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Abstract

The 1987 market crash was associated with a dramatic and permanent steepening of the implied volatility

curve for equity index options, despite minimal changes in aggregate consumption. We explain these events

within a general equilibrium framework in which expected endowment growth and economic uncertainty are

subject to rare jumps. The arrival of a jump triggers the updating of agents’ beliefs about the likelihood

of future jumps, which produces a market crash and a permanent shift in option prices. Consumption

and dividends remain smooth, and the model is consistent with salient features of individual stock options,

equity returns, and interest rates.
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1. Introduction

The 1987 stock market crash has generated many puzzles for financial economists. In spite of little

change in observable macroeconomic fundamentals, market prices fell 20–25% and interest rates dropped

about 1–2%. Moreover, the crash triggered a permanent shift in index option prices: Prior to the crash,

implied ‘volatility smiles’ for index options were relatively flat. Since the crash, however, the Black-Scholes

formula has been significantly underpricing short-maturity, deep out-of-the-money Standard and Poor’s

(S&P) 500 put options (Rubinstein, 1994; Bates, 2000). This feature, often referred to as the ‘volatility

smirk,’ is demonstrated in Fig. 1, which shows the spread of both in-the-money (ITM) and out-of-the-money

(OTM) implied volatilities relative to at-the-money (ATM) implied volatilities from 1985–2006. This figure

clearly shows that on October 19, 1987, the volatility smirk spiked upward, and that this shift has remained

ever since.

Not only is this volatility smirk puzzling in its own right, but it is also difficult to explain relative to

the shape of implied volatility functions (IVF) for individual stock options, which are much flatter and

more symmetric (see, e.g., Bollen and Whaley, 2004; Bakshi, Kapadia, and Madan, 2003; and Dennis

and Mayhew, 2002). Indeed, Bollen and Whaley (2004) argue that the difference in the implied volatility

functions for options on individual firms and on the S&P 500 index cannot be explained by the differences

in their underlying asset return distributions.

In this paper, we attempt to explain these puzzles while simultaneously capturing other salient features

of asset prices. In particular, we examine a representative-agent general equilibrium endowment economy

that can simultaneously explain:

• The prices of deep OTM put options for both individual stocks and the S&P 500 index;

• Why the slope of the implied volatility curve changed so dramatically after the crash;

• Why the regime shift in the volatility smirk has persisted for more than 20 years;

• How the market can crash with little change in observable macroeconomic variables.

We build on the long-run risk model of Bansal and Yaron (2004, BY), who show that if agents have a

preference for early resolution of uncertainty, e.g., have Kreps and Porteus (1978) / Epstein and Zin (1989),

or KPEZ, preferences with elasticity of intertemporal substitution EIS > 1, then persistent shocks to the

expected growth rate and volatility of aggregate consumption will be associated with large risk premiums

in equilibrium. Their model is able to explain a high equity premium, low interest rates, and low interest

rate volatility while matching important features of aggregate consumption and dividend time series. We

extend their model in two dimensions. First, we add a jump component to the shocks driving the expected

consumption growth rate and consumption volatility. These jumps (typically downward for expected growth

rates and upward for volatility) are bad news for the agent with KPEZ preferences, who will seek to reduce

her position in risky assets. In equilibrium, this reduction in demand leads to asset prices exhibiting a

downward jump, even though aggregate consumption and dividends are smooth. That is, in our model,

the level of consumption and dividends follows a continuous process; it is their expected growth rates and

volatilities that jump. Since shocks to expected consumption growth rate and consumption volatility are

associated with large risk premiums, jumps in asset prices can be substantial, akin to market ‘crashes.’

1



Our second contribution relative to BY (2004) is to allow for parameter uncertainty and learning. Specif-

ically, we assume the jump frequency is governed by a hidden two-state continuous Markov chain, which

needs to be filtered in equilibrium. This adds another source of risk to the economy, namely the posterior

probability of the hidden state. We show that the risk premium associated with revisions in posterior beliefs

about the hidden state can be large, as they are a source of ‘long-run risk.’ In fact, we show that it can

explain the dramatic shift in the shape of the implied volatility skew observed in 1987. If, prior to 1987,

agents’ beliefs attribute a very low probability to high jump intensities then, prior to 1987, prices mostly

correspond to a no-jump Black-Scholes type economy. However, after a jump in prices occurs as a result

of the jump in expected growth rates and volatility of fundamentals, agents update their beliefs about the

likelihood (i.e., intensity) of future jumps occurring, which contributes to the severity of the market crash

and leads to the steep skew in implied volatilities observed in the data henceforth. Because these beliefs are

very persistent, the skew is long-lived after the crash.

