ̄ ∗(mN ; N) →

τ̄∞(m), τ ∗
1(mN) → τ∞

1 (m), and τ ∗
0(mN ; N) → τ∞

0 (m).

Proof. See appendix.

Recall, for a given N , that ∆(m) denoted the difference in expected utility between

truthfully announcing a high endowment and falsely claiming a low endowment, conditional

on a fraction m of households realizing a low endowment. Let ∆∗(m; N) denote this difference

given the optimal tax mechanism; ∆∞(m) is the limit of ∆∗(m; N) as N goes to infinity.

Proposition 2. There exists m̂ ∈ [max{p, π}, p] such that for all m ∈ (m̂, 1], ∆∞(m) < 0.

Proof. See appendix

Proposition 2 relies on two economic forces in the model, both of which point in the

direction of providing more incentives to lie in high m states:

1. that π(m) is decreasing implies that as more households report a low endowment, the

probability of a lying household being caught decreases;

2. the optimal plan provides more insurance in poorer (high m) aggregate states.

The first effect is not crucial for our analysis. Our proof relies only on the fact that π′(m) ≤ 0.

The optimal plan provides more insurance in poorer (high m) aggregate states, for two rea-

sons. First, decreasing absolute risk aversion implies this directly. Second, the efficient

provision of incentives requires the optimal plan to be relatively less generous to low endow-

ment households in low m (rich) states. This occurs because in low m states, unhappy low

endowment households do not affect the objective function much (since there are not many

of them) but loosen the incentive constraint greatly since the many high endowment house-
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holds are all deterred from emulating them. More insurance implies higher taxes on high

endowment households (relative to low endowment households) and thus greater incentives

to lie. Propositions 1 and 2 then imply our main result.

Theorem 1.There exists N such that for all N ≥ N , the optimal direct mechanism denoted

by (τ ∗, τ ∗
1, τ

∗
0)(m) admits an equilibrium where all households report the low endowment.

Proof. From propositions 1 and 2, limN→∞ ∆∗ (
N

N+1
; N

)
= ∆∞(1) < 0. If a high endow-

ment household believes all other households will announce low (regardless of their actual

endowment), then ∆∗ (
N

N+1
; N

)
represents its incentive to tell the truth.

Given this result, how should a policymaker concerned with bad equilibria proceed? In

the following sections we offer three alternatives: 1) a non-direct mechanism which (almost)

delivers the best equilibrium as the unique equilibrium, 2) ex post implementation, and 3),

a saddle-approach of maximizing the value of the worst equilibrium, which we prove to be

equivalent to implementation in interim-dominant strategies.7

4. General Mechanisms

In the previous mechanisms, we considered mechanisms in which households report

only their endowment. As is well known, strict implementation is much easier with more-

general mechanisms. While their own endowment is the only piece of information that house-

holds know and that is not common knowledge, households also form beliefs about every

other household’s reporting strategy. Since these beliefs must be correct in equilibrium, the

7Ennis and Keister [5, 4] suggest yet another possibility: selecting among the multiple equilibria using
some other refinement, such as risk dominance. In line with the main message of our paper, their approach
would also imply that the optimal plan is in general affected by the potential for multiple perfect Bayesian
equilibria, since the plan itself would affect which equilibrium is selected.
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government can exploit them to design more sophisticated mechanisms that rule out undesir-

able equilibria. We now describe such a mechanism; this mechanism has the best outcome as

a unique pure strategy equilibrium, and its mixed-strategy equilibria can be made arbitrarily

close to the best outcome.

The new mechanism requires households to report two messages to the government:

its own endowment and, if its endowment is low, a “flag.” A household’s transfer is contingent

on its own report, as well as on the aggregate fractions of people that report low endowment

and that flag the outcome. We will denote the taxes paid by high endowment households

as τGM(me, mf ), where me is the fraction of households with the low endowment and mf is

the fraction of households flagging. Likewise, define τ 1,GM(me, mf , f) and τ 0,GM(me, mf , f)

as the taxes paid by the low endowment types (audited or not audited) as functions of me,

mf , and whether the household itself flagged. The mechanism we construct uses this final

argument only on households which are audited.

Our main result of this section is then,

Theorem 2.There exists N such that if N ≥ N , then for all ε > 0, there exists a mechanism

such that all equilibria given this mechanism have value within ε of the optimum.

Proof. See appendix.

The general idea behind our mechanism is that taxes depend on the fraction of house-

holds which flag in such a way as to 1) create incentive to flag when there is more than a

small probability that other households will lie, and 2) create an incentive to tell the truth

when there is more than a small probability that other households will flag. This expanded

mechanism eliminates the equilibrium outcome of all high endowment households claiming
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low endowments since this belief will cause all low endowment households to flag, and thus

trigger a tax policy where telling the truth is a dominant strategy. The proof also handles

mixed strategy equilibria and shows that while these cannot necessarily be eliminated, they

can be made arbitrarily close to the best equilibrium.

This mechanism works as follows: If at least one household flags, then the taxes and

transfers to non-flagging households are independent of their endowment report. Nevertheless,

such households still face a positive probability of being audited if reporting low. Thus there

is no gain and a possible punishment from falsely claiming a low endowment. Thus high

endowment households should tell the truth if they expect another household to flag. If no

households flag, then the taxes and transfers emulate the optimal direct mechanism. Finally,

the mechanism offers each low endowment household a lottery with a negative expected

utility payoff if other households are expected to tell the truth, and a positive expected

utility payoff if other households are expected to lie with more than a small probability.

The “flag” determines whether the household purchases this lottery or not. In essence, the

government uses the lottery to elicit household expectations regarding the strategy of other

households.

5. Ex Post Implementation

Wilson [16] argues that we should strive for more robust notions of implementation.

In particular, in our environment, the direct mechanism and the general mechanism both

depend on households having precise knowledge of f(p).

We now consider the much stricter requirement of ex post implementation; this requires

designing mechanisms such that the prescribed equilibrium actions to the households turn
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out to be optimal ex post, i.e., independently of the state of nature and of the actions

taken by other households. This stricter notion no longer requires households to have any

information on f , nor on the strategy that other households will follow. An added benefit is

such an approach eliminates the bad equilibrium in our environment and is particularly easy

to characterize. Since the revelation principle applies in this context as well, there exists a

direct mechanism that attains the best equilibrium within this restricted class. To find it,

one simply replaces the original incentive constraint (3) with a requirement ∆(m) ≥ 0 for all

m.

Proposition 3.For all ε > 0, there exists a mechanism with a unique ex post equilibrium

whose payoff is within ε of the solution to maximizing (4) subject to (1) and ∆(m) ≥ 0 for

all m.

Proof. If ∆(m) ≥ 0 is replaced with ∆(m) ≥ δ for any δ > 0, then every household strictly

prefers to tell the truth, regardless of the strategy of other households. As δ → 0, the solution

converges in value to the solution when δ = 0.

Recall that the optimal direct mechanism displayed multiple equilibria because it of-

fered relatively more insurance in poorer aggregate states. In essence, ex post implementation

eliminates this dependence of the level of insurance on the aggregate state. This has the ben-

efit of an unique equilibrium, but at the cost of a tighter constraint set and thus a lower social

value.
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6. Maximin Direct Mechanisms and Interim-Dominant Strategy Im-
plementation

The revelation principle allows the restriction to direct mechanisms either when looking

for a mechanism which delivers the best perfect Bayesian equilibrium (our focus in section

3) or the best ex post equilibrium (our focus in section 5). Direct mechanisms may also be

interesting in their own right for the simplicity of the reports they require. Given this, one

may wish to arbitrarily restrict attention to direct mechanisms.

While the ex post implementation described in the previous section uses a direct

mechanism, ex post mechanisms (direct or not) impose a very tight constraint set on a

policymaker concerned with bad equilibria. An interesting question is the direct mechanism

which delivers the best worst case scenario, or the best worst perfect Bayesian equilibrium.

We will call this the “maximin” problem for brevity.

We restrict our attention to symmetric mechanisms and equilibria for simplicity of

notation, though none of our results seems to hinge on this assumption.

