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Abstract

Because a significant portion of U.S. students lacks critical mathematic skills, schools across the
country are investing heavily in computerized curriculums as a way to enhance education output,
even though there is surprisingly little evidence that they actually improve student achievement.
In this paper we present results from a randomized study in three urban school districts of a well-
defined use of computers in schools: a popular instructional computer program which is
designed to teach pre-algebra and algebra.  We assess the impact of the program using statewide
tests that cover a range of math skills and tests designed specifically to target pre-algebra and
algebra skills.  We find that students randomly assigned to computer-aided instruction score at
least 0.17 of a standard deviation higher on a pre-algebra/algebra test than students randomly
assigned to traditional instruction. We hypothesize that the effectiveness arises from increased
individualized instruction as the effects appear larger for students in larger classes and those in
classes in which students are frequently absent.



 Table 416 of the Digest of Education Statistics:  2006.1

I. INTRODUCTION

Mathematical achievement is arguably critical both to individuals and to the future of the

U.S. economy.  For example, research by Grogger (1996) and Murnane, Willet, and Levy (1995)

suggests that math skills may account for a large portion of wage inequality including the

African-American-white wage gap.  And yet, in spite of recent progress, levels of proficiency

remain dramatically low (U.S. Dept. of Education, 2006 – National Assessment of Educational

Progress (NAEP) report).  Compounding the problem of poor mathematics performance is the

fact that many school districts report difficulty recruiting and retaining teachers, particularly in

the fields of math and science, where schools must compete with (non-education) private sector

salaries (Murnane and Steele 2007).  While the evidence on the importance of teacher

qualifications on student achievement is mixed in many subjects, the students of more qualified

math teachers appear to perform better (See, e.g., Braswell et al. 2001, Boyd et al 2007). 

In response policymakers, parents, and schools are actively seeking creative and effective

approaches to improving students’ math skills.  And, not surprisingly, many school districts are

turning to advances in computer technology.  By 2003 nearly all public schools had access to the

internet, and the number of public school students per instructional computer with internet

access had fallen from 12.1 in 1998 to 4.4.   Despite this trend, research on the success of1

computer technology in the classroom has yielded mixed evidence at best.  In economics most

studies have focused on the impact of subsidies for schools to invest in computer technology.

For example, Angrist and Lavy (2002) show a decrease in math achievement among 8  gradersth

after the introduction of a computer adoption program in Israeli schools.  Goolsbee and Guryan

(2006) study the impact of the E-rate – a program to subsidize school investment in the internet –
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 Kirkpatrick and Cuban (1998) define three uses of computers in instruction: computer-2

assisted instruction (CAI), computer-managed instruction (CMI), and computer-enhanced instruction
(CEI).  CAI provides drill exercises and tutorials.  CMI is more elaborate in diagnosing areas in
which students need more instruction, guiding students in their own learning, and recording progress
for the teacher.  CEI uses the Internet or other computer programs, such as graphics or word-
processing, to enhance lessons and projects directed by the teacher.  The type of computerized
instruction we study is best characterized as computer-aided instruction, although it also contains
elements of computer-managed instruction.  We use the terms computer-aided instruction and
computerized instruction interchangeably.

and conclude that while it has substantially increased internet investment, it has had no

significant impact on student achievement thus far.  In contrast, Machin, McNally, and Silva

(forthcoming) find that a government program to encourage investment in information and

computer technology in schools in the United Kingdom led to improved performance in English

and possibly science but not in math in primary schools.  While it is important to understand

whether and how public subsidies are used and whether they achieve their intended goals,

because the use of computers by the schools in these studies is either unknown or vaguely

defined, they do not provide direct evidence on the effectiveness of computer technology as an

input in the education production function.

Other literature has studied the impact of computer technology on student achievement

more directly.   A relatively recent study of the NELS88 data showed that multimedia and2

calculating aids had a strong positive correlation with math achievement while it had little to no

effect in any other subject (Wang, Wang, and Ye 2002).  In contrast, Wenglinsky (1998) finds

that, on average, computer use in math instruction is negatively related to student math

achievement in the 8  grade.  A potential problem with this second group is that there are fewth

studies that use a randomized controlled study design, or employ a credible strategy for

controlling for factors such as individual teacher effects and student ability, that might be
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 In an oft-cited, and somewhat controversial, review of the literature, Cuban (2001)3

concludes, “When it comes to higher teacher and student productivity and a transformation of
teaching and learning … there is little ambiguity.  Both must be tagged as failures.  Computers have
been oversold and underused, at least for now.” (p. 179).  Others argue for a more nuanced view of
the literature that computers can be effective in certain situations, such as when used by teachers
with skill and experience in using computers themselves (see, e.g., Brooks (2000)).

correlated with both use of computers in the classroom and student outcomes.   For example,3

given that computer technology may be used either to help poorly performing students or to

enhance the learning of high achievers, it is unclear whether selection bias would generate

upward or downward biased estimates of the average impact of computers technology on student

achievement in poorly designed studies.  

Three notable exceptions include a randomized evaluation of computer-assisted

instruction conducted in the late 1970s by the Educational Testing Service and the Los Angeles

Unified School District that consisted of drill and practice sessions in mathematics, reading, and

language arts (Ragosta et al., 1982); the study found educationally large effects in math and

reading.  More recently, using a randomized study design Banerjee et al. (2005) conclude that

computer-assisted mathematics instruction boosted the math scores of fourth-grade students in

Vadodara, India.  In contrast, after randomly assigning students to be trained using a computer

program known as Fast ForWord, which is designed to improve language and reading skills,

Rouse and Krueger (2004) conclude that while use of the computer program may have improved

some aspects of students’ language skills, such gains did not appear to translate into a broader

measure of language acquisition or into actual reading skills.  Overall, one can conclude that this

literature is also mixed, although there may be more support for the effectiveness of computer

technology in the instruction of math than in reading.  Notably, however, few studies offer
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evidence on why the technology may help or hinder student achievement and the most recent

evidence for math may not apply to U.S. students.

In this paper we present results from a new randomized study in three urban school

districts in the U.S. of a well-defined use of computers in schools: a popular instructional

computer program which is designed to improve pre-algebra and algebra skills. We assess the

impact of the program using both statewide tests that cover a range of math skills and tests

designed specifically to target pre-algebra and algebra skills.  We find that students randomly

assigned to classes using the computer lab score at least 0.17 of a standard deviation higher on

tests of pre-algebra and algebra achievement than students assigned to traditional classrooms.

The estimated effect rises to 0.25 of a standard deviation when we estimate the effect for

students who actually use the computer-aided instruction. We find some evidence for the

hypothesis that the effectiveness arises from increased individualized instruction as the effects

appear larger for students in larger classes and those in classes in which students have poor

attendance records.

In the next section we discuss why and in which circumstances CAI may be more

effective than traditional instruction.  Section III presents the empirical model, research design

and data.  Section IV presents the results, in Section V we evaluate the cost effectiveness of CAI,

and Section VI concludes.

II. WHY MIGHT CAI BE MORE EFFECTIVE THAN TRADITIONAL INSTRUCTION? 

A key question is why CAI may be more effective than traditional classroom teaching, on

average.  Some classroom research suggests computers can offer highly individualized

instruction and allow students to learn at their own pace (e.g. Lepper and Gurtner 1989, Means
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 Other forms of self-paced instruction may offer a similar educational advantage.  However,4

a very small, older, literature suggests that computerized self-paced instruction is more effective
than other self-paced instruction.  See, e.g., Enochs, Handley, and Wollenberg (1986) and Surber
et al (1977) for randomized studies involving college-age students.

and Olson 1995, Sandholz et al 1997, Heath and Ravits 2001).  While we do not have a direct

test, we hypothesize that if CAI allows for more individualized instruction, then it may be more

beneficial for struggling students who cannot keep up with the pace of the lectures in traditional

classrooms or for more advanced students who could progress faster at their own pace.   Further,4

we might expect CAI to be more effective for students with poorer rates of attendance.  In a

traditional classroom, students missing class will miss all of the material covered in class that

day.  In contrast, the computer always picks up where the student left off the last time she was in

class regardless of whether it was the day before or 5 days before.  Similarly, in classes in which

many students have poor attendance records or in larger classes, we might expect a bigger effect

of CAI as teachers would struggle to find the appropriate level at which to pitch lectures.

Finally, one might think that individualized instruction provided by CAI avoids some of the

disruption effects of having peers with poor attendance rates or being in larger classes as

modeled by Lazear (2001).  

More formally we can follow Brown and Saks (1984) and think of the teacher as

allocating class time to different types of instruction. In the traditional classroom, the teacher

G idivides class time between group instruction time, T , and individual instruction time, T , such

that,

(1) 
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where is the total class time available. Thus, total instruction time for student i equals 

As long as other students in the class receive some individual instruction time, the total

instruction time for student i is strictly less than the total class time available.

In the CAI classroom, the teacher also allocates class time between group and individual

instruction, but computer-aided instruction effectively increases the productivity of individual

instruction time. Namely, while the teacher spends time working with student j, student i can be

working on the computer and receiving additional instruction. In contrast to individual

iinstruction time, student i can receive an additional minute of CAI time (C ) without reducing the

total amount of instruction time available to student j. Total instruction time for student i equals

iLet student achievement, S , be a function of instruction time and individual

icharacteristics, Z , so that

and  Since  student i’s achievement in the CAI classroom will

be greater than or equal to student i’s achievement in the traditional classroom for any given

i Gallocation of T  and T , i.e.,

(2)

(3)

(4)

(5)
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Note that the relative advantage of computerized instruction will depend on the

3suitability of the curriculum for the students in question which will affect the magnitude of f .