Although the two new features, jumps and learning, dramatically impact the prices of options, we

show that our model still matches salient features of U.S. economic fundamentals. Because jumps impact

the expected consumption growth rate and consumption volatility, but not the level of consumption, the

consumption process remains smooth in our model, consistent with the data. Further, as noted by BY

(2004) and Shephard and Harvey (1990), it is very difficult to distinguish between a purely independent

identically distributed (i.i.d.) process and one which incorporates a small persistent component. Indeed, we

show that the dividend and consumption processes implied by the model fit the properties of the data well,

in that we cannot reject the hypothesis that the observed data were generated from our model.

Nonetheless, and as in BY (2004), the asset pricing implications of our model differ significantly from

those of an economy in which dividends are i.i.d. Specifically, the calibrated model matches the typical level

of the price-dividend ratio and produces reasonable levels for the equity premium, the risk-free rate, and

their standard deviation. In the same calibration we show that the pre-crash implied volatility function

for short-maturity index options is nearly flat, while it becomes a steep smirk immediately after the crash.

Moreover, the model predicts a downward jump in the risk-free rate during the crash event, consistent with

observation.

Finally, the model reproduces the stylized properties of the implied volatility functions for individual

stock option prices. We specify individual firm stock dynamics by first taking our model for the S&P 500

index and then adding idiosyncratic shocks, both of the diffusive and the jump types. We then calibrate

the coefficients of the idiosyncratic components to match the distribution of returns for the ‘typical’ stock.

In particular, we match the cross-sectional average of the high-order moments (variance, skewness, and

kurtosis) for the stocks in the Bollen and Whaley (2004) sample. We simulate option prices from this model

and compute Black-Scholes implied volatilities across different moneyness. Consistent with the evidence in

Bollen and Whaley (2004), Bakshi, Kapadia, and Madan (2003), and Dennis and Mayhew (2002), we find

an implied volatility function that is considerably flatter than that for S&P 500 options. Bakshi, Kapadia,

and Madan (2003) conclude that the differential pricing of individual stock options is driven by the degree

of skewness/kurtosis in the underlying return distribution in combination with the agent’s high level of risk

aversion. Here, we propose a plausible endowment economy that, in combination with recursive utility,
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yields predictions consistent with their empirical findings.

Related literature. Motivated by the empirical failures of the Black-Scholes model in post-crash S&P 500

option data, prior studies have examined more general option pricing models (see, e.g., Bates, 1996; Duffie et

al., 2000; and Heston, 1993). A vast literature explores these extensions empirically,1 reaching the conclusion

that a model with stochastic volatility and jumps significantly reduces the pricing and hedging errors of the

Black-Scholes formula.2 These previous studies, however, focus on post-1987 S&P 500 option data. Further,

they follow a partial equilibrium approach and let statistical evidence guide the exogenous specification of

the underlying return dynamics.

Reconciling the findings of this literature in a rational expectations general equilibrium setting has proven

difficult. For instance, Pan (2002) notes that the compensation demanded for the ‘diffusive’ return risk is

very different from that for jump risk. Consistent with Pan’s finding, Jackwerth (2000) shows that the risk

aversion function implied by S&P 500 index options and returns in the post-1987 crash period is partially

negative and increasing in wealth; similar results are presented in Aı̈t-Sahalia and Lo (2000) and Rosenberg

and Engle (2002). This evidence is difficult to reconcile in the standard general equilibrium model with

constant relative risk-aversion utility and suggests that there may be a lack of integration between the

option market and the market for the underlying stocks.

Several papers have investigated the ability of equilibrium models to explain post-1987 S&P 500 option

prices. Liu, Pan, and Wang (2005, LPW) consider an economy in which the endowment is an i.i.d. process

that is subject to jumps. They show that, in this setting, neither constant relative risk aversion nor Epstein

and Zin (1989) preferences can generate a volatility smirk consistent with post-1987 evidence on S&P 500

options. They argue that in order to reconcile the prices of options and the underlying index, agents must

exhibit ‘uncertainty aversion’ towards rare events that is different from the standard ‘risk-aversion’ they

exhibit towards diffusive risk. This insight provides a decision-theoretic basis to the idea of crash aversion

advocated by Bates (2008), who considers an extension of the standard power utility that allows for a special

risk-adjustment parameter for jump risk distinct from that for diffusive risk. These prior studies assume

that the dividend level is subject to jumps, while the expected dividend growth rate is constant. Thus, in

these models a crash like that observed in 1987 is due to a 20–25% downward jump in the dividend level.3

Moreover, their model predicts no change in the risk-free rate during the crash event. In our setting, it is the

expected endowment growth rate that is subject to jumps. Thus, in our model, dividends and consumption

are smooth and the market can crash with minimal change in observable macroeconomic fundamentals.