A (symmetric) mechanism is now given by (τ̄ 0, τ̄ 1, τ 0, τ 1) as functions of n/(N + 1),

the fraction of people reporting low endowment (and of N + 1, the total number of people in

the economy).8

Compared to previous notation, we have the following differences:

• τ̄ 0 was simply referred to as τ̄ previously, and denotes taxes of high-income households

8While in principle the government could offer lotteries (introduce randomness even conditional on the
outcome n/(N + 1)), DARA implies that this will not happen in the maximin, so we can keep our notation
that prescribes single numbers. This can be proven along the same lines of the proof of theorem 4 below.
Similarly, we assume without loss of generality that the government audits exactly π

(
n

N+1

)
households. A

mechanism where the government audits fewer households than the maximum it is able is equivalent to one
where it audits the maximum and it then offers a lottery to audited households, some of them being treated
as if they were not audited.
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that declare high income.

• τ̄ 1 represents taxes on high-income households that report low and are audited. When

solving for the best equilibrium, we set τ̄ 1 ≡ ē without loss of generality. However,

if households misreport with positive probability in equilibrium, we cannot take for

granted that households found cheating will be assessed the maximal punishment.

The following proposition is very useful to characterize the solution to the maximin

problem.

Proposition 4. Let xB be the maximum equilibrium probability of misreporting for a mech-

anism (τ̄B
0 , τ̄B

1 , τB
0 , τB

1 ) (such a probability exists by continuity of the incentive-compatibility

constraint). Then there exists a mechanism (τ̄F , ē, τF
0 , τF

1 ) that has a unique equilibrium in

which households report truthfully with probability 1 and that attains an equilibrium utility

level that is at least as high as the equilibrium of the original mechanism at xB. The equi-

librium of (τ̄F , ē, τF
0 , τF

1 ) is also an interim dominant strategy equilibrium (i.e., given any

probability x > 0 of misreports by other households, each household strictly prefers to report

truthfully).

Proof. See appendix.

Proposition 4 implies that we can restrict our search to mechanisms where truth-

telling is the (interim) dominant strategy; this is a great simplification, which offers a way

of characterizing and/or computing solutions. It is worth noting that the maximin will not

in general be attained, but will rather be a “supmin.” This is due to the open-set nature

of the problem: to rule out multiple equilibria, we require that households strictly prefer

reporting truthfully when other households are not doing so with probability 1. We will thus
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be interested in approximately optimal mechanisms.

In section 3, we proved that the best direct mechanism necessarily has a second, very

undesirable equilibrium. However, when N is large, there may be other direct mechanisms

that have a unique dominant strategy equilibrium close to the best incentive-compatible

allocation. In the next theorem, we establish a convenient necessary and sufficient condition

to check whether this is the case.

Theorem 3. Consider the following tax plan:

τ̄ test(m) =




τ̄∞(m) if m ≤ p̄

− m
1−m

e if m > p̄

τ test
1 (m) =




τ∞
1 (m) if m ≤ p̄

e if m > p̄

τ test
0 (m) =




τ∞
0 (m) if m ≤ p̄

e if m > p̄

A necessary and sufficient condition for the solution to the maximin problem to converge to

the best incentive-compatible allocation as N → ∞ is that the following inequality holds:

(10) ∫ p

p

[
u

(
ē − τ̄ test(m + (1 − m)x)

) − (1 − π(m + (1 − m)x))u
(
ē − τ test

0 (m + (1 − m)x)
)]·

(1 − m)f(m)dm ≥ 0, x ∈ [0, 1)
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Proof. See appendix.

The intuition of theorem 3 is simple. As N grows large, if households report truthfully,

the probability of observing outcomes where more than a fraction p̄ of households report low

endowment goes to 0. Hence, the expected utility cost from perturbing the plan on those out-

comes becomes negligible.9 The “test” plan takes advantage of this flexibility to redistribute

as much as possible in favor of the rich over these outcomes, which retain positive probability

when high-income households are expected to misreport their type with probability x > 0.

Equation (10) is the limiting condition for truth-telling to be a dominant strategy. If it holds,

then for large N there will be plans close to the test plan for which truth-telling is dominant

and that have a vanishing utility difference with respect to the best incentive-compatible

allocation. If (10) does not hold, then imposing that truth-telling be a dominant strategy

will force further changes in the tax plan, and those changes will have a discrete cost, even

in the limit.

While (10) is an intuitive and computationally convenient way to check, it still involves

endogenous variables. The following corollaries display two special cases where the result can

be derived in terms of the exogenous parameters directly.

Corollary 1 . If p = p̄, then the solution to the maximin problem converges to the best

incentive-compatible allocation.

Proof. In this case, (10) becomes

τ̄ test(m) − (1 − π(m))τ test
0 (m) ≥ 0, m ∈ [p̄, 1)

9For this, it is important that utility is bounded below.
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For m = p̄, this equation coincides with (9); for greater values, it is satisfied given the

definition of the test plan.

When there is no aggregate uncertainty, as N becomes large, the law of large numbers

implies that with very high probability a fraction of households very close to p̄ will receive

a low endowment. The utility of a tax plan depends only on the allocation it promises in a

neighborhood of that point, leaving the government free to use arbitrary tax functions on all

the values of m that would occur if households misreported their income.

As a numerical example, let u(c) = 2
√

c, ē = 3/2, e = 1/2, π̄ = 0.02, and that the

probability of drawing a low income is known and equal to 0.5. In an economy with 1,000,000

people, the probability that more than 50.2% of the people obtain the low endowment is less

than 1/1,000,000. We consider changing the optimal plan as follows: if m < .502, the new

plan coincides with the optimal plan; if m > .502, the new plan offers the highest possible

incentives to report high, by switching to the “test” tax plan. In the truth-telling equilibrium,

the utility cost of this change is trivial. Yet, the resulting plan ensures uniqueness: as the

fraction of people filing false reports rises, the probability of surpassing the 50.2% threshold

increases dramatically, and makes it very undesirable to falsely claim low endowment.

Corollary 2 . If p < p̄ = 1, then the solution to the maximin problem does not converge

to the best incentive-compatible allocation.

Proof. In this case, the test plan coincides with (τ̄∞, τ∞
1 , τ∞

0 ). We proved earlier that ∆∞

is continuous, and that ∆∞(1) < 0; this implies that (10) will fail for sufficiently high values

of x.

This case is the polar opposite of the preceding one. Here, the support of the distri-
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bution f extends all the way to 1, and the probability of outcomes where most households

receive low endowment does not vanish even in the limit. In this case, perturbing the optimal

tax plan to get rid of unwanted equilibria will necessarily involve a cost, no matter how large

N is.

7. A Numerical Example

Calculating the optimal direct mechanism is straightforward. For a given value of λ

(the Lagrange multiplier on the incentive constraint), and m (the fraction of agents with

a low endowment), the system of equations defined by the limits as N → +∞ of the

first-order conditions (5), (6), (7), and the resource constraint (8), define the variables

(τ(m), τ 1(m), τ 0(m), µ(m)). Given these functions, one can then calculate whether the in-

centive constraint is actually satisfied. One then iterates over λ to find the value of λ such

that the incentive constraint holds at equality.

For a simple representative example, let u(c) = 2
√

c, e = 3
2
, e = 1

2
, π = .02, and f(p) be

uniform [0, 1]. In this environment with full information, the functions (τ(m), τ 1(m), τ 0(m))

are each linear.
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Figure 1: Taxes on rich, τ(m)

Figure 1 displays τ(m) under three scenarios: full information, private information

under the optimal ex ante mechanism, and private information under the optimal ex post

mechanism.10 As m increases, the amount necessary to tax those with high endowments to

achieve consumption equality (the full information outcome) increases as well. With private

information, taxes are, not surprisingly, lower since society is providing less insurance.

10This figure and the following assume that the ex post mechanism can be approximated for N large by
the limit of the first-order conditions. Unlike the case of the ex ante mechanism, we have not proved this.
While in the limit the first-order conditions can be solved for each value of m independently, for finite N a
link is generated by the fact that a misreport increases the count of people reporting low income by 1. It can
be proven that the solution of the finite case will converge to the continuum solution if the eigenvalues of the
Jakobian of the first-order conditions are bounded away from 0 as N → +∞.
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Figure 2: Taxes on audited poor, τ 1(m)

Figure 2 displays τ 1(m). As m increases, the subsidy necessary to achieve consumption

equality decreases with m, thus taxes (which here are negative) increase with m as well. The

effect of private information is to provide less of a subsidy to the poor, decreasing insurance.
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Figure 3: Taxes on non-audited poor, τ 0(m)

Figure 3 displays τ 0(m). Here, private information plays a much more prominent
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role, and taxes are nonmonotonic in the optimal ex-ante mechanism. For low m (states

where society is rich), results are driven by the discrepancy between the objective function

and the constraint due to Bayes’ law. While the objective function is the unconditional

expected utility of a household, the incentive constraint is conditional on the household

having high endowment. In computing expected values, Bayes’ rule implies that a high-

income household will regard as more likely states of nature in which the probability of

low income (m) is low. Ceteris paribus, depressing consumption of low-income households

has therefore a disproportionate benefit on incentives, compared to its welfare cost. For

intermediate and high values of m, the primary role of taxes as an insurance mechanism

ensures that transfers decrease as the number of high-income households decreases.