Suppose further that the teacher maximizes her utility by allocating each student the same

amount of individual instruction time. For a class of N students,

G iThus, for a given time allocation to group instruction, T , T  decreases as class size increases. In

the CAI class this means that  so the potential gain in total instruction time

for student i of moving from a traditional class to a CAI class is increasing in class size N.

Similarly, one might assume instead that individual instruction time (or at least some of

it) is non-productive and related to the teacher needing to deal with individual student behavioral

problems. Assuming that student j’s disruptive behavior reduces group instruction time and/or

individual instruction time but does not also disrupt student i’s ability to work on the computer,

the gain in total instruction time for student i of moving from a traditional class with a disruptive

student to a CAI class with a disruptive student is greater than the gain from changing classroom

types with a class with no disruptive students.

III. EVALUATING COMPUTER-AIDED INSTRUCTION (CAI)

A. The Empirical Model

(6)
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 Note that randomly assigning students to be taught in the computer lab or not answers a5

slightly different question:  whether being taught in the computer lab – regardless of how classes
are typically formed within schools – would generate improvement relative to traditional instruction.
Our approach of randomly assigning classes comes much closer to the policy question faced by
school principals and superintendents, which is whether instruction for a particular class should

The primary research question we examine is whether mathematics instruction is more

effective when delivered via computer programs or using traditional (“chalk and talk”) methods.

In designing the study, we were concerned about two sources of bias that might arise using

observational data in which we simply compared the outcomes of students taught using CAI to

those taught using more traditional methods.  The first is that principals and/or teachers may

choose to put students they believed would particularly benefit from computerized instruction

into the labs.  This bias would overstate the effect of CAI relative to traditional instruction. 

A second source of bias is that more (or less) motivated teachers may be more willing to

try computerized instruction than their less (or more) motivated peers who would prefer to

continue teaching using traditional methods.  Thus, a key concern with the existing literature on

the effectiveness of computer-aided instruction is that the students taught by teachers willing to

teach using the computerized instruction would have outperformed their classmates who were

taught by other teachers, regardless of whether or not the students had been in the computer lab.

That is, the previous researchers may have confounded a teacher effect with the effectiveness of

the computer program. 

To control for both types of selection bias, we implemented a within-school random

assignment design at the classroom level.  We randomly assigned classrooms of students (in

which the classroom is the group of students taught by a particular teacher during a particular

class period in a particular school) to be taught in the computer lab or using “chalk and talk.”5
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occur in the computer lab or in a traditional classroom.  We also note that it would be a logistical
nightmare to randomly assign students and teachers to classes at the middle or high school level
irrespective of their other classroom scheduling needs.  That said, the districts in which we
conducted this study all use computer software to assign students to classes and they claim this
assignment is basically random, as discussed in footnote 11 below.

 As described below, in most cases the randomization pool is the class period of the class6

(within a particular school). 

Because classes (with the assigned teacher) will have been randomly assigned, the observed –

and unobserved – characteristics of the students and teachers assigned to the computer lab will

be identical to those that were not, on average.

Our first empirical model that takes advantage of the randomization generates estimates

of the “intent to treat” effect of using computerized instruction.  In these models, the test scores

of students in classes randomly assigned to the computer lab are compared to the test scores of

students in classes randomly assigned to the control group, whether or not the students remained

in their original class assignments.  To estimate the intent-to-treat effect, we estimate ordinary

least squares (OLS) regressions of the following model:

ikj i ikj j ikjY  = " + X$ + (R  + D  + ,    (7)

 

ikj ikjwhere Y  represents student i with teacher k in period j’s score on one of the follow-up tests, R

indicates whether the student was assigned to a class that was randomly assigned to a computer

ilab, X  represents a vector of student characteristics (including, in most specifications, the

j ikj student’s baseline test scores), D  is the randomization pool , , is a random error term, and ", $,6

and ( represent coefficients to be estimated.  The coefficient ( represents the “intent to treat”
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 An issue that can arise in studies of this kind is that the teachers and associated staff are7

unfamiliar with the intervention and therefore not properly trained to use it effectively.  All three
districts had been using this CAI program on a small scale before our study began (Districts 2 and

effect and estimates the effect of assigning students to be taught using CAI on the outcome in

question.  

As noted, above, because we randomly select classrooms, our research strategy should

generate estimates of the intent-to-treat effect that are not affected by potential self-selection of

teachers into the lab.  However, this is only strictly true in large samples and so one might also

be concerned that – by chance – the more (or less) motivated teachers ended up in the computer

lab.  If more motivated teachers ended up being selected to teach in the computer lab, then OLS

estimates of the effect of CAI on student outcomes will be biased upwards.  One could control

for this bias by comparing the achievement of students with teachers who teach both in and out

of the lab.  That is, one can control for a teacher fixed effect.  Indeed, in their meta analysis of

the research, Kulik and Kulik (1991) concluded that studies in which the same teacher taught

both the computer-aided class and the comparison class, the differences in achievement were

much lower than when the two types of classes had different teachers which is consistent with

teacher selection bias.  

At the same time, this result – that the effect of CAI is lower in the presence of teacher

fixed effects – would also obtain if there are spillovers in teaching techniques such that teachers

import lessons learned from the lab to their traditional classes.  In this case, the spillover will

attenuate the estimated impact of computerized instruction. In our study some of the

participating teachers taught both in a computer lab and using traditional methods while others

taught exclusively in the lab or exclusively out of the lab.   This variation allows us to control for7
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3 for at least one year before our study, and District 1 since 1995), and therefore some of the
teachers had already been trained and were familiar with the program.  Further, all CAI teachers
received training and support from both the company and district support staff throughout the study.

 Unfortunately, if we find that the estimated impact of CAI is smaller when we control for8

fixed effects than when we do not, we will not be able to distinguish whether this is due to more
motivated teachers having been selected to be in the lab or to the existence of spillovers from the
CAI instruction to traditional instruction.  Obviously, if we find that the impact is larger in the
presence of teacher fixed effects, we might conclude that, at a minimum, the less motivated teachers
were assigned to the lab, by chance, and that this effect was not outweighed by any potential
spillovers. 

the quality of the teacher (by including a teacher fixed effect) and to compare results with and

without the teacher fixed effects.  8

A potential problem with the intent-to-treat estimation is that school staff may

“contaminate” the experiment by assigning students from the control group (or from outside of

the study) to a CAI lab class.  Or, they may assign students originally in a computerized class to

a traditionally-taught class.  While throughout the study we emphasized the importance of

maintaining the original student assignments and the principals and teachers indicated that they

understood this importance, some contamination did occur.  While the intent-to-treat effect

represents the gains that a policymaker can realistically expect to observe with the program

(since one cannot fully control whether students initially assigned to a class in the lab actually

remain in that class), it does not necessarily represent the effect of the program for those who

actually complete it. 

Therefore, we also implement instrumental variables (IV) models in which we used

whether the student was in a class randomly assigned to a computer lab as an instrumental

variable for actual participation.  The random assignment is correlated with actual participation

in a computer lab but uncorrelated with the error term in the outcome equation (since it was
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 In addition, we have estimated our models using data aggregated to the classroom level,9

and using classroom random effects, with similar results. 

determined randomly).  In this case, the second-stage (outcome) equation is represented by

models such as,

ikj i ikj j ikjY  = "N + X$N + *CAI  + DN  + ,N                    (8)

ikjwhere CAI  indicates whether the student completed at least one lesson in a computer lab, *

indicates the effect of being taught through computerized instruction on student outcomes, and

the other variables and coefficients are as before.  Through the use of instrumental variables one

can generate a consistent estimate of the effect of computerized instruction on student outcomes.

Note that random assignment occurred at the classroom level even though we have data

available for each student.  Therefore, we adjust our standard errors to account for the fact that

the randomization occurred at the classroom level.9

B. Computer-Aided Instruction

We study the effectiveness of computer-aided instruction by focusing on a group of

computer programs known as I Can Learn  (or “Interactive Computer Aided Natural Learning”)©

distributed by JRL Enterprises.  The system is composed of both a software and hardware

computer package that is designed to deliver instruction through technology on a one-on-one

basis to every student; the curricula is designed to meet the National Council of Teachers of

Mathematics (NCTM) standards.  In addition to the interactive teaching system, the software
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package also includes a classroom management tool for educators and the company provides on-

site support for administrators and teachers.

The CAI program allows students to study math concepts while advancing at their own

pace, enabling them to spend the necessary time on each subject lesson.  Each lesson has five

independent parts – a pretest, a review (of prerequisites needed for the lesson), the lesson, a

cumulative review, and comprehensive tests.  Students that do not pass the pretest or review are

made to repeat the lesson until they receive a certain degree of mastery.  Each student’s

performance is recorded in a grade book and teachers can monitor students’ progress through a

series of reports.  The teacher’s role in this environment is to provide targeted help to students

when they need additional assistance.  In addition, the computer program covers many

administrative aspects such as lesson planning, grading and homework assignment so that

teachers may spend more time on individual instruction with struggling students.  Previous

quasi-experimental studies of the effectiveness of this group of computer programs have yielded

mixed results (see, e.g. Brooks 2000, Kerstyn 2001, Kirby 1995, and Kirby 2004).

C. The Research Design

1. The Sites

We conducted the study in three large urban school districts: one in the northeast, one in

the midwest and one located in the south.  Each of these districts had slightly different

demographics but suffer similar problems in the areas of underachievement and teacher

recruitment.  As shown in Table 1, these districts have a high proportion of minority students

who are considerably poorer than the national average  District 1 has a student enrollment of
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 The schools were given the option of eliminating particular teachers and/or classes from10

the study before the randomization.  The extent to which the schools exercised this option varied.