Further, the risk-free rate drops around crash events, consistent with empirical evidence.

Other studies explore the option pricing implications of models with state dependence in preferences
1Among recent contributions, Bakshi et al. (1997, 2000), Bates (2000), and Huang and Wu (2004) focus on derivatives prices

alone. Pan (2002), Broadie et al. (2007), Chernov and Ghysels (2000), Jones (2003), Eraker (2004), and Benzoni (2002) use
data on both underlying and derivatives prices to fit the model.

2A related literature investigates the profits of option trading strategies (e.g., Coval and Shumway, 2001; and Santa-Clara
and Saretto, 2009) and the economic benefits of giving investors access to derivatives when they solve the portfolio choice
problem (e.g., Constantinides et al., 2009; Driessen and Maenhout, 2007; Liu and Pan, 2003).

3Barro (2006) makes a similar assumption about output dynamics. His model captures the contractions associated with the
Great Depression and the two World Wars, but it does not match the evidence around the 1987 crash, when the output level
remained smooth.
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and/or fundamentals; see, e.g., Bansal, Gallant, and Tauchen (2007), Bondarenko (2003), Brown and Jack-

werth (2004), Buraschi and Jiltsov (2006), Chabi-Yo, Garcia, and Renault (2008), David and Veronesi (2002,

2009), and Garcia, Luger, and Renault (2001, 2003). These papers do not study the determinants of stock

market crashes, the permanent shift in the implied volatility smirk that followed the 1987 events, and the

difference between implied volatility functions for individual and index stock options. To our knowledge,

our paper is the first to focus on these issues.

Also related is a growing literature that investigates the effect of changes in investors’ sentiment (e.g.,

Han, 2008), market structure, and net buying pressure (e.g., Bollen and Whaley, 2004; Dennis and Mayhew,

2002; and Gârleanu et al., 2009) on the shape of the implied volatility smile. This literature argues that

due to the existence of limits to arbitrage, market makers cannot always fully hedge their positions (see,

e.g., Green and Figlewski, 1999; Figlewski, 1989; Hugonnier et al., 2005; Liu and Longstaff, 2004; Longstaff,

1995; and Shleifer and Vishny, 1997). As a result, they are likely to charge higher prices when asked to

absorb large positions in certain option contracts. These papers, however, do not address why end users buy

these options at high prices relative to the Black-Scholes value or why the 1987 crash changed the shape of

the volatility smile so dramatically and permanently. Our paper offers one possible explanation.

Finally, the large impact that learning can have on asset price dynamics has been shown previously

(e.g., David, 1997; Veronesi, 1999, 2000). One important difference between these papers and ours is that

our agent learns from jumps rather than diffusions, as in Benzoni, Collin-Dufresne, Goldstein, and Helwege

(2010), leading to different updating dynamics.

The main contribution of our paper is to explain pre- and post-1987 crash asset prices in a rational-

expectation framework that is consistent with underlying fundamentals. However, to our knowledge this is

also the first article to examine the effect of jumps in the Bansal and Yaron (2004) economy. This has proven

to be a fruitful extension of the long-run risk framework and has been further explored by, e.g., Drechsler

and Yaron (2008), Eraker (2008), and Eraker and Shaliastovich (2008).

The rest of the paper proceeds as follows. In Section 2, we present the model and discuss our solution

approach. Section 3 shows that the model matches the relevant asset pricing facts while being consistent

with underlying fundamentals. Section 4 concludes the paper.

2. The model

We specify the dynamics for log-consumption (c ≡ log C) and log-dividend (δ ≡ log D) as

dc =
(

µC + x− 1
2
Ω

)
dt +

√
Ω dzC (1)

dδ =
(

µD + φx− 1
2
σ2

D
Ω

)
dt + σD

√
Ω

(
ρDC dzC +

√
1− ρ2

DC
dzD

)
(2)

dx = −κxx dt + σxc

√
Ω dzc +

√
σx0 + σxΩ Ω dzx + ν̃ dN (3)

dΩ = κΩ

(
Ω− Ω

)
dt + σΩ

√
Ω

(
ρΩC dzC +

√
1− ρ2

ΩC
dzΩ

)
+ M̃ dN . (4)