0.2 0.4 0.6 0.8 1

-0.5

0.5

1

1.5

2

2.5
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��m�

Figure 4: Ex post gain to truth-telling as function of aggregate reports, ∆(m)

Finally, Figure 4 displays ∆(m), the gain to truth-telling as a function of m. That

∆(1) is negative confirms all households announcing low is an equilibrium.

Comparing the best ex ante and ex post incentive compatible allocations, there are

two striking differences:
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• The overall level of social insurance is greatly reduced under the ex post constraint. The

impossibility of trading off incentives across states is very detrimental to the degree of

insurance that is incentive compatible over a wide range of aggregate outcomes.

• The pattern of redistribution as a function of the aggregate performance of the economy

is the opposite. The best ex ante incentive-compatible allocation exploits the cheap

incentives available when few people report low income to provide generous redistribu-

tion when many people report a negative outcome. In the ex post mechanism, cheap

incentives when few people report low income can only be used to provide close to full

insurance in those states, while the limited auditing capacity restricts the government

to trivial amounts of redistribution if many households report the low realization.

Since p̄ = 1, corollary 2 implies that the maximin mechanism is bounded away from

the best ex-ante incentive-compatible allocation. In the numerical example, the maximin

mechanism coincides in the limit with the optimal ex post mechanism.11 Contrary to the

ex post mechanism, the maximin solution does allow trading off incentives across states.

However, ruling out all mixed-strategy equilibria, as well as the undesirable pure-strategy

equilibrium, requires either of the following:

• The government could concentrate its incentive provision in a region close to m = 1;

given enough rewards for reporting truthfully in that region, households would then

always strictly prefer reporting truthfully, independently of their expectations about

other households’ (possibly mixed) strategies. However, this is very costly: the best

11This can be proven to hold more in general, as long as the density f is log-convex, the Lagrange multipliers
on the ex-post incentive constraints are increasing in m, and the solutions of the ex post and interim problem
converge to the pointwise limit of the first-order conditions as N → +∞.
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incentive-compatible allocation offers greatest redistribution precisely in this region,

and the limited capacity to audit when m is close to 1 implies that incentive provision

requires large changes in tax and transfer payments, at a very big insurance loss.

• Alternatively, the government could spread additional incentives throughout the range

of possible realizations of m. One particular way of doing so is following the optimal

ex post mechanism, which turns out to be optimal for a uniform distribution.12

8. Conclusion

In this paper we studied the design of optimal tax mechanisms when the government

is concerned about the presence of multiple equilibria. To prevent households from coordi-

nating on an undesirable equilibrium, the government faces a trade-off. At one end of the

spectrum, it can rely on complicated mechanisms that hinge on the households’ sophistica-

tion in understanding their environment and the strategic interaction with other households.

At the opposite extreme, there are very blunt mechanisms that are simple and robust, but

impose severe limits on the ability to achieve the governments’ objectives (social insurance,

in our case). The economic forces we emphasized are common to many other problems in

public finance, and accounting for them has important implications for policy advice.

12In experimenting with a truncated normal distribution, we found that, given our preferences, the maximin
coincides with the optimal ex post mechanism when the variance is not too low, and oscillates very close to
the ex post mechanism otherwise.
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Appendix

A1. Sufficiency of the First-Order Conditions and Uniqueness of the
Maximum of (4) subject to (1) and (3)

In the problem of maximizing (4) subject to (1) and (3), define Ū
(

n
N+1

)
the utility

that the planner delivers to households reporting high-income. Similarly, let U1

(
n

N+1

)
and

U0

(
n

N+1

)
be the utility promises to households that report low income and are or are not

audited, respectively. It is straightforward to check that Ū , U1 and U0 are strictly decreasing

transformations of τ̄ , τ 0 and τ 1; hence, the first-order conditions of the two maximization

problems coincide. In terms of utility promises, the problem becomes

max
(U,U1,U0)(m)

∫ p̄

p

N∑
n=0

Q(n|p, N)
[
(1 − p)Ū

(
n

N + 1

)
+

p
[
π

(
n + 1

N + 1

)
U1

(
n + 1

N + 1

)
+

(
1 − π

(
n + 1

N + 1

))
U0

(
n + 1

N + 1

)]]
f(p)dp

subject to

n

N + 1

[
π

(
n

N + 1

)
u−1

(
U1

(
n

N + 1

))
+

(
1 − π

(
n

N + 1

))
u−1

(
U0

(
n

N + 1

))]
+

(
1 − n

N + 1

)
u−1

(
U

(
n

N + 1

))
≤ n

N + 1
e +

(
1 − n

N + 1

)
ē.

and (3), where ∆ is now equal to

∆

(
n

N + 1

)
= Ū

(
n

N + 1

)
−

(
1 − π

(
n + 1

N + 1

))
u

[
ē − e + u−1

(
U0

(
n

N + 1

))]
.

The objective function is linear in the utility promise. Since u−1 is strictly convex, the

resource constraint yields a strictly convex set. For (3), we notice that the second derivative
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of ∆ with respect to U0 is

1[
u′ [u−1

(
U0

(
n

N+1

))]]2
u′ [ē − e + u−1

(
U0

(
n

N+1

))] ·
[

u′′ [ē − e + u−1
(
U0

(
n

N+1

))]
u′ [ē − e + u−1

(
U0

(
n

N+1

))] − u′′ [u−1
(
U0

(
n

N+1

))]
u′ [u−1

(
U0

(
n

N+1

))]
]
≥ 0,

where the inequality follows from the assumption of decreasing absolute risk aversion. Hence,

the set of utility promises that satisfies (3) is (weakly) convex.

Finally, notice that the resource constraint must be binding at an optimum: otherwise,

it would be possible to improve upon the objective function without tightening the incentive

constraint by increasing τ̄ and/or τ 1. Since the resource constraint set is strictly convex, this

implies a unique maximum.

A2. Proof of Proposition 1

This proof of this proposition requires several lemmas.

Lemma 1 . lim supN→∞ λ∗(N) < ∞.

Proof. Suppose by contradiction that there exists a subsequence {Nt}∞t=1 such that

λ∗(Nt) →t→∞ ∞. The first-order conditions imply ē − τ̄ ∗(m; Nt) > e − τ ∗
1(m; Nt) > e −

τ ∗
0(m; Nt). This fact, along with the fact that the resource constraint must be binding, im-

plies that ē − τ̄ ∗(m; Nt) is uniformly bounded away from 0. We call this bound c.

Consider now ε > 0. We analyze the solution of the system the system (8), (5), (6),

and (7) on m ∈ [0, 1− ε]. Equation (8) implies that u′(ē− τ̄ ∗(m; Nt)) must remain uniformly

bounded away from 0 on this interval. Equation (5) then implies that µ∗(m; Nt) must diverge

uniformly. If limc→0 u′(c) < +∞, (7) would have no interior solution in the limit, contrary to

27



our assumption. If limc→0 u′(c) = ∞, then (7) implies that e− τ ∗
0(m; Nt) converges uniformly

to 0. Hence, ∆∗(m; Nt) is asymptotically uniformly greater or equal than u(c) on [0, 1 − ε].

Consider now the interval m ∈ [1 − ε, 1]. From (6) and (7) and feasibility, we obtain

τ ∗
0(m; N) ≥ − εē

1 − ε
,

which implies

∆∗(m; Nt) ≥ −u

(
ē +

εē

1 − ε

)
, m ∈ [1 − ε, 1]

As t → +∞, the left-hand side of (3) is asymptotically greater or equal to

u(c)

∫ min{p̄,1−ε}

p

f(p)dp − I1−ε<p̄u

(
ē +

εē

1 − ε

) ∫ p̄

1−ε

f(p)dp,

where I1−ε<p̄ = 1 if 1 − ε < p̄, and is 0 otherwise. For ε sufficiently small,13 the quantity

above is strictly positive. This would imply that the incentive constraint is asymptotically

slack, which contradicts limt→+∞ λ∗(Nt) = +∞.