 That said, the schools claimed that the process by which they assigned students was11

basically random.  We have assessed this claim by comparing the standard deviation of baseline test
scores within the observed classes with the mean standard deviation that one would obtain if
students were assigned to classes randomly (within a particular level).  Consistent with the schools’
claims, we found that the observed variation in baseline “ability” within classes was similar to that
which would obtain if students were randomly assigned.  Similarly, the spread of baseline test scores
was much larger than what one would have expected if students were strictly “tracked.”

nearly 68,000 students; 94 percent of whom are African American and 1% percent of whom are

Hispanic. District 2 serves just over 22,000 students; 40% of whom are African American and

54% of whom are Hispanic. District 3 serves approximately 97,000 students, 59% of whom are

African American and 18% of whom are Hispanic. 

2. Implementation

To implement our randomized design, near the beginning of the academic year the

participating schools provided us with their schedule of pre-algebra and algebra classes.   We10

then randomly selected the treatment classes (taught using CAI) and the control classes (taught

traditionally).  Officials in the schools were not informed of the outcome of our randomization

until they had finished assigning students to classes to protect against students being assigned to

classes on the basis of whether it would be taught using traditional methods or in the computer

lab.   Once students were assigned to classes, we informed the schools which classes should use11

CAI and which should be taught using a traditional method.

We conducted the study during the 2004-2005 school year in 8 high schools and 2 middle

schools in District 1; and during the 2003-2004 school year in 4 high schools in District 2 and in
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 Typically there was only one or two computer labs in each school (one school had three12

labs) such that there were more math classes than labs available in any one period.

 When we further limit the sample to students with baseline test scores on our main13

outcome we have 17 schools, 137 classes, 57 teachers, and 60 randomization pools, as shown in
Appendix Table 1.

3 high schools in District 3.  As shown in Table 2, the demographic characteristics of students in

the schools in our study in District 1 had a slightly higher percentage of African American

students (97%) compared to the schools in the district; the study schools in District 2 were

roughly similar to those in all schools in the district; and the schools in District 3 had a larger

percentage of African American students (93%) and a smaller percentage of Hispanic students

(1.2%) compared to the district average.  In most cases, the students in the classes within the

schools that participated in the study were representative of the students in the schools (with the

exception that in District 1 the average percentage of students that were African American in the

study was smaller than that in the schools (88% vs. 97%)).

As shown in Appendix Table 1, our study originally included a total of 17 schools, 147

classes, and 61 teachers.  These 147 classes were grouped into 60 “randomization pools” which

represented the groups of classes from which we randomly selected candidates for the treatment

and control groups.  These pools mostly represented a class period, although in a few cases, there

were not enough classes from which to randomly pick one to go into the lab and so we combined

classes from two periods.  Because of mobility, our analysis sample – which is limited to12

students with follow-up test scores using our main outcome (that on a specially designed algebra

test, see below) – is comprised of 17 schools, 141 classes, 59 teachers, and 60 randomization

pools.13
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 Note that we did not administer the Terra Nova algebra test, a common nationally-normed14

mathematics test, because many of the district officials were concerned it does not contain sufficient
items related to pre-algebra and lower-level algebra.

D. Data

1. Academic Outcomes

We primarily assess the impact of CAI on student achievement using test instruments.

First, we sought an exam that was closely aligned with the material in the mathematics courses.14

Thus, we contracted with the Northwest Evaluation Association (NWEA), a non-profit

organization that has partnered with more that 2,300 school districts (serving more that 2 million

students) to provide assessments, reports, classroom resources and professional development.

NWEA designed a customized paper and pencil exam that targeted specific pre-algebra and

algebra skills outlined in the district’s course objectives and the CAI curriculum.  (In theory, the

CAI curriculum was adapted to meet each district course objectives.)   NWEA created a 30-item

multiple choice exam for both pre-algebra and algebra.  The same exams were created for

Districts 2 and 3.  Slightly different exams were created for District 1 to match the district’s

standards.  However, the exams in District 1 were designed to match the exams used in the other

two districts to allow for pooled analysis.

We observe post-test scores for 1,872 students across all three districts (1,165 in District

1, 477 in District 2, and 230 in District 3).  However, in some analyses we also control for the

student’s pre-test.  Thus, in the sample that includes both pre- and post-NWEA tests we have

1,585 students (973 in District 1, 412 in District 2, and 200 in District 3).  Further, we convert



17

 We standardize using the standard deviation of the baseline test score for all students15

across the three districts which is 9.20.  We have also used “national” standard deviations which
range from 16.7 for 8  grade students to 17.4 for grades 10 and higher. Not surprisingly, this cutsth

the estimated effect sizes by roughly one-half.  We chose to present the effects using the standard
deviation within the study for two reasons.  First, we have also estimated the effects using “growth
norm” gains – the effect of CAI on the expected one-year growth in test scores (this norming takes
into account that initially-low scoring students typically make larger yearly gains than initially
higher-scoring students).  Translated, these estimates are more similar to the effect sizes using the
district standard deviation than the national standard deviation, reflecting that our sample of students
are by-and-large initially low achieving.  As such, the study standard deviation better reflects the
population in question.  In addition, we only have district (or study) standard deviations for some
of the outcomes such that the results are more consistently presented  across outcomes when we use
the district or study standard deviation.  The results using both the growth-norms and national
standard deviation are available on request.

 Before we standardize the test scores, the standard deviation of the baseline statewide test16

in District 1 is 23.3; that in District 2 is 31.7; and that in District 3 is 39.1. For District 1 we
standardize the 8  grade follow-up test score using the standard deviation of the 8  grade test forth th

the study 9  graders because the pre- and post tests are not the same test. The standard deviation ofth

the 9  graders’ 8  grade test is 44.7.th th

the baseline and follow-up test scores to standard deviation units using the standard deviation of

the baseline test score.  15

We also assess the impact of CAI using the statewide tests administered by each state.  In

District 1, we only have post-treatment state test data for the students in the 8  grade; we use theth

district-administered Iowa Test of Basic Skills (ITBS) from the 7  grade as the pretest.  At theth

time of our study, students in Districts 2 and 3 were tested in mathematics on state-wide tests in

4 , 8  and 10  grades.  Since in these districts the students in the study were primarily in 9th th th th

grade, we use the 8  grade statewide test as the pre-test and the 10  grade test as the post-test.th th

The mean of the (standardized) baseline statewide test in District 1 is 9.2; that in District 2 is 6.7;

and that in District 3 is 16.7.  Again, the test scores were standardized to have a baseline

standard deviation of one within each district.16
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 In one of the districts we were able to identify individual test items that were related to pre-17

algebra and algebra.  Not surprisingly, our estimates were quite noisy given that there were very few
test items on which to measure the students’ performance.

In addition, pre-algebra students in District 1 took mini-math exams – benchmark pre-

algebra exams – throughout the semester. These tests were intended for use by the teacher and

district to track students’ progress. The initial benchmark test has a mean of 18.7 and a standard

deviation of 5.7.  We standardize the initial benchmark test to have a standard deviation of one

and also standardized the 2  and 3  quarter benchmark tests using the initial test score standardnd rd

deviation.

Because we do not have a way of standardizing the state tests across the districts, we

analyze these data separately by district.  The sample size of students in District 1 with both pre-

and post-tests is 237; that in District 2 is 341, and that in District 3 is 199.  Further, the sample

size for the benchmark tests in District 1 is 230.  We emphasize that while the state tests have the

advantage of being high-stakes and therefore of great importance to the districts, as little as 10%

of the state exams in mathematics contain test items related to pre-algebra and/or algebra.  As

such, they may have low power to detect effects of a pre-algebra/algebra intervention.17

Despite the fact that only a fraction of the state tests focuses on pre-algebra and algebra,

the three test assessments are reasonably highly correlated.  For example, the correlation

between the baseline NWEA test and the state math tests range from 0.30 (in District 1) to 0.73

(in District 2).  Further in District 1 the correlation between the baseline algebra test and the

baseline benchmark test is 0.57 and that between the state math test and the baseline benchmark
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 For comparison, Figlio and Rouse (2006) report that in a subset of Florida districts the18

correlation between student performance on a nationally-normed test (the NRT) and the FCAT
curriculum-based assessments (known as the Sunshine State Standards (FCAT-SSS) examinations)
is approximately 0.8.

pre-algebra test is 0.62.  Thus, while two of our three assessments are not based on nationally

normed exams, they nonetheless appear to be correlated with the high-stakes state tests.  18

2. Other Data

The statistical office in each district also provided us with administrative data on

students.  The data included student identifiers, limited characteristics (such as the student’s sex,

race/ethnicity, and eligibility for a free or reduced-price lunch).  In two of the three districts we

also obtained data on the number of days the students attended school the previous year and the

year in which we conducted the study; and we have limited information on in- and out-of-school

suspensions.  In addition, we gauge each student’s engagement with the program and the time-

on-task through tracking data that comes with the computerized program.  Importantly, these

data allow us to determine which students ever actually trained in the computer lab versus in a

traditional classroom for the analysis estimating the effect of the treatment on the treated.

IV. RESULTS

A. Descriptive Statistics

The first order of business is to determine if assignment to the computer lab appears

random.  Table 3 shows the mean of student characteristics by whether or not the student’s class

was assigned to the CAI lab or was assigned to receive traditional instruction.  The top panel
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 We note, however, that these differences in race and ethnicity arise in only one district19

(District 2).

uses the full sample of students who were randomly assigned at the beginning of the academic

year.  We see that the proportion of female, African American, and Hispanic students are quite

similar using the full sample.  Further, the baseline test scores are identical.  