These are continuous-time versions of the dividend and consumption dynamics considered in BY (2004),

except that the predictable dividend component x and the measure of economic uncertainty Ω are subject
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to jumps. The diffusive shocks {dzC , dzD , dzx , dzΩ} are uncorrelated Brownian motions, while jumps are

governed by a Poisson process dN with Prob(dNt = 1|Ft) = λt dt. The jump intensity λt can take two

possible values, λG and λB, and it transitions from one state to the other via the dynamics:

π
(
λ

t+dt
= λB|λt = λG

)
= φGB dt

π
(
λ

t+dt
= λG|λt = λB

)
= φBG dt. (5)

Following Eraker (2000), the jump size variables ν̃ and M̃ are drawn from the distribution

π
(
ν̃ = ν, M̃ = M

)
= ξ e−ξM1{M>0}

1√
2πσ2

ν

exp

((
− 1

2σ2
ν

)[
ν −

(
ν − α

(
M − 1

ξ

))]2
)

. (6)

As in BY (2004), changes in economic fundamentals are driven by the continuous trickling down of new

information, modeled through the diffusive shocks {dzC , dzD , dzx , dzΩ}. Jumps add an additional source of

risk to this framework and capture the notion of sudden unexpected changes in economic fundamentals. In

Eq. (6), ν denotes the average value of ν̃. When ν is negative, the typical jump in the x state variable lowers

the expected growth rate of the agent’s endowment. Moreover, a jump increases economic uncertainty Ω

by M̃ , whose average value is 1
ξ . If the realization of M̃ is higher than 1

ξ , then the average jump in x is

reduced to
[
ν − α

(
M − 1

ξ

)]
(assuming α > 0). Hence, α controls the level of correlation between the jump

in volatility and the jump in expected consumption growth.

We model jumps as rare events, i.e., both λB and λG are small. Yet, we specify λB = 0.035 to be

considerably larger than λG = 0.0005. Thus, the agent views the economy with λt = λB as the ‘bad’

economy and λt = λG as the ‘good’ economy.

The agent does not observe the state of the economy directly, i.e., she does not know whether λt = λB

or λt = λG. Instead, she observes only the process {dNt}. We define the state variable p(t) as her date-t

estimate that the economy is in the good state (i.e., her prior):

p(t) ≡ π(λt = λG| dNt) . (7)

Over each interval dt, the agent updates her prior. The solution to the filtering problem with Markov

switching is studied in Liptser and Shiryaev (2001). Applying the results in their Theorem 19.6, p. 332, and

Example 1, p. 333, we obtain the Bayesian dynamics for the probability of being in a good state:4

dp = p

(
λG − λ(p)

λ(p)

)
dN +

[− p
(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]
dt , (8)

where λ(p(t)) =
[
p(t)λG + (1− p(t))λB

]
. Thus, at time t, the agent perceives the probability of a future

jump to be:

Prob(dNt = 1|Ft) = λ(p(t)) dt. (9)

Over each interval dt, the agent updates her prior according to Eq. (8). The first term captures updating

due to an observation of a jump (dN = 1). Since jumps are rare events, this term is zero most of the time.
4For reasons of parsimony, we assume the agent learns about the state of the economy only by observing market crashes.

It is possible to allow the agent to also learn about the state of the economy by observing external signals (see, e.g., Veronesi,
2000). Such a generalization would allow us to capture higher-frequency fluctuations in option prices, which is not our focus.
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However, if a jump occurs during the interval dt, the agent’s prior that the economy is in the good state

shifts by dpt = pt

(
λG−λ(p)

λ(p)

)
. This change is negative for interior values of 0 < pt < 1, but is zero when

either pt = 0 or pt = 1. Intuitively, when pt is either zero or one, the agent knows the state for certain,

and thus does not update her priors even if she observes a jump. The second term in Eq. (8) captures

deterministic fluctuations in the agent’s prior, and is controlled by the Markov chain transition coefficients

φGB and φBG . In our calibration, these coefficients are small, which implies that the agent’s beliefs are very

persistent. This feature helps explain why the shift in the volatility smirk observed around the 1987 crash

has persisted since then.

For future reference, it is convenient to define the state vector as Xt = (xt, Ωt, pt). Further, we write the

state vector dynamics as:

dct = µC (Xt) dt + σC (Xt) dz(t)

dδt = µD(Xt) dt + σD(Xt) dz(t) + σDD(Xt) dzD(t)

dXt = µX (Xt) dt + σX (Xt) dz(t) + Γ̃ dN(t) , (10)

with the vector of independent Brownian motions z = (zc, zx, zΩ) and the vector of jump variables Γ̃. Note

that (ct, Xt) and (δt, Xt) are both Markov systems.