Lemma 2 . µ∗(m; N) is uniformly bounded as N → +∞.

Proof. By contradiction, suppose ∃(mt, Nt)
∞
t=0 : limt→+∞ µ∗(mt, Nt) → ∞. We previously

established that λ∗(Nt) is a bounded sequence. If limc→0 u′(c) < +∞, this would imply

that (5), (6), (7) have no interior solution, contradicting our assumption. Otherwise, these

conditions imply that τ̄ ∗(mt, Nt) →t→+∞ ē, τ ∗
0(mt, Nt) →t→+∞ e, and τ ∗

1(mt, Nt) →t→+∞ e.

13Notice that the lower bound c is independent of ε.
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In this case, the resource constraint (8) is asymptotically slack, which yields a contradiction.

Lemma 3 .If limc→0 u′(c) = +∞, then there exists a value εc such that consumption of all

households (that report truthfully) in the optimal plan is above εc independently of N .

Proof. Since we know from the preceding lemmas that the Lagrange multipliers are

uniformly bounded, the first-order conditions imply that the marginal utilities must also be

uniformly bounded. The conditions in the lemma are necessary for this to be the case.

We will use the bound εc below. If limc→0 u′(c) < +∞, then εc = 0.

Lemma 4 .There exists a value Ec such that consumption of all households in the optimal

plan is below Ec, independently of N .

Proof. Suppose by contradiction there is a sequence (mt, Nt)
∞
t=0 such that, along the

sequence, a selection from the taxes (τ̄ ∗, τ ∗
1, τ ∗

0) diverges to −∞. Notice τ ∗
0(m; N) > τ ∗

1(m; N)

for all values of N and all values of m for which τ ∗
0(m; N) is defined. Furthermore, τ ∗

1(m; N) >

τ̄ ∗(m; N) + e − ē, except for m = 1, when τ̄ ∗(1; N) is not defined.

From the sequence (mt, Nt), we select a subsequence in which mt = 1. We distinguish

two cases, at least one of which must be true.

1. We obtain a new subsequence (1, N̂s)
∞
s=0 in which the selection is still divergent. In this

case, it must be the case that τ ∗
1(1, N̂s) → −∞, but this eventually violates the resource

constraint.

2. After taking all occurrences of mt = 1 out, the remaining subsequence (m̃t, Ñt)
∞
t=0

admits a divergent selection. Given the relationship among taxes stated above, it must
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be the case that limt→∞ τ̄ ∗(m̃t, Ñt) = −∞. Since λ∗(N) is bounded, it follows that

limt→∞ µ∗(m̃t, Ñt) = 0, which implies limt→∞ τ ∗
1(m̃t, Ñt) = −∞. We must also have

limt→∞ Nt = ∞, since in any problem with finite N taxes are a finitely dimensional

vector and the resource constraint imposes bounds at all values for which they are

defined. It follows that, in the limit, there is at least a fraction π̄ of people that “pay”

either τ̄ ∗(m̃t, Ñt) or τ ∗
1(m̃t, Ñt) = −∞. This would again violate the resource constraint

eventually, leading to a contradiction.

We now study the left-hand sides of the system of first-order conditions (5)-(7) and of

the resource constraint (8) as functions of τ̄ , τ 0, τ 1, µ, λ, m, N . We will consider the following

domain: τ̄ ∈ [ē − Ec, ē − εc], τ i ∈ [e − Ec, e − εc], i = 0, 1, µ ∈ [0, µ̄], λ ∈ [0, λ̄], m ∈ [0, 1],

N = 1, 2, . . . , +∞. When N = +∞, we take pointwise limits, so the expressions for the

left-hand side of (7) and (8) converge to the right-hand side of14

(A1) 0 =




u′ (e − τ 0) − λu′ (ē − τ 0)
(

1
m
− 1

) − µ if m ∈ [p, p̄]

u′ (e − τ 0) − λu′ (ē − τ 0)
(

1
p
− 1

)
− µ if m ∈ [0, p]

u′ (e − τ 0) − λu′ (ē − τ 0)
(

1
p̄
− 1

)
− µ if m ∈ [p̄, 1]

(A2) 0 = min {m, π̄} τ 1 + max {0, m − π̄} τ 0 + (1 − m) τ

14If p = 0, all occurrences of p in (A1) can be replaced by an arbitrary value p̂ < π̄. Except for integer
problems at small values of N , the value of τ0 for m < π̄ is irrelevant, since all households reporting low
income are audited at such values of m.
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The domain specified above is compact if the set {1, . . . , +∞} is endowed with the

metric d(N1, N2) ≡ |1/N1 −1/N2|. The left-hand sides of (5)-(7) and (8), with the extensions

(A1) and (A2), are continuous functions of τ̄ , τ 0, τ 1, µ, λ, m, N over the domain and with the

metric defined above.15 By compactness, they also are uniformly continuous.

We are now ready to prove proposition 1.

Proof.

1. Existence:

By lemma 1, we can find a sequence {Nt}∞t=1, with Nt →t→∞ ∞, such that λ∗(Nt)

converges, to a value that we define λ∞ (we will later prove uniqueness of this value,

justifying labelling it as such). Given any m ∈ [0, 1], we can find a sequence {mNt}∞t=1

such that mNt = iNt/(Nt + 1) for some sequence of integers {iNt}∞t=1, and mNt →t→+∞

m. τ̄ ∗(mNt ; Nt), τ ∗
1(mNt ; Nt), τ ∗

0(mNt ; Nt), µ∗(mNt ; Nt) satisfy the first-order conditions

(5)-(7), and the resource constraint (8). Since the tax policy and the multipliers are

uniformly bounded, there exists a convergent subsequence of these values. Let τ̄∞(m),

τ∞
1 (m), τ∞

0 (m), µ∞(m) be the limit. By uniform continuity of the first-order conditions

and the resource constraint, these limits satisfy equations (5), (6), (A1), and (A2).

By the implicit function theorem, the resulting values are continuously differentiable,

except at m = π̄, m = p, and m = p̄, where they are only continuous and have finite

left and right derivative.

Let FNt(m) be the c.d.f. of the fraction Nt of households receiving low income, condi-

15The only step worth mentioning is that, if (mN , N)∞N=1 is a sequence converging to (m,∞), a distribution
with density [pmN (1−p)1−mN ]N+1f(p)� p̄

p
[pmN (1−p)1−mN ]N+1f(p)dp

on [p, p̄] converges weakly to the degenerate distribution that puts

mass 1 on m if m ∈ [p, p̄], and on the closer bound otherwise.
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tional on the Nt + 1st household having high income. As Nt → ∞, this distribution

converges weakly to
∫ m

p
(1 − p)f(p)dp/

∫ p̄

p
(1 − p)f(p)dp, when m ∈ [p, p̄] (otherwise it

converges to 0 or 1). Next, extend τ̄ ∗(m, Nt) to [0, 1] by defining

τ̄ ∗∗(m; Nt) ≡ τ̄ ∗
(

i(m, Nt)

Nt + 1
; Nt

)
,

where i(m, Nt) is the smallest integer such that i(m,Nt)
Nt+1

≥ m if m < 1, and is equal to Nt

if m = 1. We can extend τ ∗
0 to [π̄, 1]. The functions τ̄ ∗∗(m; Nt), and τ ∗∗

0 (m; Nt) coincide

with τ̄ ∗(m; Nt) and τ ∗
0(m; Nt) on all points of positive probability mass in equation (3),

and they converge uniformly to the continuous functions τ̄∞(m) and τ∞
0 (m). Since (3)

holds for all values of N , it then follows that λ∞, τ̄∞(m), and τ∞
0 (m) satisfy (9) as well.

2. Uniqueness:

If there were multiple subsequences converging to different values, it would imply that

the limiting first-order conditions and constraints (5), (6), (A1), (A2) and (9) have more

than one solution. We prove that this is impossible. First, we prove that, given λ and

m, (5), (6), (A1) and (A2) have a unique solution. Then, we show that, at all solutions,

(9) is strictly increasing in λ when τ̄ , τ 0, τ 1 and µ are adjusted to ensure that (5), (6),

(A1) and (A2) are met.

Take m and λ as given. For a given µ, equations (5) and (6) have at most one solution

for τ and τ 1 respectively. Further, as µ increases, the τ and τ 1 which solve (5) and (6)

must increase.
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For m ∈ [p, p̄], equation (A1) and µ(m) > 0 implies

(A3)
u′(e − τ 0)

u′(e − τ 0)
> λ

1 − m

m
.