However, there is significant mobility among students in the districts such that we were

unable to post-test all of the students.  A major concern is that the attrition between the

beginning and end of the study was uneven between the treatment group and the control group

thereby introducing statistical bias into the analysis.  We therefore compare the observable

characteristics of the students in the treatment and control groups using the sample of students

for whom we also have both the baseline and follow-up data on the NWEA test in the bottom

panel.  Again, there is no difference in the baseline pre-algebra/algebra test score, however there

are small differences in the percentage of students that are African American and Hispanic that

are statistically significant at the 6% level.   As a result, in most specifications we control for19

the sex, race and ethnicity of the student. 

B. Overall Intent-to-Treat and Treatment-on-the-Treated Estimates

Table 4a presents the OLS estimates of the intent-to-treat effects of CAI represented by

equation (1) as well as an instrumental variables (IV) estimate of the effect of treatment-on-the-

treated using the NWEA test as an outcome.  Column (1) presents the straightforward mean

difference in the post-test between students learning algebra using CAI and those learning in a

traditional classroom adjusted only for dummy variables representing the randomization pool.



21

 Further, when we regress whether the student is missing the baseline test score on a variety20

of student characteristics, none of the characteristics significantly differ between those with and
without baseline test scores.

The standard errors reported allow for within-classroom correlation.  We estimate that, on

average, students in CAI scored 0.17 of a standard deviation higher on the post-test than did

those in a traditional classroom, and this difference is statistically significant at the 5% level.

When we add controls for the sex and race/ethnicity of the student, in column (2), the random

assignment effect does not change.  

In column (3) we present the same specification as that in column (1) but restrict the

sample to those students who also had a pre-test.  The basic effect of CAI is slightly higher –

21% of a standard deviation – among the subset of students with baseline test scores, although

the estimate is within a standard error of that in column (1).   Note that the coefficient estimate20

falls slightly when we include the baseline test score (columns (4) and (5)), although this

difference is not statistically different from that in column (3).  Thus, we estimate that the effect

of being placed in a CAI classroom relative to a traditional classroom is an educationally and

statistically significant 0.17 of a standard deviation.  To interpret this effect differently, when we

use the growth-normed test scores, we find that students assigned to a CAI classroom achieve

26% of a grade-level more than their peers at the end of the semester.

However, if some contamination occurred in the study, these OLS estimates will

understate the potential educational gains by students who are actually taught in the lab.  To the

extent that students assigned to classrooms to be taught using traditional methods spent time in

the lab and students assigned to the lab did not receive their algebra instruction there, the intent-

to-treat estimates may be too small.  Table 5 shows the number of lessons students were
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 We have used alternative definitions of students receiving treatment, such as whether the21

student completed at least 5 lessons in the lab and whether the student completed at least 10  lessons
in the lab.  The results were robust to these alternative definitions.

expected to complete given the course taken; the percentage of students completing no lessons,

more than 10 lessons and more than 20 lessons in the CAI; the number of lessons the student

actually completed; and the number of lessons completed as a fraction of the CAI course

expectations by whether the student was assigned to the treatment group or the control group.

Note, first, that there is no difference in the number of CAI lessons that students would

have been expected to complete based on the level of their math class and the school’s schedule.

However, there is evidence of some, although not extensive, contamination.  For example, 84%

of students assigned to the lab completed at least 10 lessons in the lab; 15% of those assigned to

classes to be taught using traditional instruction completed at least 10 lessons in the lab as well.

Similarly, while treatment students completed an average of 33 lessons using CAI, the control

group students completed an average of 5.6 lessons.  And, while the treatment students appear to

have completed about 64% of the lessons they would have been expected to complete using CAI,

the control students completed 10%.

We address this contamination by using IV to estimate equation (2), the results of which

are in column (6).  In this specification we identify students who were “treated” as those who

completed at least one lesson in the computer lab and instrument for this indicator with the

random assignment of the student’s class.   This strategy provides a consistent estimate of the21

effect of “treatment-on-the-treated.”  We estimate that students who actually receive instruction

using CAI score 0.25 of a standard deviation higher than those who received instruction in a

traditional classroom, and the difference is statistically significant.
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 Part of the reason for the larger estimated coefficients in Table 4b derive from the fact that22

the intent-to-treat effect of CAI is larger when we limit the sample to the subset of teachers who
taught both in- and out- of the lab (i.e., those observations from which the fixed effects analysis is
identified).  When we conduct the analysis on this subsample of teachers and do not include teacher
fixed effects the intent-to-treat effect (similar to that in column (4) in Table 4a) is 0.27 and the IV
estimate (similar to that in column (6) in Table 4a) is 0.44. 

As noted above, although we have nearly 60 teachers who participated in the analysis, we

also sought to understand whether these impacts result because we, by chance, selected more

motivated teachers to teach in the lab.  Thus, we exploit the fact that just over one-half of the

teachers taught both in and out of the computer lab and include teacher fixed effects in the

analysis.  These results are presented in Table 4b which is otherwise identical in layout to Table

4a. The within-teacher coefficient estimates are uniformly greater than those without teacher

fixed effects.  Thus, we estimate that, controlling for (time invariant) teacher quality, the effect

of being assigned to a computer lab increases student math achievement. The intent-to-treat

effect is nearly 30% of a standard deviation; when we adjust for non-compliance using IV the

effect of CAI increases to 40% of a standard deviation.  These effects are educationally large and

statistically significant and (translated) suggest that students who actually completed lessons in

the lab gained roughly 50 percent of a year more than those taught in a traditional classroom.22

We next consider whether we detect similar effects of CAI on student math achievement

using other math test instruments. Because these instruments were not standardized across the

districts, we present the results separately by district.  Table 6a shows the intent-to-treat effect of

CAI in which we use four outcomes in District 1.  The first (column (1)) is the pre-algebra and

algebra test developed by NWEA that was also used as the outcome in Tables 4a and 4b; the

second and third are the second and third quarter benchmark tests conducted by the district
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(columns (2) and (3)); and the final column (column (4)) is the statewide math test.  We present

the results in two panels:  the top panel uses the maximum available sample for each outcome

and the lower panel constrains the sample to be constant across them.  

In District 1, when we allow for the maximum possible sample, the intent-to-treat effect

using the NWEA pre-algebra/algebra test is approximately 0.23 of a standard deviation.  We see

a larger gain of 0.4 of a standard deviation using the 2  quarter benchmark test and a gain of 0.6nd

of a standard deviation using the 3  quarter benchmark test.  Importantly, we also detect anrd

effect of 0.26 on the state mathematics test.  All of these gains are educationally large and

statistically significant at the 5% level.  Further, the coefficient estimates in the bottom panel

suggest that the gains are not simply driven by changes in the sample size across the

specification as they are even larger.

Analogous results for Districts 2 and 3 are presented in Table 6b (note that benchmark

tests were not administered in these districts).  Columns (1) and (3) show the effect of CAI using

the NWEA test; those in columns (2) and (4) report the effect using the statewide test for each of

the districts.  In District 2 we detect an effect of 0.2 of a standard deviation using the algebra test

with a p-value of 0.13; the effect is much smaller on the state test – less than 10% of a standard

deviation – and not statistically different from zero.  That said, these results are not unexpected

given that most of the state math test is not geared towards pre-algebra and algebra.  Note that

the results do not appear to depend on whether or not the sample is restricted to be the same in

both specifications.  In contrast, we estimate a negative intent-to-treat effect of CAI on student

achievement in District 3 using both the NWEA test and the state math test, although neither
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 We have also estimated IV models by district for all of the outcomes.  In general the23

coefficient estimates are larger but not qualitatively different from the OLS estimates.  These results
are available on request.

 This inference is based on a combined regression in which we interact the intent-to-treat24

effect with dummy variables indicating the school district.

 The subsequent results are qualitatively similar with or without this one randomization25

pool in District 3.  A complete set of results without the randomization pool are available on request.

coefficient estimate is statistically different from zero (in fact the standard errors are much larger

than the coefficient estimates).  23

While the magnitude of the intent-to-treat effect is largest in District 1, the effect (based

on the algebra test) is not statistically distinguishable from that in District 2.   Further, we note24

that the negative effect in District 3 is driven by the results from only one randomization pool.  If

we exclude this pool from the analysis the point estimate in column (3) of the top panel of Table

6b rises to 24 percent of a standard deviation and that in column (4) rises to 15 percent of a

standard deviation.  These estimates are not statistically different from those estimated in

Districts 1 and 2.   In addition, in the districts in which CAI appears most effective, the test25

improves student achievement on more than simply one math test.

C. Empirical Evidence on Why is CAI More Effective

The discussion in Section II suggested that CAI may more effective for some students

than others and in classes in which individualized instruction may be particularly advantageous.

In the following tables, we look for patterns of impacts that are consistent with this
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 We have conducted all of the subsequent analysis using the statewide tests rather than the26

NWEA pre-algebra and algebra test designed for this study.  The biggest problem is that the sample
sizes are much smaller generating results that are quite imprecise.  However, many of them are
qualitatively similar to those presented in the paper.  These results are available from the authors on
request.

 We have also tested whether the effectiveness of CAI differs by sex or race/ethnicity and27

find no systematic differences. The results are available from the authors on request.

 Each column in each panel represents a separate regression.28

 Test score quartiles for all specifications are defined within district and algebra level. All29

specifications additionally control for student demographic characteristics as described above and
indicators for the randomization pool. The top panel also includes the baseline test score while the
bottom panel includes, instead, indicators for the baseline test score quartile.  We also include main
effects for the level of math class in the top panel.  We emphasize that these results are qualitatively
similar when use growth-normed scores suggesting that they are not an artifact of the test score
scaling and the possibility that students at different parts of the distribution would naturally have
differential gains over the course of the year. 