2.1. Recursive utility

Following Epstein and Zin (1989), we assume that the representative agent’s preferences over a consump-

tion process {Ct} are represented by a utility index U(t) that satisfies the following recursive equation:

U(t) =
{

(1− e−βdt)C1−ρ
t + e−βdtEt

(
U(t + dt)1−γ

) 1−ρ
1−γ

} 1
1−ρ

. (11)

With dt = 1, this is the discrete time formulation of KPEZ preferences, in which Ψ ≡ 1/ρ is the EIS and γ

is the risk-aversion coefficient.

The properties of the stochastic differential utility in (11) and the related implications for asset pricing

have been previously studied by, e.g., Duffie and Epstein (1992a,b), Duffie and Skiadas (1994), Schroder

and Skiadas (1999, 2003), and Skiadas (2003). In Appendix A, we extend their results to the case in which

the aggregate output has jump-diffusion dynamics. The solution to our model follows immediately from

Propositions 1 and 2 in Appendix A. Specifically, let us define

J(t) =
(

1
1− γ

)
U(t)(1−γ).

Then, it is well-known that J(t) has the following representation:

J(t) = Et

[∫ ∞

t

f(Cs, J(s)) ds

]
, (12)

where f(C, J) is the normalized aggregator defined in Duffie and Epstein (1992), which we reproduce in

Eq. (A.7) of Appendix A.
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For the cases ρ, γ 6= 1, Proposition 1 gives the agent’s value function as:5

J =
ec(1−γ)

1− γ
βθ I(X)θ , (13)

where we have defined θ ≡ 1−γ
1−ρ . Further, we show in Appendix A that I is the price-consumption ratio, and

satisfies the relation:

−θ = I(X)
(

(1− γ)µC (X) + (1− γ)2
||σC (X)||2

2
− βθ

)
+

DI(X)θ

I(X)(θ−1)

+(1− γ)θσC (X)σX (X)>IX(X) + I(X)λ(X)J I(X)θ, (14)

where we define the (continuous diffusion, jump, and jump-compensator) operators D,J ,J in Eq. (A.13)

in Appendix A.

2.2. Pricing kernel and risk-free rate

When ρ, γ 6= 1, Proposition 1 in Appendix A identifies the pricing kernel as

Π(t) = e
∫ t
0 ds [(θ−1)I(s)−1−βθ] βθ e−γct I(Xt)(θ−1). (15)

Using Itô’s lemma, we obtain the dynamics of the pricing kernel, which identifies both the diffusion and the

jump risk premiums, as well as the risk-free rate:

dΠ(t)
Π(t)

= −rt dt− (γσC (Xt) + (θ − 1)σI (Xt)) dz(t) + J I(Xt)(θ−1) dNt − λ(Xt)J I(Xt)(θ−1) dt. (16)

Here, we have defined the diffusion-volatility of the price-consumption ratio as σI (X) = 1
I(X)IX (X)>σX (X),

and the risk-free rate via:6

r(X) = β + ρ

(
µC (X) +

||σC (X)||2
2

)
− γ(1 + ρ)

||σC (X)||2
2

− (1− θ)σI (X)>
(

σC (X) +
1
2
σI (X)

)

+λ(X)
(

θ − 1
θ

J Iθ − J I(θ−1)

)
. (17)

Note that this result reduces to the standard result for the constant relative risk aversion (CRRA) exchange

economy if ρ = γ (i.e., θ = 1). Instead, if agents have a preference for resolution of uncertainty, then risk-

aversion affects the interest rate via the precautionary savings motive if consumption has positive volatility.

Further, if agents display a preference for early resolution (γ > ρ) and if the EIS is greater than one (i.e,

ρ < 1), then the greater the volatility of the price-consumption ratio, the lower the equilibrium interest

rate, as agents want to divest from the risky asset because of long-run risk (this follows since under these

conditions, 1− θ = γ−ρ
1−ρ > 0).