That u displays nonincreasing absolute risk aversion (DARA) implies

(A4)
u′′(e − τ 0)

u′′(e − τ 0)
≥ u′(e − τ 0)

u′(e − τ 0)
.

Equations (A3) and (A4) imply

u′′(e − τ 0)

u′′(e − τ 0)
> λ

1 − m

m

or

(A5) −u′′(e − τ 0) + λ
1 − m

m
u′′(e − τ 0) > 0.

This last equation is the derivative of (A1) with respect to τ 0, thus the left hand side

of (A1) is an increasing function of τ 0 around the solution, and thus has at most one

solution. Note further that this implies as µ increases, τ 0 must increase as well for

equation (7) to continue to hold. The same steps can be repeated for m ∈ [0, p) and

m ∈ (p̄, 1]. Thus τ , τ 1, and τ 0 are all increasing functions of µ. It follows that there

exists at most one value of µ, for each m and λ, such that the resource constraint holds

as well.

We now need to prove that there is a unique value of λ which, in combination with the
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functions above, satisfies (9) as well. We do so by proving that the left-hand side of (9) is

locally strictly increasing in λ at all solutions, when the functions τ̄∞(m; λ), τ∞
1 (m; λ),

τ∞
0 (m; λ), and µ∞(m; λ) are adjusted to satisfy (5), (6), (A1), and (A2). Starting from

a solution, suppose we increase λ by a sufficiently small increment ∆λ > 0. Consider

each value of m ∈ [p, p̄] independently. Holding µ fixed, a change in λ implies that τ̄

will have to strictly decrease to maintain (5), and that (if m > π̄) τ 0 will have to strictly

increase to maintain (A1). In general, the resulting change will no longer satisfy the

resource constraint (A2); therefore, the change in λ will require a change in µ, which

will affect τ 1 as well. However, since (locally) all taxes are increasing in µ, to satisfy

(A2), the final outcome will necessarily involve a lower value for τ̄ and (if m > π̄) a

higher value for τ 0. Since this is true for all values of m, this proves that the left-hand

side of (9) is strictly increasing in λ.

A3. Proof of proposition 2

The proof requires some lemmas.

Lemma 5 .If ∆∞(m) ≤ 0, then τ∞(m) > τ∞
0 (m).

Proof. Suppose τ∞(m) ≤ τ∞
0 (m) . Then

∆∞(m) = u(e − τ∞(m)) − (1 − π(m))u(e − τ∞
0 (m)) ≥

u(e − τ∞(m)) − (1 − π(m))u(e − τ∞(m)) = π(m)u(e − τ∞(m)) ≥ π(m)u(e − τ∞
0 (m)) > 0,

a contradiction.
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Lemma 6 .If ∆∞(m) ≤ 0 and m ∈ [max{p, π̄}, 1], then µ∞′(m) > 0.

Proof. Fix λ = λ∞. For all m ≤ p̄ and µ, let x(µ, m) denote the value of τ 0 which solves

(A1), and let c(µ, m) = e − x(µ, m). The partial derivative of (A1) with respect to τ 0 is

strictly positive from equation (A5), while its partial derivative with respect to µ is strictly

negative. Thus xµ(µ, m) > 0. Likewise, the partial derivative of (A1) with respect to m is

strictly positive, thus xm(µ, m) < 0. These imply cµ(µ, m) < 0 and cm(µ, m) > 0.

Using equations (5) and (6), the resource constraint for m ≥ π can be written

(A6) me + (1 − m)e − (m − π)c(µ, m) − πu′−1(µ) − (1 − m)u′−1(µ/(1 − λ∞)) = 0.

Let z(µ, m) denote the left hand side (A6). The partials of z with respect to m and µ

are

(A7) zm(µ, m) = e − e + [u′−1(µ/(1 + λ∞)) − c(µ, m)] − (m − π)cm(µ, m)

and

(A8) zµ(µ, m) = −(m − π)cµ(µ, m) − π

u′′(u′−1(µ))
− 1 − m

u′′(u′−1(µ/(1 + λ)))
.

The partial zµ(µ∞(m), m) > 0. Thus µ∞′(m) > 0 if zm(µ∞(m), m) < 0. From (5), e −

u′−1(µ∞(m)/(1 + λ∞)) = τ∞(m), and from the definition of c(µ, m), e − c(µ∞(m), m) =
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τ∞
0 (m). Thus

(A9) zm(µ∞(m), m) = τ∞
0 (m) − τ∞(m) − (m − π)cm(µ∞(m), m) ≤ τ∞

0 (m) − τ∞(m),

from cm(µ, m) > 0. By lemma 5, ∆∞(m) ≤ 0 implies τ∞(m) > τ∞
0 (m), hence µ∞′(m) > 0.

The proof for m ∈ [p̄, 1] is entirely analogous, except that xm(µ, m) = 0.

Lemma 7 .For all m ∈ [max{p, π}, 1], if ∆∞(m) ≤ 0, then ∆∞′(m) < 0.

Proof. We provide here the proof of the result on the range m < p̄. The proof for

m > p̄ follows from repeating identical steps, adjusting the equations to take into account

the appropriate case in equation (A1).16

For m ≥ π,

∆∞′(m) = −u′(e − τ∞(m))τ∞′(m) + (1 − π

m
)u′(e − τ∞

0 (m))τ∞′
0 (m) − π

m2
u(e − τ∞

0 (m))

≤ −u′(e − τ∞(m))τ∞′(m) + (1 − π

m
)u′(e − τ∞

0 (m))τ∞′
0 (m).

Differentiating (5) with respect to m delivers

τ∞′(m) =
−µ∞′(m)

(1 + λ∞)u′′(e − τ∞(m))
.

16At the point p̄, ∆∞(m) is not differentiable, but both its right and left derivatives are negative, as implied
by the separate proofs on the two intervals. Similarly, at the lower bound the derivative below should be
interpreted as the right derivative.
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Likewise differentiating (A1) with respect to m delivers

τ∞′
0 (m) =

−µ∞′(m) + 1
m2 λ

∞u′(e − τ∞
0 (m))

u′′(e − τ∞
0 ) − λ∞ 1−m

m
u′′(e − τ∞

0 (m))

These imply

∆∞′(m) ≤ u′(e − τ∞(m))
µ∞′(m)

(1 + λ∞)u′′(e − τ∞(m))
+

(1 − π

m
)u′(e − τ∞

0 (m))
−µ∞′(m) + 1

m2 λ
∞u′(e − τ∞

0 (m))

u′′(e − τ∞
0 (m)) − λ∞ 1−m

m
u′′(e − τ∞

0 (m))

< u′(e − τ∞(m))
µ∞′(m)

(1 + λ∞)u′′(e − τ∞(m))
−

(1 − π

m
)u′(e − τ∞

0 (m))
µ∞′(m)

u′′(e − τ∞
0 (m)) − λ∞ 1−m

m
u′′(e − τ∞

0 (m))
,

since the denominator of the second term is negative from equation (A5). Next,

∆∞′(m) < µ∞′(m)
[ u′(e − τ∞(m))

(1 + λ∞)u′′(e − τ∞(m))
− u′(e − τ∞

0 (m))

u′′(e − τ∞
0 ) − λ∞ 1−m

m
u′′(e − τ∞

0 (m))

]

from (1 − π/m) < 1.

Since µ∞′(m) > 0, ∆∞′(m) < 0 if the expression within the square brackets is negative.

Since u′(e − τ∞(m)) > u′(e − τ∞
0 (m)) from τ∞(m) > τ∞

0 (m), it is sufficient to show that

(A10) (1 + λ∞)u′′(e − τ∞(m)) > u′′(e − τ∞
0 (m)) − λ∞1 − m

m
u′′(e − τ∞

0 (m)).

Equations (5) and (A1) imply

u′(e − τ∞
0 (m)) = u′(e − τ∞(m))(1 + λ∞) + λ∞1 − m

m
u′(e − τ∞

0 (m)).
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This implies there exists an θ ∈ [0, 1] such that

(A11) θu′(e − τ∞
0 (m)) = u′(e − τ∞(m))(1 + λ∞),

and

(A12) (1 − θ)u′(e − τ∞
0 (m)) = λ∞1 − m

m
u′(e − τ∞

0 (m)).