 In the analysis sample, 30 percent of District 1 students are in pre-algebra, 12 percent of30

District 2 students are in pre-algebra, and 9 percent of District 3 students are in pre-algebra.

interpretation.   In Table 7 we estimate whether the effect of CAI is different for pre-algebra26,27

versus algebra or students of different ability as measured by baseline (NWEA) test scores.28

Each column of the table represents estimates of the effect of CAI for a different subset of the

analysis sample.  We present estimates for the three districts combined (column (1)), districts 1

and 3 combined (column (2)), and district 1, 2, and 3 separately in columns (3), (4), and (5),

respectively. The top panel estimates differential effects by pre-algebra and algebra and the

bottom panel estimates the CAI effect by student ability as measured by the baseline test score

quartile.29

We have study students in algebra and pre-algebra classes in all three districts with

roughly 23 percent in pre-algebra classes.   Pooling all three districts we estimate that the effect30
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 Statistically, we can reject that the effectiveness of CAI for algebra students is the same31

in district 2 or 3 as in district 1. The effectiveness of CAI for pre-algebra students in district 2 is very
similar to and not statistically different from that in district 1, and although the estimated CAI effect
for pre-algebra students in district 3 is larger than in district 1, we also cannot reject that it is same
as in district 1.

 In the bottom part of this table and in the subsequent tables we combine pre-algebra and32

algebra students to increase our statistical power.  The results are qualitatively similar if we limit
the sample to pre-algebra students.  Such results are available on request.

of CAI for pre-algebra students is significantly larger than the effect for algebra students (the p-

value of the difference between the two effects equals 0.001). Pre-algebra students in CAI score

0.48 standard deviations higher than pre-algebra students in traditional classes while algebra

students in CAI score less than 1 percent of a standard deviation higher and the effect is not

statistically different from zero. Note, however, that the effect of CAI for algebra students is

being driven toward zero by the negative effect of CAI for algebra students in districts 2 and 3.

That said, even in District 1 we find evidence that CAI has a larger effect among pre-algebra

students than algebra students.  In District 1 we estimate that CAI pre-algebra students score

0.44 standard deviations higher than traditionally taught pre-algebra students while CAI algebra

students score only 0.13 standard deviations higher than traditionally taught algebra students.

For each district the p-value for the test that the pre-algebra effect of CAI equals the algebra

effect of CAI is less than 0.07.   Thus, this CAI treatment appears more effective for pre-algebra31

students than for algebra students.

In the bottom panel we allow the effect of CAI to differ by prior student math

achievement.   A promised benefit of CAI is that the instruction is completely individualized in32

the sense that students can move at their own pace in covering the material.  In contrast, students

in a traditional classroom cover all lessons at the same pace. This could mean that CAI is
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differentially effective for students of different math ability. For example, suppose traditional

classroom teachers always teach pre-algebra and algebra at the pace that is appropriate for the

highest ability students in the class.  In this case, we might expect to see that high ability

students do equally well in CAI and traditional classrooms while those with lower math ability

do better in CAI because they can take more time to cover each lesson and therefore learn the

material better even if they do not cover as many lessons. Alternatively, if traditional classroom

teachers always teach pre-algebra and algebra at the pace that is appropriate for the lowest ability

students then high ability students may do better in CAI because they can cover more material

than covered in a traditional classroom.  While a possibility, when we pool either all three

districts (column (1)) or Districts 1 and 2 (column (2)) we estimate that CAI is roughly equally

effective for students with the lowest and highest prior math achievement students (p-

value>0.60).  Thus, we find no evidence that CAI is more or less effective for students with

stronger or weaker backgrounds in math as measured by the baseline algebra test.

Tables 8a and 8b test for different CAI effects by attendance characteristics of individual

students and for the class based on attendance data from the prior academic year.  As noted

earlier, we only have data on student attendance for Districts 2 and 3. While the pooled data

suggest that, indeed, CAI is more effective for students with worse attendance rates we cannot

reject that there are no differences at standard levels of significance. We find some statistically

significant differences by attendance quartile using District 3 alone, but the pattern of results are

not fully consistent with hypothesis that the individualized instruction of CAI mitigates the

negative effects of poor attendance rates.
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 For each student we calculate the average attendance rate of her classmates using33

attendance data for the prior year and excluding her own attendance rate from the calculation.

Table 8b presents estimates allowing the effect of CAI to differ with the average

attendance rate of the students in the classroom.  For Districts 2 and 3 either pooled or33

individually we find a larger CAI effect for classrooms with lower average attendance rates.  For

students in a classroom with average attendance rates, the CAI effect is less than 6 percent of a

standard deviation and not statistically different from zero. In contrast, the CAI effect for

students in a classroom with attendance rates one standard deviation below the mean is 0.35 of a

standard deviation (p-value equals 0.08).

Next, we examine whether CAI is more effective for larger classes. Here we measure

class size based on the initial class assignment rosters used for random assignment; thus, class

size is available for all three districts. The average class sizes in these districts range from 24 to

29 students.  Pooling all three districts, we find that the CAI effect is larger for larger

classrooms; unfortunately this marginal effect is not statistically significant at standard levels (p-

value equals 0.19). However, pooling only Districts 1 and 2 we find that the CAI effect is about

twice as large and statistically significant at the 10% level (the p-value is 0.067).  Based on this

estimate, for a classroom of 25 students the effect of CAI is 0.21 of a standard deviation (p-value

< 0.001).  For a class of 15 students there is no difference between CAI and traditional

instruction (0.01 of a standard deviation with a p-value of 0.89). Class size effects are positive

for District 1 (p-value = 0.09) and District 2 (p-value = 0.80), individually. The coefficient

estimate is very small and negative with a large standard error in District 3.  We cautiously
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 The results are robust to small changes in the definition of a large class.  For example, the34

result is similar if we define large classes as those with more than 20 students (the 30  percentileth

based on classrooms), but they are not similar at the 60  percentile (more than 26 students).  We alsoth

obtain qualitatively similar results when we define class size as a continuous variable. 

conclude there is some evidence CAI is more effective in larger classes, consistent with the idea

that the main benefit of CAI is the individualization of the instruction.

Finally, we examine whether CAI effects are larger in classrooms with greater

heterogeneity in terms of baseline math achievement.  Specifically, we allow the CAI effect to

depend on the baseline test score standard deviation for the class. The top panel of Table 10

presents overall results.  While the estimate of the coefficient on the interaction term for District

1 is negative, those for Districts 2 and 3 individually, are positive, consistent with the idea that

the benefit of CAI is through individualized instruction. However, regardless of sample, none of

the coefficients on the interaction between CAI and baseline standard deviation are statistically

significant. 

One potential explanation for the results only being weakly supportive of the importance

of individualized instruction is that heterogeneity, in-and-of itself, may not hinder effective

teaching.  Rather, in certain circumstances – such as in small classrooms – heterogeneity in 

student ability may be quite manageable in a traditional classroom.  In this case, the relative

advantage of CAI (and hence more individualized instruction) may only become apparent in

large and heterogenous classes.  To test this hypothesis, in the second panel of Table 10 we add a

third level interaction – that between CAI, the baseline standard deviation in student test scores,

and an indicator for whether the class is “large” (defined as more than 24 students).   We now34

find there is a large, statistically significant, relative advantage to being assigned to CAI for
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 Information on the cost of a CAI lab comes from one of the districts in our study.35

 The company estimates the annual cost per pupil at just over $100.  However, we can only36

get close to this per-pupil estimate if we assume that the lab would serve 400 students per year over
a 7 year period and that the district would not pay for training, support, and maintenance cost after
the initial three years.  We generate our own estimates because we believe this cost per pupil to be
unrealistically low. 

large, heterogeneous classes which is consistent with the hypothesis that CAI benefits primarily

accrue through increased individualization of instruction.

V. COST-BENEFIT SIMULATION

Of course, gains from computerized instruction do not come for free as the computer labs

required for CAI are costly and are dedicated to CAI.  In our example, a 30-seat lab costs

$100,000 with an additional $150,000 for pre-algebra, algebra, and classroom management

software and roughly $17,000 per year for training, support, and maintenance of the lab.35

According to the company’s website a lab lasts 7-10 years so a CAI lab may cost nearly $53,000

per year.  36

Given that providing instruction through CAI may serve as a substitute for reduced class

sizes, one way to evaluate its cost effectiveness is to compare its cost to the compensation cost of

hiring additional teachers to reduce class size.  Using pre-algebra/algebra test scores measured in

national standard deviation units we find that a student in an average-sized class (24 pupils)

using CAI in our largest district (District 1) scores 11 percent of a standard deviation higher than

a student in a similarly-sized traditional classroom. Because the gains from CAI are larger for

larger classes, the benefit of CAI equals zero when the average class size is reduced to 13
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 We only report estimates using the analysis sample in District 1 because we have a good37

understanding of the typical number of periods in each school; we must make more assumptions
when we using our entire analysis sample.  That said, the estimated annual cost per pupil of CAI
would be about $274 using the entire analysis sample and the estimated cost of reducing class size
to 13 students would be about $246.

 The cost of reducing class size in this simulation is much lower than the estimates of the38

cost of class size reduction for elementary schools as in Tennessee STAR (e.g., nearly $5000 per
pupil in Schanzenbach 2006). This is primarily because when class sizes are reduced at the
elementary school level, it is for all subjects, not just algebra and pre-algebra.

students.  Thus we compare the per-pupil cost of CAI to the cost of reducing class sizes to 13

students.