5Other cases with either ρ or γ equal to one can be treated similarly, as shown in Appendix A.
6Again, we only present results for the case where ρ, γ 6= 1. The other cases are treated in Appendix A.
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2.3. Price-dividend ratio and equity premium

The stock market portfolio is a claim to aggregate dividends D(t). Thus, its value is obtained by the

standard discounted cash-flow formula:

S(t) = Et

[∫ ∞

t

Π(s)
Π(t)

D(s) ds

]
. (18)

This equation implies that the excess return on the stock is given by:7

1
dt

Et

[
dS(t)
S(t)

]
+

D(t)
S(t)

− rt = − 1
dt

Et

[
dΠ(t)
Π(t)

dS(t)
S(t)

]
. (19)

Defining the price-dividend ratio via St = Dt L(Xt) and substituting into Eq. (19), we obtain a partial

differential equation (PDE) for L(X) similar to that obtained for the price-consumption ratio. To save on

space, we relegate this expression to Eq. (B.7) in Appendix B. Using the definition of the pricing kernel, we

can compute the right-hand side of Eq. (19) more explicitly to obtain the following expression for the risk

premium on the dividend claim:

µS(X) +
1

L(X)
− r(X) = (γσC (X) + (1− θ)σI (X))> (σD(X) + σL(X))

+λ(X)
(
J {I(X)θ−1L(X)} − J I(X)θ−1 − JL(X)

)
, (20)

where we have defined σL(X) = 1
L(X)LX (X)>σX (X) as the diffusion of the price-dividend ratio. Note that

when (1 − θ) = γ−ρ
1−ρ > 0 (which holds, in particular, when agents have a preference for early resolution of

uncertainty, that is γ > ρ, and the EIS is greater than one, that is ρ < 1), then the higher the volatility of

the price-consumption ratio, the greater the equity premium.

2.4. Pricing options on the market portfolio and individual stocks

The date-t value of a European call option on the stock market portfolio S(t), with maturity T and

strike price K, is given by

C(S(t), X(t),K, T ) = EQ
t

[
e
− ∫ T

t
r(X(s)) ds (S(T )−K)+

]
, (21)

where the expectation is computed under the risk-neutral measure Q. The risk-neutral dynamics of the

stock price, St = Dt L(Xt) are:

dS

S
=

(
rt − 1

L(Xt)

)
dt + (σD(Xt) + σL(Xt)) dzQ(t) + σDD(Xt) dzQ

D
(t)

+JL(Xt) dNt − λQ(Xt)JL(Xt) dt . (22)

The risk-neutral dynamics for D, x, Ω, and p are given in Appendix B.4.

As in Bakshi, Kapadia, and Madan (2003), we specify return dynamics on an individual stock, dSi
Si

, as the

sum of a systematic component and an idiosyncratic component. In particular, we assume that individual

firm dynamics follow

dSi

Si
=

dS

S
+ σi dzi +

[(
eν̃i − 1

)
dNi − E

[
eν̃i − 1

]
λi dt

]
, (23)

7This follows from Itô’s lemma, the dynamics of Π(t), and the fact that Π(t)S(t) +
∫ t

0
Π(s)D(s) ds is a P-martingale.
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where the market return dynamics dS
S are given in Eq. (22). Here, σi captures the volatility of the idiosyn-

cratic diffusive shock, while the diversifiable jump component has Poisson arrival rate Ni with constant

intensity λi and normally distributed jump size ν̃i ; N(µνi
, σνi

). The free parameters (σi , λi , µνi
, σνi

) are

chosen to match historical moments of the return distribution on individual firms. By definition, the diver-

sifiable shocks do not command a risk premium, while the risk adjustments on the systematic component

are identical to those that we have applied to price the options on the S&P 500 index. Thus, the price of

an option on an individual stock is given by a formula similar to Eq. (21).8

3. Data and model implications

Here, we calibrate the model coefficients to match economic fundamentals, solve the model numerically,

and study its asset pricing implications.

3.1. Baseline model coefficients

Table 1 reports the coefficients for our baseline model calibration, expressed with a yearly decimal scaling.

They are organized in seven groups, which we briefly discuss below.

1. Preferences:

We use a time discount factor coefficient β = 0.0176 and fix the coefficient of relative risk aversion

γ at 10, a value that is generally considered to be reasonable (e.g., Mehra and Prescott, 1985). The

magnitude of the EIS coefficient Ψ is more controversial. Hall (1988) argues that the EIS is below 1.

However, Guvenen (2001) and Hansen and Singleton (1982), among others, estimate the EIS to be

in excess of 1, and Attanasio and Weber (1989), Bansal, Gallant, and Tauchen (2007), and Bansal,

Tallarini, and Yaron (2006) find it to be close to 2. Accordingly, we fix Ψ = 2 in our baseline case.