From (5), u′(e − τ∞(m)) < µ∞(m), and from (7), u′(e − τ∞
0 (m)) > µ∞(m). Thus

e − τ∞(m) > e − τ∞
0 (m). Decreasing absolute risk aversion then implies

u′′(e − τ∞
0 (m))

u′′(e − τ∞(m))
>

u′(e − τ∞
0 (m))

u′(e − τ∞(m))
,

which combined with (A11) implies

u′′(e − τ∞
0 (m))

u′′(e − τ∞(m))
>

1 + λ∞

θ
,

or

(A13) θu′′(e − τ∞
0 (m)) < (1 + λ∞)u′′(e − τ∞(m)).

Decreasing absolute risk aversion also implies

u′′(e − τ∞
0 (m))

u′′(e − τ∞
0 (m))

>
u′(e − τ∞

0 (m))

u′(e − τ∞
0 (m))

,
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which combined with (A12) and rearranging implies

(A14) (1 − θ)u′′(e − τ∞
0 (m)) < λ∞1 − m

m
u′′(e − τ∞

0 (m)).

Adding (A13) and (A14) delivers equation (A10), proving ∆∞′(m) < 0.

We are now ready to prove proposition 2.

Proof. Since we assumed that the incentive constraint is binding for all values of N (at

least above a threshold N̄), the limiting incentive constraint (9) holds as an equality. Thus,

∫
m≥π

∆∞(m)(1 − m)f(m)dm ≤
∫ p

p

∆∞(m)(1 − m)f(m)dm = 0,

proving their exists m̂ ∈ [max{p, π̄}, p] such that ∆(m̂) ≤ 0.17 Lemma 7 then recursively

implies ∆(m) < 0 for all m ∈ (m̂, 1].

A4. Proof of Theorem 2

Proof. First, if nobody flags, the mechanism coincides with optimal direct revelation:

τ̄GM(me, 0; N) = τ̄ ∗(m; N)

τ 0,GM(me, 0, 0; N) = τ ∗
0(me; N)

τ 1,GM(me, 0, 0; N) = τ ∗
1(me; N)

17Note that π̄ < p̄, for otherwise the incentive constraint would not be binding in the limit.
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Consider next the case in which one household flags.18 The household that flags receives the

same tax/transfer as in the optimal direct mechanism if it is not audited. If the household

is audited, its tax/transfer is changed by adding a component that incorporates a bet on the

aggregate distribution of reports. This bet is advantageous when high-endowment households

misreport their income with a probability greater than δ. Formally,

τ 0,GM(me, 1/(N + 1), 1; N) = τ ∗
0(me; N)

τ 1,GM(me, 1/(N + 1), 1; N) = τ ∗
1(me; N) + τ (1)(me; N)

τ (i) is defined, for i = 1, . . . , N + 1, by

τ (i)(me; N) = (m
(i)
δ (N) − me)τ δ

with τ δ > 0. m
(1)
δ (N) is determined by

∫ p̄

p

N∑
n=0

Q(n|p + (1 − p)δ)π

(
n + 1

N + 1

)
·

[
u

(
e − τ ∗

1

(
n + 1

N + 1

)
− τ (1)

(
n + 1

N + 1
; N

))
− u

(
e − τ ∗

1

(
n + 1

N + 1
; N

))]
pf(p)dp = 0

Notice that the left-hand-side is continuous and strictly decreasing in m
(1)
δ (N), strictly nega-

tive if m
(1)
δ (N) = 1 and strictly positive if m

(1)
δ (N) = 0, which ensures that m

(1)
δ that exactly

solves the equation is unique and well defined. We will define m
(i)
δ (N) for i > 1 below.

18The mechanism could be made more robust, at the expense of complicating the proof, by not triggering
big aggregate changes when only 1 household flags; we could instead only offer the “small bet” component of
the change until a given proportion of people flag. This might also require to use flags from high-endowment
households, and we do not pursue it further here, but it would be required if household actions were observed
with noise, as in the microfoundations of anonymous games of Levine and Pesendorfer [12] and Fudenberg,
Levine and Pesendorfer [6].
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For households that do not flag, we set

τ̄GM(me, 1/(N + 1); N) = τ 0,GM(me, 1/(N + 1), 0; N) =

τ 1,GM(me, 1/(N + 1), 0; N) = max
m

max

{
0,−τ ∗

1(m; N)

N

}
+ τ δ

This tax will be below e, provided N is sufficiently large and τ δ sufficiently small. Notice that

we constructed the mechanism so that the government budget constraint is slack in many

states; this makes the construction simpler and tidier, and will not affect the equilibrium

payoffs by more than an infinitesimal amount, since all equilibria will feature flagging with

arbitrarily low probability.

When more than 1 household flags, we construct the payoff of flagging households

recursively, for i = 2, . . . , N + 1, as

τ 0,GM

(
me,

i

N + 1
, 1; N

)
= τ 0,GM

(
me,

i − 1

N + 1
, 0; N

)

τ 1,GM

(
me,

i

N + 1
, 1; N

)
= τ 1,GM

(
me,

i − 1

N + 1
, 0; N

)
+ τ (i)(me; N)

where m
(i)
δ (N) is now defined as

∫ p̄

p

N∑
n=0

Q(n|p + (1 − p)δ)π

(
n + 1

N + 1

)
·

[
u

(
e − τ 1,GM

(
me,

i − 1

N + 1
, 0; N

)
− τ (i)

(
n + 1

N + 1
; N

))
−

u

(
e − τ 1,GM

(
me,

i − 1

N + 1
, 0; N

))]
pf(p)dp = 0

As before, m
(i)
δ (N) exists and is unique.

41



For households that do not flag, we set

τ̄GM(me, i/(N + 1)) = τ 0,GM(me, i/(N + 1), 0) =

τ 1,GM(me, i/(N + 1), 0) = τ δ

As a last remark, notice that this mechanism is feasible even when all households flag, since

their tax will remain nonnegative in this case.

We next prove that, as δ → 0, all the equilibrium outcomes of this mechanism converge

to the best equilibrium of the optimal direct mechanism (simply “best equilibrium” from

now on). First, consider the best response of a household with low income. This household

can only choose whether to flag. By the construction above, flagging is optimal if each

high-income household misreports with probability greater than δ, not flagging is optimal if

the probability of each high-income household misreporting is less than δ, and any flagging

decision is optimal when the misreporting probability is exactly δ.19 Consider next the best

response of a household that has high income. Its choice is whether to report truthfully or

not. By construction, truthtelling is strictly optimal if any other household flags: in this

case, transfers are independent of the report, but lying implies a positive probability of being

audited and losing the entire consumption allocation. Truthtelling is also strictly optimal if all

households have high income (in which case nobody can flag), as ∆∗(0; N) > 0, at least when

N is sufficiently large. It immediately follows that there can be no equilibria in which high-

income households misreport their income with a probability higher than δ. The only pure-

strategy equilibrium is thus one in which households report truthfully and no flags are raised.

19Our reasoning only considers symmetric strategies, but it can be proven that even the asymmetric equi-
libria of the game above converge to the best equilibrium.
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There could be mixed-strategy equilibria in which high-income households misreport with

probability exactly equal to δ. In order for this to be the case, the probability of a flag being

raised must be such that high-income households are indifferent on their report. As δ → 0,

conditional on no flags being raised, the outcomes converge to those of the best equilibrium, in

which high-income households are exactly indifferent between lying and reporting truthfully.

By contrast, conditional on a flag being raised, the payoff loss to a high-income household

from misreporting does not converge to 0. Hence, the probability of a flag being raised must

necessarily converge to 0 as δ → 0. This proves that, as δ → 0, all equilibrium outcomes of

the game converge to the best (equilibrium) outcome with probability converging to 1. Since

utility is bounded below, the expected payoff loss from events in which the mixed-strategy

equilibrium outcomes do not coincide with the best outcome is also converging to 0, proving

the theorem.