Begin with an estimate of the cost of reducing class size using all of the schools in

District 1 that are in our analysis sample.   The average class size for all District 1 classes37

represented in the study is 23.5.  Although District 1 has eight periods per day, by contract

teachers do not teach every period. The typical teacher in our sample teaches 6 periods.  As a

result, the District would have to hire about 24 more pre-algebra and algebra teachers to reduce

the average class size to 13.  Using an estimate of the starting salary for teachers in District 1,

adjusted to reflect “total compensation,” we estimate that the cost of class size reduction would

be $241 per pupil per year.   (See the Simulation Appendix and Appendix Table 3 for details.) 38

The key determinants of whether CAI is more cost effective than class size reduction are

the average number of students per class in the lab and the number of periods in the day a lab

can be used.  If the district implements CAI and keeps the average class size in the lab at 23.5

students, the annual per pupil cost is about $279.  Per pupil costs of CAI are lowest when the lab

can be used every period of the day and each class has 30 pupils in it.  If 30 students were

assigned to classes in the lab, the per pupil cost decreases to about $218 which is slightly lower
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than the estimated cost of class size reduction.  More generally, the per pupil cost of CAI is

estimated to be less than or equal to the cost of class size reduction as long as the district

increases the average class size in the lab to between 27 and 30 pupils.

For individual schools in District 1 with larger average class sizes, our estimates of the

cost of implementing CAI are less than our compensation cost estimates of reducing class size,

even without increasing the average class size in the lab.  For example, School B has an average

class size of 26.8.  In this case, cutting the average class size in half costs roughly $278 per pupil

compared to $245 per pupil to implement CAI without changing the average class size.  The

benefits of CAI are the most attractive in School A where the cost of reducing class sizes is over

$100 more per student than that of adopting CAI.

In general our calculations suggest that the costs of reducing pre-algebra and algebra

classes to 13 students and adopting CAI are quite comparable.  However, we suspect that our

estimates of the cost of class size reduction are more severely underestimated compared to those

for CAI.  The reason is that they only reflect increased costs in terms of teacher compensation

while, in fact, there would likely be additional costs such as recruiting costs and capital

expenditures that have not been taken into account.  As a result, CAI may be the more cost-

effective way for school districts to raise mathematics achievement.  Furthermore, in urban and

rural districts that have difficulty hiring highly qualified mathematics teachers, CAI may be

much easier to implement than a drastic reduction in class size.  

VI. CONCLUSION
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Our results suggest that CAI may increase student achievement in pre-algebra and

algebra by at least 0.17 of a standard deviation, on average, with somewhat larger effects for

students in larger classes.  Put differently, students learning pre-algebra and algebra through CAI

are 26% of a school year ahead of their classmates in traditional classrooms after one year.  In

interpreting these results, one must keep in mind that the outcomes were measured relatively

soon after the intervention ended such that we do not know how long they would “last.”  At the

same time, it is not clear to us how one might measure such longer run outcomes, particularly

since mathematics is not necessarily cumulative at the secondary school level, students in the

control group may go on to use CAI, and all of the students may have been involved in other

enrichment programs.  In addition, this represents only one use of computers for teaching pre-

algebra and algebra and not all CAI hardware and software may be equally effective.  That said,

this study suggests that CAI has the potential to significantly enhance student mathematics

achievement in middle and high school, that the gains are comparable to those achieved with

drastic class size reduction, and that the costs are likely somewhat lower than the full cost of

reducing the average class size for all algebra and pre-algebra classes. At the very least, our

results suggest that CAI deserves additional rigorous evaluation and policy attention, particularly

since it may be much easier for schools and districts to implement than large scale class size

reduction.
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 As noted in the text, we only present results using the analysis sample in District 1 because39

we have specifics about the structure of the school day.  To use the entire analysis sample we must
make more assumptions.

SIMULATION APPENDIX

In this appendix we present more detailed information on the cost calculations for CAI

and class size reduction using information on all algebra and pre-algebra classes for two schools

in District 1. We also present the same calculations for all District 1 algebra and pre-algebra

classes in the analysis sample.   Thus the top panel of the table presents cost estimates for39

implementing CAI while the bottom panel presents cost estimates for reducing class size to 13

students. The cost estimates vary because of differences across the schools in the average class

size.

The first three columns are identical in each panel and represent the total number of pre-

algebra and algebra classes, total number of students, and the average class size, respectively.

Column (4) lists the number of periods the lab is in use (top panel) or the teacher is teaching

(bottom panel). For CAI we assume that the average class size is equal to the observed average

class size or a maximum of 30 students (column (5) in the top panel). For class size reduction,

we assume that classes are reduced to 13 students. Column (5) in the bottom panel equals the

total number of new classes required to generate an average class size of 13. Column (6) then

presents the number of labs the school (district) needs to put all algebra and pre-algebra classes

in CAI (top panel) or the number of additional teachers needed to reduce algebra and pre-algebra

class size to 13 given the assumption that the new teachers teach for 6 of the 8 periods in the day.

Finally, we assume the lab involves a fixed cost of $250,000 for hardware and software and

$50,000 for 3 years of support, training, and maintenance and that the lab is good for 7 years. For
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 Most of schools in District 1 operate on a block schedule; however, classes could be40

organized either in 4 blocks for 1 semester or 8 periods over 1 year. For simplicity we assume
classes are organized into 8 periods over 1 year for all schools.

the compensation cost of each teacher we use the salary of a new teacher in district 1 with zero

years of experience and further assume that salary is 70 percent of the total compensation cost.

For a large school in our sample (School A), the cost of CAI is $218 per pupil compared

to $329 per pupil to reduce class size to 13 students. For a smaller school in our sample (School

B), the cost per pupil is roughly $245 for CAI compared to $278 for class size reduction. The

final row in each panel presents cost estimates using information for all algebra and pre-algebra

classes in District 1 that are represented in the analysis sample.  In this case, our per pupil cost40

of CAI is nearly $280 compared to a per pupil cost of reducing class size that is closer to $240.

When we consider the analysis sample for all three districts, we assume that teachers

typically teach 6 out of a total of 8 class periods during the day in all three districts and that

teacher salaries are the same as in District 1. Thus, since the average class size for all classes in

the analysis sample (23.9) is quite similar to the average for District 1 classes (23.5), the

estimates of the cost of CAI and the cost of class size reduction are quite similar to the estimates

for District 1, $274 per pupil for CAI and $246 per pupil for class size reduction. This is likely

an overestimate for CAI and an under estimate for class size reduction. For some of the schools

in districts 2 and 3, it appears that teachers may actually teach fewer than 6 classes per day, and

some schools may actually have more than 8 possible periods during the day. Also, teacher

salaries may be somewhat higher in District 2 than in Districts 1 and 3.
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Table 1: Districts in Study Compared to National Average

United States
100 Largest

Districts
3 Districts
Combined District 1 District 2 District 3

Average # of students in a
district (all grades)

112,807 ~63,000 ~68,000 ~22,000 ~97,000

% Female 48.8 49.4 49.7 48.8 49.3

% African American 28.1 69.5 93.6 40.3 59.4

% Hispanic 34.1 16.2 1.1 54.3 18.0

% Native American 0.6 0.5 0.1 0.1 0.9

% Asian 7.1 3.1 1.9 0.8 4.4

Source: Authors’ calculations based on the National Center for Education Statistics Common Core of Data, 2003-2004 school year,
100 largest districts by total enrollment. Percentages are based only on schools reporting. (Data on sex are missing for Knox County,
Memphis City, Nashville-Davidson County, Philadelphia City, Portland, and Shelby County School Districts. Data on race and
ethnicity are missing for Memphis City, Nashville-Davidson County, and Shelby County School Districts.) Demographic
characteristics for the 3 districts combined are enrollment-weighted averages of the individual district means.
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Table 2: Schools and Students in Study Compared to the Overall District Averages

District 1 District 2 District 3

Relevant
Schools

Schools
in Study

Students
in Study

Relevant
Schools

Schools
in Study

Students
in Study

Relevant
Schools

Schools
in Study

Students
in Study

number of students 29,603 8,148 973 5,270 4,476 412 27,572 3,540 200

students per school 604 815 97 659 1119 103 484 1180 67

% grade 8 19.3 16.8 40.4 2.3 0.0 0.0 1.4 0.0 3.5

% grade 9 18.0 18.3 47.2 38.0 40.0 52.7 35.6 40.0 91.5

% grade 10 15.1 17.8 9.9 22.0 23.2 31.8 23.3 25.1 3.0

% female 50.5 49.0 52.0 48.4 48.2 46.7 49.9 47.6 47.7

% African American 94.2 97.2 87.8 43.6 42.0 47.1 61.1 92.5 94.5

% Hispanic 1.0 0.8 0.8 50.1 51.2 44.7 15.2 1.2 0.5

% white 2.6 0.4 0.1 5.5 5.9 6.6 18.3 4.0 1.5

% Native American <0.1 <0.1 0.0 0.2 0.1 0.2 1.1 0.4 0.0

% Asian 2.2 1.6 1.8 0.7 0.8 0.5 4.5 1.9 3.0

% missing
demographic data 

9.6 0.2 0.5

Source: Authors’ calculations based on the National Center for Education Statistics. Common Core of Data, 2003-2004 school year.
There are 49 “relevant” schools in District 1, 8 in District 2, and 57 in District 3. Relevant schools in District 1 are defined as schools
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in the CCD with a level of middle school, high school, or other; relevant schools in District 2
and District 3 have a level of high school or other. We drop middle schools in District 1 for
which the highest grade offered is less than grade 8. There are 10 schools in the study in District
1, 4 schools in District 2, and 3 schools in District 3.  Characteristics on the students in the study
come from data made available to the authors by the school districts.
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Table 3: Randomization of Treatment and Control Using Full and Analysis Samples