2. Aggregate consumption and dividends:

We fix µC = 0.018 and µD = 0.025, consistent with the evidence that, historically, dividend growth has

exceeded consumption growth (Section 3.2 below). As in, e.g., BY (2004), we set φ > 1 to allow the

sensitivity of dividend growth to shocks in x to exceed that of consumption growth. Setting ρDC > 0

guarantees a positive correlation between consumption and dividends.

3. Predictable mean component, x:

Similar to BY (2004), in the dynamics (3) we use κx = 0.2785, which makes x a highly persistent

process (if we adjust for differences in scaling and map the BY (2004) AR(1) ρ coefficient into the κx

of our continuous-time specification, we find κx = 0.2547). We decompose the shocks to the x process

into two terms that are orthogonal and parallel to consumption shocks, with σxc > 0, σxΩ > 0, and

σx0 = 0.
8There might be a potential concern that the dynamics (23) for the individual firms and the dynamics (22) for the aggregate

index are not self-consistent. That is, the terminal value of a strategy that invests an amount S(0) =
∑N

i=1 Si(0) in the index
does not necessarily have the same terminal value of a strategy that invests an amount Si(0) in each of the individual stocks,
i = 1, . . . , N . However, we find in unreported simulations that the discrepancy is negligible, i.e., S(T ) ≈ ∑N

i=1 Si(T ). Intuitively,
the idiosyncratic shocks that we specify are in fact diversifiable when the portfolio is composed of a sufficiently large number of
firms.
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4. Economic uncertainty, Ω:

In the Ω-dynamics (4), we fix Ω and σΩ at values similar to those used in BY (2004). However, in

our calibration κΩ = 1.0484, which makes the Ω process much less persistent than the x process (the

half life of a shock is around seven to eight months). This is in contrast to the high persistence of the

volatility shocks in the BY (2004) calibration, and more akin to the calibration in Drechsler and Yaron

(2008). This feature is important in the presence of jumps to volatility, since with a highly persistent

Ω process, as in BY (2004), volatility would remain high for years after a jump. Finally, we allow for

a negative correlation between shocks to consumption and volatility, ρΩC < 0.

5. Jumps:

We set λG = 0.0005 and λB = 0.035. Thus, if the jump intensity λt equals λG, a jump occurs

about once every 2,000 years. In contrast, if λt = λB, the average jump time is approximately 30

years. Jumps in x have negative mean, ν < 0, i.e., the typical jump carries bad news for the growth

prospects of the economy.9 Similarly, jumps to Ω are positive and increase the level of economic

uncertainty. Finally, we set the transition probabilities φBG = 0.025 and φGB = 0.0025. With these

values, in steady state the economy is in the ‘good’ state λG with probability φBG/(φBG+φGB) = 0.91.

6. Individual stock returns:

For each of the 20 stocks in the Bollen and Whaley (2004) study, we compute standard deviation,

skewness, and kurtosis by using daily return series for the sample period from January 1995 to Decem-

ber 2000 (the same period considered by Bollen and Whaley). For each of these statistics, we evaluate

cross-sectional averages. We find an average standard deviation of 37.6% per year and average skew-

ness and kurtosis of 0.12 and 7.12, respectively. Four coefficients characterize the distribution of the

idiosyncratic shocks in Eq. (23): the standard deviation of the diffusive firm-specific shock, σi; the

intensity of the diversifiable jump component, λi; and the mean and standard deviation of the jump

size, µνi
and σνi

. After some experimentation, we fix the jump intensity to λi = 5, which corresponds

to an expected arrival rate of five jumps per year. We choose the remaining coefficients to match the

average standard deviation, skewness, and kurtosis reported above. This approach yields σi = 0.3137,

µνi
= 0.0036, and σνi

= 0.0632. To confirm that the results are robust to this approach, we solve

for σi, µνi
, and σνi

when λi takes different values in the 1–10 range. The results are similar to those

discussed below.

7. Initial conditions:

Before the crash, the agent is nearly sure that the economy is in the good state λt = λG. Specifically,

we set pPre = 99.85%. When the agent perceives a jump in fundamentals, she updates her prior

according to Eq. (8). In our calibration, this yields pPost = pPre + pPre
(

λG−λ(pPre)

λ(pPre)

)
= 90.48%. We

fix the remaining state variables at their steady-state values, x0 = ν λ/κx and Ω0 = Ω + λ/(ξκΩ).