A5. Proof of Proposition 4

Proof. The utility attained by (τ̄B
0 , τ̄B

1 , τB
0 , τB

1 and a given probability of misreporting x is

∫ p̄

p

N∑
n=0

Q(n|p + (1 − p)x, N)

{
(1 − p)(1 − x)u

(
ē − τ̄B

0

(
n

N + 1

))
+

(1 − p)x

[
π

(
n + 1

N + 1

)
u

(
ē − τ̄B

1

(
n + 1

N + 1

))
+

(
1 − π

(
n + 1

N + 1

))
u

(
ē − τB

0

(
n + 1

N + 1

))]
+

p

[
π

(
n + 1

N + 1

)
u

(
e − τB

1

(
n + 1

N + 1

))
+

(
1 − π

(
n + 1

N + 1

))
u

(
e − τB

0

(
n + 1

N + 1

))]}
f(p)dp
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The resource constraint requires

N + 1 − n

N + 1
τ̄B

0 +
n

N + 1
π

(
n

N + 1

)
min

{
τ̄B

1

(
n

N + 1

)
, τB

1

(
n

N + 1

)}
+

n

N + 1

[
1 − π

(
n

N + 1

)]
τB

0

(
n

N + 1

)
≥ 0

Note that this constraint embeds the assumption that households that are audited can be

treated differently based on their income only ex post, by sending some of their endowment

to waste.

For interior misreporting probabilities x ∈ (0, 1) to be an equilibrium, we need

∫ p̄

p

N∑
n=0

Q(n|p + (1 − p)x, N)u

(
ē − τ̄B

0

(
n

N + 1

))
(1 − p)f(p)dp =

∫ p̄

p

N∑
n=0

Q(n|p + (1 − p)x, N)

[
π

(
n + 1

N + 1

)
u

(
ē − τ̄B

1

(
n + 1

N + 1

))
+

(
1 − π

(
n + 1

N + 1

))
u

(
ē − τB

0

(
n + 1

N + 1

))]
(1 − p)f(p)dp

For equilibria with x = 0 or x = 1, the appropriate inequality has to hold.

First, if the highest equilibrium probability of misreporting for the mechanism at hand

is xB = 0, then the proof is immediate.

If xB = 1, then strict concavity of u and the resource constraint imply that the no-tax

mechanism improves utility:

τ̄F ≡ 0, τF
0 ≡ 0, τF

1 ≡ 0

This mechanism has truth-telling as the unique equilibrium.
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Consider now the case in which xB ∈ (0, 1). We set the new mechanism so that,

when exactly n households report low, a household gets the same expected utility as it would

get under the original mechanism, conditional on n households having (not just reporting)

the low endowment. The only exception is for high-income households that misreport and

are audited, for whom we set the penalty at the maximum rate (though we could have

preserved their utility as well). For now, define φF
(

n
N+1

)
as the auditing probability in

the new mechanism when n people report low endowment. In the construction below, φF

will sometimes be strictly below (but never above) the maximal auditing rate π. We will

later argue that the mechanism can be changed to increase the auditing probability to the

maximum without loss.

u

(
ē − τ̄F

(
n

N + 1

))
=

N−n∑
k=0

Q(k|xB, N − n)u

(
ē − τ̄B

0

(
n + k

N + 1

))
, n = 0, . . . , N

φF

(
n

N + 1

)
u

(
e − τF

1

(
n

N + 1

))
=

N+1−n∑
k=0

Q(k|xB, N + 1 − n)π

(
n + k

N + 1

)
u

(
e − τB

0

(
n + k

N + 1

))
, n = 1, . . . , N + 1

φF

(
n

N + 1

)
=

N+1−n∑
k=0

Q(k|xB, N + 1 − n)π

(
n + k

N + 1

)
, n = 1, . . . , N + 1

(
1 − φF

(
n

N + 1

))
u

(
e − τF

0

(
n

N + 1

))
=

N+1−n∑
k=0

Q(k|xB, N + 1 − n)

(
1 − π

(
n + k

N + 1

))
u

(
e − τB

0

(
n + k

N + 1

))
n = 1, . . . , N + 1

Strict concavity of u and weak convexity of the resource constraint set imply that the so-

lution to the equations above (which is unique on all positive-probability events) satisfies
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the resource constraint. The expected utility of the households is unaffected by this change,

provided every high-income household was misreporting with probability xB under the old

mechanism and is telling the truth under the new one. To see that this is the case, the only

point worth noting is that we are using the fact that (because of the incentive-compatibility

constraint) high-income households are indifferent between reporting truthfully or not under

the old mechanism.

Furthermore, DARA implies

(
1 − π

(
n

N + 1

))
u

(
ē − τF

0

(
n

N + 1

))
≤

N−n∑
k=0

Q(k|xB, N − n)

(
1 − φF

(
n + k

N + 1

))
u

(
ē − τB

0

(
n + k

N + 1

))

Next, notice

(A15)

N∑
n=0

Q(n|p + (1 − p)x, N)u

(
ē − τ̄F

(
n

N + 1

))
=

N∑
n=0

Q(n|p + (1 − p)x, N)
N−n∑
k=0

Q(k|xB, N − n)u

(
ē − τ̄B

0

(
n + k

N + 1

))
=

N∑
n=0

Q(n|(1 − xB)(1 − p(1 − x)) + xB, N)u

(
ē − τ̄B

0

(
n

N + 1

))

The last equality comes from the following observation. The random count that is the argu-

ment of taxes in the first two lines is the sum of the number of reported failures (n), which

occur with probability p + (1 − p)x, and of occurrences of a further event that occurs with

probability xB conditional on a success. Hence the overall distribution of a single observation

in the count is Bernoulli with probability (1 − xB)(1 − p(1 − x)) + xB.
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Similarly, we have

(A16)
N∑

n=0

Q(n|p + (1 − p)x, N)

(
1 − π

(
n

N + 1

))
u

(
ē − τF

(
n

N + 1

))
≤

N∑
n=0

Q(n|p + (1 − p)x, N)
N−n∑
k=0

Q(k|xB, N − n)

(
1 − π

(
n + k

N + 1

))
u

(
ē − τ̄B

0

(
n + k

N + 1

))
=

N∑
n=0

Q(n|(1 − xB)(1 − p(1 − x)) + xB, N)

(
1 − π

(
n

N + 1

))
u

(
ē − τ̄B

0

(
n

N + 1

))

Since we know that the old mechanism does not have any equilibria for x > xB,

(A15), (A16) and the incentive-compatibility constraint imply that the new mechanism does

not have any equilibria for x > 0.

In the mechanism we just constructed, households that report low income have a

probability of being audited that is less than π(m). It is immediate to see that the mechanism

coincides with one where the probability of being audited is exactly π(m), but, after an audit,

the government draws a lottery and ignores the audit with probability 1−φF (m)
π(m)

. Because of

decreasing (and positive) risk aversion, it is possible to repeat the steps of the proof above

to construct a new mechanism that gets rid of this unnecessary uncertainty, while preserving

expected utility and enhancing incentives to report the truth.
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A6. Proof of theorem 3

Proof. First, we prove sufficiency. Let {δN}∞0 be a strictly positive sequence converging to

0, and consider the following sequence of plans:

τ̄N(m) =




τ̄∞(m) + (1 − π(m))mξN(m) if m ≤ p̄

− m
1−m

e if m > p̄

τN
1 (m) =




τ∞
1 (m) if m ≤ p̄

e if m > p̄

τN
0 (m) =




τ∞
0 (m) − (1 − m)ξN(M) if m ≤ p̄

e if m > p̄,

where ξN(m) is such that

u
(
ē − τ̄N(m)

)−(1−π(m))u
(
ē − τN

0 (m)
)−u (ē − τ̄∞(m))+(1−π(m))u (ē − τ∞

0 (m)) = δN

Such plans will always exist, provided {δN}∞0 remains sufficiently close to 0. The plans

will uniformly converge to (τ̄ test, τ test
0 , τ test

1 ). If all households report truthfully, the expected

utility from this sequence of plans converges to the expected utility attained in the limit by

(τ̄∞, τ∞
0 , τ∞

1 ). Furthermore, when the probability of high-income households misreporting

their type is x, the payoff for a high-income household to report truthfully vs. misreporting

converges to the value in (10). If (10) is nonnegative independently of x, we can set δN

such that, for N large enough, high-income households strictly prefer reporting truthfully,
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independently of x. Hence, (τ̄N , τN
0 , τN

1 ) is a sequence of mechanisms that achieves the

maximin (for N large enough) and converges to the expected value of the best incentive-

compatible allocation, which proves the claim.

We prove necessity by contradiction. The proof we include here assumes that p̄ < 1

and that f is bounded away from 0 on [p, p̄]. However, the proof could be easily adjusted to

deal with the alternative cases, by excluding arbitrarily small intervals around the extrema

and around points at which f = 0. The theorem would require adaptation only in the case

in which the support contains a “hole,” i.e., f is 0 on an interval inside [p, p̄]; in that case,

the “test” plan should account for those additional degrees of freedom.