Random Assignment

Traditional
Instruction

Computer-Assisted
Instruction

p-value of
difference

Full Sample

Baseline algebra test score 24.7 24.7 0.494

Percent female 47.2 47.1 0.637

Percent African American 80.0 83.2 0.561

Percent Hispanic 15.9 13.5 0.195

Class size 25.8 25.7 0.860

Number of Observations 1133 1145

Analysis Sample

Baseline algebra test score 24.7 24.8 0.304

Percent female 51.1 48.9 0.148

Percent African American 81.9 84.0 0.060

Percent Hispanic 13.8 12.1 0.061

Class size 25.8 26.2 0.549

Number of Observations 785 800

Notes: All test scores are scaled scores converted to standard deviation units. The test for a
difference in mean characteristic by random assignment is based on a regression of the
characteristic on an indicator for random assignment and randomization pool fixed effects
allowing for correlation in standard errors at the classroom level. We report the p-value for the t-
test that the coefficient on the random assignment indicator equals zero.
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Table 4a: Ordinary Least Squares and Instrumental Variable Estimates 
of the Effect of Computer-Assisted Instruction (CAI) on Algebra Achievement 

(without Teacher Fixed Effects)

OLS IV

(1) (2) (3) (4) (5) (6)

CAI 0.173
(0.076)

0.172
(0.074)

0.212
(0.077)

0.172
(0.060)

0.173
(0.059)

0.249
(0.086)

Baseline algebra test
score

0.500
(0.035)

0.493
(0.034)

0.491
(0.034)

Female 0.081
(0.044)

0.095
(0.041)

0.087
(0.041)

African American -0.671
(0.180)

-0.506
(0.137)

-0.498
(0.138)

Hispanic -0.540
(0.211)

-0.390
(0.159)

-0.370
(0.159)

Observations 1872 1872 1585 1585 1585 1585

Notes: Each column represents a separate regression. Test scores are scaled scores converted to
standard deviation units. Each regression also controls for the randomization pool as well as an
indicator equal to one if sex is missing and an indicator equal to 1 if race/ethnicity is missing for
those regressions that include demographic information. For the IV estimates of the effect of
treatment on the treated we define treatment as completing at least one lesson in computerized
algebra instruction. We report standard errors that allow for correlation within classroom in
parentheses.
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Table 4b: Ordinary Least Squares and Instrumental Variable Estimates 
of the Effect of Computer-Assisted Instruction (CAI) on Algebra Achievement 

(with Teacher Fixed Effects)

OLS IV

(1) (2) (3) (4) (5) (6)

CAI 0.373
(0.071)

0.367
(0.067)

0.423
(0.074)

0.284
(0.053)

0.283
(0.053)

0.417
(0.080)

Baseline algebra test
score

0.483
(0.035)

0.477
(0.034)

0.468
(0.034)

Female 0.108
(0.041)

0.125
(0.041)

0.115
(0.041)

African American -0.619
(0.155)

-0.449
(0.129)

-0.433
(0.131)

Hispanic -0.498
(0.185)

-0.351
(0.154)

-0.315
(0.152)

Observations 1872 1872 1585 1585 1585 1585

Notes: Each column represents a separate regression. Test scores are scaled scores converted to
standard deviation units. Each regression also controls for the randomization pool, an indicator
equal to one if sex is missing, and an indicator equal to 1 if race/ethnicity is missing for those
regressions that include demographic information, and teacher fixed effects. For the IV estimates
of the effect of treatment on the treated we define treatment as completing at least one lesson in
computerized algebra instruction. We report standard errors that allow for correlation within
classroom in the parentheses.  The p-values of the F-tests on the statistical significance of the
teacher effects equal zero for all specifications.
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Table 5: Amount of Time in the Computer Lab 
by the Random Assignment of the Student’s Class

Random Assignment

Traditional
Instruction CAI

Number of lessons students are expected
to complete based on the course level

52.7
(14.4)

55.3
(15.3)

Percent of students completing no lessons
in CAI

80.1
(39.9)

9.1
(28.8)

Percent of students completing more than
10 lessons in CAI

14.8
(35.5)

83.8
(36.9)

Percent of students completing more than
20 lessons in CAI

10.3
(30.4)

70.3
(45.7)

Number of lessons completed in CAI 5.6
(15.2)

33.0
(23.9)

Number of CAI lessons completed as a
percent of course expectations

10.0
(27.8)

64.5
(50.4)

Number of observations 785 800

Notes: District 1 has 62 school days in the study while classes in districts 2 and 3 generally have
180 days in the study. One exception is that a few classes in district 3 meet only one-half of the
schools days.



47

Table 6a: Ordinary Least Squares Estimates of the Effect of 
Computer-Assisted Instruction (CAI) on Algebra and Mathematics Achievement 

in District 1 Using Different Tests

Algebra
Scale Score

2  Qtrnd

Benchmark
Algebra Test

3  Qtrrd

Benchmark
Algebra Test

State
Mathematics

Test

(1) (2) (3) (4)

Maximum available sample

CAI 0.226
(0.071)

0.381
(0.127)

0.604
(0.286)

0.260
(0.119)

Observations 973 230 239 454

Constraining sample students to be the same across
specification

CAI 0.374
(0.168)

0.462
(0.173)

0.946
(0.482)

0.381
(0.139)

Observations 185 185 185 185

Notes:  Standard errors that allow for correlation within classroom are in parentheses.  The
dependent variable in the first column is the normalized scale score for the algebra test; that in
the second column is the 2  quarter district-wide 8 -grade math test score; that in the thirdnd th

column is the 3  quarter district-wide 8 -grade math test score; and that in the fourth column isrd th

the state mathematics test.  All test scores are scale scores converted to standard deviation units.
Each regression also includes controls for baseline test scores, the randomization pool,
demographic characteristics, and an indicator equal to one if sex is missing, and an indicator
equal to 1 if race/ethnicity is missing. The algebra and state mathematics tests were administered
in the spring. The baseline algebra tests were given in the beginning of the academic year. The
baseline benchmark algebra test was given in the 1  quarter of the academic year. The baselinest

state test was given in the spring of the preceding academic year.
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Table 6b: Ordinary Least Squares Estimates of the Effect of 
Computer-Assisted Instruction (CAI) on Algebra and Mathematics Achievement 

in Districts 2 and 3 Using Different Tests

District 2 District 3

Algebra
Scale Score

State
Mathematics

Test
Algebra

Scale Score

 State
Mathematics

Test

(1) (2) (3) (4)

Maximum sample available

CAI 0.200
(0.130)

0.089
(0.094)

-0.124
(0.122)

-0.062
(0.118)

Observations 412 341 200 199

Constraining sample students to be the same across
specification within school district

CAI 0.400
(0.171)

0.082
(0.112)

0.031
(0.182)

-0.202
(0.109)

Observations 229 229 107 107

Notes: Standard errors that allow for correlation within classroom are in parentheses.  The
dependent variable in the first and third columns is the normalized scale score for the algebra
test; those in the second and fourth column results are the respective state mathematics test.  All
test scores are scale scores converted to standard deviation units. Each regression also includes
controls for baseline test scores, the randomization pool, demographic characteristics, and an
indicator equal to one if sex is missing, and an indicator equal to 1 if race/ethnicity is missing.
The algebra tests were administered in the spring. The baseline algebra tests were given in the
beginning of the fall. For district 2 the state mathematics test was administered in the spring of
the students’ 10  grade year. For district 3 the state mathematics test was administered in the fallth

of the students 10  grade year. For both districts, the baseline state tests were given in the fall ofth

the students’ 8  grade year.th
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Table 7: Differential Intent to Treat Effects of the Computerized Instruction on Pre-Algebra and Algebra Achievement 
by Class Type and Baseline Test Score Quartile

All 3 Districts Districts 1 and 2 District 1 District 2 District 3

(1) (2) (3) (4) (5)

CAI effect for Algebra 0.005
(0.059)

0.069
(0.065)

0.130
(0.066)

-0.307
(0.218)

-0.230
(0.100)

CAI effect for pre-Algebra 0.481
(0.119)

0.453
(0.120)

0.442
(0.155)

0.513
(0.187)

1.360
(0.690)

CAI effect for bottom baseline test
score quartile

0.216
(0.091)

0.288
(0.095)

0.280
(0.095)

0.136
(0.235)

-0.199
(0.287)

CAI effect for 2nd baseline test
score quartile

0.242
(0.100)

0.273
(0.104)

0.343
(0.115)

0.150
(0.212)

-0.090
(0.282)

CAI effect for 3  baseline testrd

score quartile
0.171

(0.105)
0.199

(0.117)
0.090

(0.125)
0.522

(0.260)
0.004

(0.161)

CAI effect for top quartile 0.155
(0.106)

0.245
(0.112)

0.218
(0.124)

0.358
(0.237)

-0.436
(0.259)

Number of observations 1585 1385 973 412 200

Notes: Each column of each panel represents a separate regression. All test scores are scale scores converted to standard deviation
units. Regressions in the top panel also includes baseline test scores. Each regression also controls for the randomization pool,
demographic characteristics, an indicator equal to one if sex is missing, and an indicator equal to 1 if race/ethnicity is missing.
Baseline test score quartiles are defined within district and class type (algebra or pre-algebra).We report standard errors that allow for
correlation within classroom in the parentheses.
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Table 8a: Differential Intent to Treat Effects of the Computerized Instruction 
on Pre-Algebra and Algebra Achievement 

by Individual Attendance Rates

Districts 2 and 3 District 2 District 3

(1) (2) (3)

CAI effect for bottom
baseline attendance quartile

0.439
(0.287)

0.112
(0.395)

0.797
(0.353)

CAI effect for 2nd baseline
attendance quartile

-0.221
(0.208)

-0.136
(0.328)

-0.578
(0.267)

CAI effect for 3  baselinerd

attendance quartile
-0.051
(0.175)

-0.053
(0.256)

-0.068
(0.293)

CAI effect for top baseline
attendance quartile

-0.020
(0.197)

-0.119
(0.313)

0.146
(0.255)

Number of observations 372 221 151

Notes: Each column and panel represents a separate regression. Test scores are scaled scores converted to standard deviation units.
Each regression also controls for the randomization pool, the baseline test scores, demographic characteristics, an indicator equal to
one if sex is missing, and an indicator equal to 1 if race/ethnicity is missing. We report standard errors that allow for correlation
within classroom in the parentheses. Each student’s attendance rate is calculated as the percent of enrolled days that the student is in
attendance. Attendance quartiles are calculated within district.
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Table 8b: Differential Intent to Treat Effects of the Computerized Instruction 
on Pre-Algebra and Algebra Achievement 

by Class Characteristic: Attendance

District 2 and
District 3 District 2 District 3

CAI 2.131
(1.017)

2.261
(1.220)

2.808
(1.970)

CAI × Average class
attendance

-0.025
(0.012)

-0.025
(0.014)

-0.034
(0.022)

Mean (std. deviation) of
class attendance rate

83.287
(11.803)

82.513
(13.605)

84.695
(7.307)

Number of observations 564 364 200

Notes: See notes for table 9a. Average class attendance is based on individual student attendance
data for the year preceding the year of the experiment.
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Table 9: Differential Intent to Treat Effects of the Computerized Instruction 
on Pre-Algebra and Algebra Achievement by Class Size

All 3 Districts Districts 1 and 2 District 1 District 2 District 3

(1) (2) (3) (4) (5)

CAI -0.097
(0.215)

-0.281
(0.254)

-0.266
(0.250)

-0.035
(0.920)

-0.033
(0.694)

CAI × Class size 0.010
(0.008)

0.020
(0.011)

0.019
(0.011)

0.011
(0.042)

-0.004
(0.022)

Mean class size 
(standard deviation) 

26.005
(6.623)

25.623
(6.122)

26.420
(6.330)

23.740
(5.135)

28.650
(8.976)

Number of observations 1585 1385 973 412 200

Notes: Each column represents a separate regression. Test scores are scaled scores converted to standard deviation units. Each
regression also controls for the randomization pool, the baseline test scores, demographic characteristics, an indicator equal to one if
sex is missing, and an indicator equal to 1 if race/ethnicity is missing. We report standard errors that allow for correlation within
classroom in the parentheses.
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Table 10: Differential Intent to Treat Effects of the Computerized Instruction 
on Pre-Algebra and Algebra Achievement by Class Baseline Test Score Standard Deviation

All 3 Districts Districts 1 and 2 District 1 District 2 District 3

(1) (2) (3) (4) (5)

CAI × baseline standard deviation 
for the class

0.110
(0.391)

-0.064
(0.387)

-0.118
(0.443)

0.600
(0.921)

0.583
(0.934)

(6) (7) (8) (9) (10)

CAI × baseline standard deviation 
for the class

-1.100
(0.560

-0.620
(0.529)

-0.559
(0.594)

-0.514
(1.352)

-3.804
(0.369)

CAI × class baseline standard
deviation × I(large class)

1.512
(0.892)

0.688
(0.870)

0.485
(0.907)

9.257
(2.085)

4.136
(0.711)

Mean class baseline standard
deviation (standard deviation)  

0.781
(0.160)

0.782
(0.154)

0.774
(0.157)

0.802
(0.147)

0.773
(0.193)

Number of observations 1585 1385 973 412 200

Notes: See notes for table 10. The coefficients in top and bottom panels are from different specifications.  The median class size in the
overall sample is 24 students. A large class is defined as having more than 24 students. A small class is defined as having 24 or fewer
students. 
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Appendix Table 1: Numbers of Schools Classes, Teachers, and Randomization Pools

Combined District 1 District 2 District 3

Full Sample

Number of schools 17 10 4 3

Number of randomization pools 60 31 19 10

Number of classes 151 81 46 24

Number of teachers 61 39 15 7

Number of students 3541 1870 1062 609

Analysis Sample

Number of schools 17 10 4 3

Number of randomization pools 60 31 19 10

Number of classes 141 74 44 23

Number of teachers 57 36 14 7

Number of students 1585 973 412 200
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Appendix Table 2a: Randomization of Treatment and Control (Using Full Sample)

Random Assignment

Traditional
Instruction

Computerized
Instruction

p-value of
difference

District #1

Baseline algebra test score 24.6 24.7 0.285

Baseline state test score 9.2 9.2 0.990

Baseline district test score 3.0 3.7 0.107

Female 51.5 47.8 0.128

African American 98.0 97.8 0.260

Hispanic 0.6 0.8 0.821

Class size 25.3 25.5 0.949

District #2

Baseline algebra test score 24.6 24.7 0.823

Baseline state test score 6.6 6.7 0.558

Female 43.9 44.8 0.561

African American 51.3 44.8 0.566

Hispanic 42.6 48.1 0.204

Class size 24.1 24.6 0.369

District #3

Baseline algebra test score 25.0 24.9 0.904

Baseline state test score 16.7 16.7 0.992

Female 43.2 48.2 0.482

African American 92.7 95.6 0.126

Hispanic 0.7 0.8 0.792
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Class size 30.4 28.0 0.547

Notes: All test scores are scaled scores converted to standard deviation units. The test for a
difference in mean characteristic by random assignment is based on a regression of the
characteristic on an indicator for random assignment and randomization pool fixed effects
allowing for correlation in standard errors at the classroom level. We report the p-value for the t-
test that the coefficient on the random assignment indicator equals zero.  For district #1: baseline
algebra test scores are available for 700 treatment students and 624 controls; baseline state test
scores are available for 474 treatment students and 387 controls; baseline district test scores are
available for 110 treatment students and 147 controls; and demographic data are available for
831 treatment students and 689 controls. For district #2: baseline algebra test scores are available
for 280 treatment students and 351 controls; baseline state test scores are available for 243
treatment students and 348 controls; and demographic data are available for 397 treatment
students and 556 controls. For district #3: baseline algebra test scores are available for 165
treatment students and 158 controls; baseline state test scores are available for 151 treatment
students and 172 controls; and demographic data are available for 249 treatment students and
287 controls.
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Appendix Table 2b: 
Assessing Random Assignment with the Analysis Sample

Random Assignment

Traditional
Instruction

Computerized
Instruction

p-value of
difference

District #1

Baseline algebra test score 24.7 24.7 0.487

Baseline state test score 9.3 9.5 0.854

Baseline district test score 3.2 3.7 0.093

Female 53.6 50.6 0.092

African American 96.9 97.2 0.239

Hispanic 0.7 1.1 0.977

Class size 26.0 26.8 0.481

District #2

Baseline algebra test score 24.7 25.0 0.274

Baseline state test score 6.7 6.9 0.200

Female 48.0 45.1 0.634

African American 49.3 44.5 0.061

Hispanic 43.7 46.2 0.054

Class size 23.5 24.0 0.353

District #3

Baseline algebra test score 25.1 25.0 0.320

Baseline state test score 16.9 16.8 0.437

Female 48.0 47.5 0.808

African American 94.0 94.9 0.290

Hispanic 0.0 1.0 0.161

Class size 30.2 27.1 0.462
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Appendix Table 3:
Cost Comparisons

The cost of CAI

School

Number
of

Classes

Total
number of
Students

Class
size Periods

CAI class
size

CAI labs
needed

Annual
cost per

lab
Cost per
student

(1) (2) (3) (4) (5) (6) (7) (8)

School A 22 730 33.2 8 30.0 3.0 $52,381 $218

School B 12 321 26.8 8 26.8 1.5 $52,381 $245

District 1 analysis sample 74 1736 23.5 8 23.5 9.3 $52,381 $279

The cost of reducing class size to 13 students

School

Number
of

Classes

Total
number of 
Students

Class
size Periods

New total
math

classes

New
teachers
required

Salary +
benefits

per teacher
Cost per
student

(1) (2) (3) (4) (5) (6) (7) (8)

School A 22 730 33.2 6 56.2 5.7 $42,143 $329

School B 12 321 26.8 6 24.7 2.1 $42,143 $278

District 1 analysis sample 74 1736 23.5 6 133.5 9.9 $42,143 $241

Notes: The information on number of classes and number of students for schools A and B apply to all algebra and pre-algebra classes
in the school while the information on the number of classes and students for the analysis samples only applies to classes that are
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represented in our analysis sample. The number of CAI labs needed equals the total number of students divided by the number of
students each lab serves each day. We assume that the computer lab can be used for the number of periods specified in column (4) of
the top panel and that each CAI class is equal to average class size with a maximum of 30 students (column 5). We assume the cost of
the lab equals $250,000 in fixed costs plus $50,000 every 3 years for training, support, and maintenance and that the lab will be good
for 7 years. New total math classes in column (5) of the bottom panel equals the number of math classes needed for an average class
size of 13 students.  Assuming each teacher teaches the number of periods in column (4), column (6) represents the number of new
teachers needed to reduce class size to 13 students. Salary is based on the salary schedule for teachers in district 1 with no experience.
We assume that salary equals 70 percent of total compensation costs.
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