Suppose that (10) fails, and yet it is possible to find a sequence of mechanisms

{(τ̄N , τN
0 , τN

1 )}∞N=1 for which truthtelling is a dominant strategy and whose equilibrium pay-

off converges to the payoff of the best equilibrium. Without loss of generality, we assume

that these plans coincide with the “test” plan on [0, p) and (p̄, 1]. We also assume that they

satisfy the budget constraint with equality; if they did not, it would be easy to construct a

mechanism with higher utility and better incentives by decreasing the taxes levied on people

reporting high income. The values the plans take on [0, p) have no asymptotic effect on either

the equilibrium payoff or any of the incentive constraints. The values the plans take on (p̄, 1]

have no asymptotic effect on the equilibrium payoff, and the “test” plan relaxes as much

as possible the incentive constraints when high-income households misreport their type with

positive probability.
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Let x̂ be a value of x for which (10) fails. Consider the following functions:

Ψ(ϕ; N) :=

∫ p̄

p

N∑
n=0

Q(n|p + (1 − p)x̂, N)(1 − p)·
[
u

(
ē − ϕτ̄N

(
n

N + 1

)
− (1 − ϕ)τ̄ test

(
n

N + 1

))
−

(
1 − π

(
n + 1

N + 1

))(
ϕyN

(
n + 1

N + 1

)
+ (1 − ϕ)ytest

(
n + 1

N + 1

))]
f(p)dp

and

Ω(ϕ; N) :=

∫ p̄

p

N∑
n=0

Q(n|p, N)·
[
(1 − p)u

(
ē − ϕτ̄N

(
n

N + 1

)
− (1 − ϕ)τ̄ test

(
n

N + 1

))
+

p
[
π

(
n + 1

N + 1

)
u

(
e − ϕτN

1

(
n + 1

N + 1

)
− (1 − ϕ)τ test

1

(
n + 1

N + 1

))
+

(
1 − π

(
n + 1

N + 1

))
u

(
e − ē + u−1

(
ϕyN

(
n + 1

N + 1

)
+ (1 − ϕ)ytest

(
n + 1

N + 1

)))]]
f(p)dp

where yN(m) := u(ē − e + τ 0(m)), and similarly for ytest.

It is straightforward to check that Ψ is weakly concave in ϕ. Furthermore, Ψ(1; N) ≥ 0,

while Ψ(0; N) converges to a negative number. Hence, Ψ′(0; N) as asymptotically larger than

a strictly positive value, which we define Ψ̄. Hence, we have

(A17)

50



0 < Ψ̄ <

∫ p̄

p

�p̄N�∑
n=�pN	

Q(n|p + (1 − p)x̂, N)(1 − p)·

[(
τ̄N

(
n

N + 1

)
− τ̄ test

(
n

N + 1

))
u′

(
ē − τ̄ test

(
n

N + 1

))
−

(
1 − π

(
n + 1

N + 1

)) (
yN

(
n + 1

N + 1

)
− ytest

(
n + 1

N + 1

))]
f(p)dp ≤

supm∈[p+(1−p)x̂,p̄] f(m)

infm∈[p,p̄] f(m)
·

[
sup

m∈[p,p̄]

u′ (ē − τ̄ test(m)
) �p̄N�∑

n=�pN	

∫ p̄

p

Q(n|p, N)(1 − p)dp ·
∣∣∣∣τ̄N

(
n

N + 1

)
− τ̄ test

(
n

N + 1

)∣∣∣∣ +

1 − p

p

�p̄N�∑
n=�pN	

∫ p̄

p

Q(n|p, N)pf(p)dp

(
1 − π

(
n + 1

N + 1

)) ∣∣∣∣yN

(
n + 1

N + 1

)
− ytest

(
n + 1

N + 1

)∣∣∣∣
]

Since ē − τ̄ test(m) > e, u′ is bounded.

Next, we compute Ω′′(ϕ; N) for ϕ ∈ [0, 1]:

(A18)

−Ω′′(ϕ; N) = −
∫ p̄

p

�p̄N�∑
n=�pN	

Q(n|p, N)

[
(1 − p)

(
τ̄N

(
n

N + 1

)
− τ̄ test

(
n

N + 1

))2

·

u′′
(

ē − ϕτ̄N

(
n

N + 1

)
− (1 − ϕ)τ̄ test

(
n

N + 1

))
+

[
π

(
n + 1

N + 1

) (
τN

1

(
n + 1

N + 1

)
− τ test

1

(
n + 1

N + 1

))2

·

u′′
(

e − ϕτN
1

(
n + 1

N + 1

)
− (1 − ϕ)τ test

1

(
n

N + 1

))
+

(
1 − π

(
n + 1

N + 1

)) (
yN

(
n + 1

N + 1

)
− ytest

(
n + 1

N + 1

))2

·

z

(
ϕyN

(
n + 1

N + 1

)
+ (1 − ϕ)ytest

(
n + 1

N + 1

))]]
f(p)dp,

where

z(y) :=
u′(e − ē + u−1(y))

[u′(u−1(y))]2

[
u′′(e − ē + u−1(y))

u′(e − ē + u−1(y))
− u′′(u−1(y))

u′(u−1(y))

]
≤ 0
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First, consider the case in which

(A19) lim inf
N→∞

�p̄N�∑
n=�pN	

∫ p̄

p

Q(n|p, N)(1 − p)f(p)dp

∣∣∣∣τ̄N

(
n

N + 1

)
− τ̄ test

(
n

N + 1

)∣∣∣∣ > 0

Then we have

−Ω′′(ϕ; N) ≥ inf
p≤n/N≤p̄,φ∈[0,1]

(
−u′′

(
ē − ϕτ̄N

(
n

N + 1

)
− (1 − ϕ)τ̄ test

(
n

N + 1

)))
·

�p̄N�∑
n=�pN	

∫ p̄

p

Q(n|p, N)(1 − p)f(p)dp

(
τ̄N

(
n

N + 1

)
− τ̄ test

(
n

N + 1

))2

≥

inf
p≤n/N≤p̄,φ∈[0,1]

(
−u′′

(
ē − ϕτ̄N

(
n

N + 1

)
− (1 − ϕ)τ̄ test

(
n

N + 1

)))
·

[∑�p̄N�
n=�pN	

∫ p̄

p
Q(n|p, N)(1 − p)f(p)dp · ∣∣τ̄N

(
n

N+1

) − τ̄ test
(

n
N+1

)∣∣]2

∑�p̄N�
n=�pN	

∫ p̄

p
Q(n|p, N)(1 − p)f(p)dp

.

The feasibility constraints imply that {(τ̄N , τN
0 , τN

1 )}∞N=1 is uniformly bounded on [p, p̄],

which in turn implies lim infN→∞−Ω′′(ϕ; N) > 0. However, we know limN→∞ Ω(0; N) =

limN→+∞ Ω(1; N); this implies that, for N large enough, both Ω(0;N) and Ω(1; N) are

bounded away from maxϕ∈[0,1] Ω(ϕ; N). Since the constraint set is convex, this would imply

that, for an infinite sequence of values of N , some intermediate value of ϕ would represent a

feasible, incentive-compatible tax plan with higher utility than the best incentive-compatible

allocation: a contradiction.

Suppose instead that the limit in (A19) is 0. Let {Ns}∞s=0 be a sequence that makes
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(A19) converge to 0. Then the feasibility constraints and(A17) imply

0 < lim inf
s→∞

�p̄Ns�∑
n=�pNs	

∫ p̄

p

Q(n|p, Ns)pf(p)dp

(
1 − π

(
n + 1

Ns + 1

)) ∣∣∣∣yNs

(
n + 1

Ns + 1

)
− ytest

(
n + 1

Ns + 1

)∣∣∣∣ ≤
lim inf

s→∞

{
sup

p≤n/Ns≤p̄,φ∈[0,1]

u′
(

ē − u

(
ϕyNs

(
n + 1

Ns + 1

)
+ (1 − ϕ)ytest

(
n + 1

Ns + 1

)))
·

�p̄Ns�∑
n=�pNs	

∫ p̄

p

Q(n|p, Ns)pf(p)dpπ

(
n + 1

Ns + 1

) ∣∣∣∣τNs
1

(
n + 1

Ns + 1

)
− τ test

1

(
n + 1

Ns + 1

)∣∣∣∣
}

Substituting this into (A18), we again obtain lim infN→∞−Ω′′(ϕ; N) > 0, which, as before,

leads to a contradiction.
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