9In our calibration, jumps are extremely rare events that are typically associated with large jumps in asset prices. This
distinguishes our paper from other studies that consider higher-frequency jumps. For instance, Drechsler and Yaron (2008)
assume that jumps have mean zero and occur, on average, 0.8 times per year.
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3.2. Aggregate consumption and dividends

Here we demonstrate that the calibration discussed in the previous section matches the historical data

well. In Table 2, we report summary statistics for the series of yearly growth rates on aggregate consumption

(Panel A) and dividends (Panel B). We focus not only on low-order moments, like mean, standard deviation,

auto- and cross-correlations, but also on higher-order moments like skewness and kurtosis. We report

empirical results for two sample periods. The first spans 80 years of data, from 1929 to 2008, the second

spans the post-World War II period, from 1946 to 2008. In addition to point estimates for these moments,

we report standard errors robust with respect to both auto-correlation and heteroskedasticity. The measure

for aggregate consumption is the real (in chained, year 2000, dollars) yearly series of per-capita consumption

expenditures in nondurable goods and services from the National Income and Product Accounts (NIPA)

tables published by the Bureau of Economic Analysis. Following Fama and French (1988), we obtain a

monthly dividend proxy by subtracting returns without dividends from returns with dividends on the value-

weighted market index as reported by the Center for Research in Security Prices (CRSP). We sum the

monthly dividends to obtain the yearly dividend, and we deflate the yearly dividend series using Consumer

Price Index (CPI) data.

To examine the model implications, we simulate 10,000 samples of monthly consumption and dividend

data, each spanning a period of 80 years (same as the length of the 1929–2008 sample period). We aggregate

the monthly series to obtain yearly dividends and consumption, and we compute the series of yearly growth

rates ∆C
C and ∆D

D . For each of the 10,000 samples, we compute summary statistics for these series. In the

table, we report the mean value of these statistics, as well as the 5th, 50th, and 95th percentiles. In the

simulations, we use two different initial conditions. First, we initialize the Markov chain for the λ process

at λ(t = 0) = λG. That is, we assume that at the beginning of time, the economy is in the ‘good’ state.

Second, we initialize λ(t = 0) = λB, i.e., we assume that at t = 0, the economy is in the ‘bad’ state. In the

table, we report the results for each of these two cases.

In both sets of simulations, the moments of ∆C
C and ∆D

D are very close to the sample moments. For

most moments, the mean and the median computed in model simulations are essentially identical to those

computed with the data. See, for instance, AC(1) for ∆C
C : it is 0.42 in the data (1929–2008 sample),

compared to a median simulated value of 0.42 when λ(t = 0) = λG, and 0.44 when λ(t = 0) = λB.

In a few cases, the median values in model simulations do not perfectly match the estimates in the

data. However, the sample estimates are in the 90% confidence interval computed from model simulations.

See, e.g., the skewness of ∆D
D . It is 0.38 in the 1929–2008 sample, a value that falls well within the model

confidence interval of [−0.20, 0.71] when λ(t = 0) = λG, and [−0.24, 0.71] when λ(t = 0) = λB. These

results reflect the fact that some statistics are imprecisely estimated. For instance, the skewness of ∆D
D

is much higher in the 1946–2008 sample, and the standard error associated to this estimate is very high.

Similarly, the model cannot match the extreme ∆C
C skewness estimated over 1929–2008 (due to the drop in

consumption during the Great Depression), but it gets close to the −0.53 estimate for the 1946–2008 period.

There is one fact that the model does not capture well. The kurtosis of ∆D
D is 5.30 in the 1946–2008

sample, and 9.06 in the 1929–2008 sample. Both values exceed the 4.16 upper bound in model simulations.

This may not be a serious shortcoming of the model, for two reasons. First, kurtosis is very imprecisely
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estimated in the data (note the difference in point estimates across the two sample periods and the huge

standard errors). Second, it is arguably a good thing that our results are not driven by an excess of

skewness/kurtosis built in the model.

3.3. Stock market return and risk-free rate

Before turning to option prices, we further validate our calibration by showing that the model is also

consistent with a wide range of asset pricing facts. Table 3 reports key asset pricing moments computed

with data spanning the 1929–2008 and 1946–2008 sample periods. The real annualized total market return,

(∆S
S + D

S ), is the yearly return, inclusive of all distributions, on the CRSP value-weighted market index,

adjusted for inflation using the CPI. The real risk-free rate rf is the inflation-adjusted three-month rate from

the ‘Fama Risk-Free Rates’ database in CRSP. In computing the logarithmic price-dividend ratio, log(S/D),

we consider two measures of dividends. The first is the real dividend on the CRSP value-weighted index,

which we have already discussed in Section 3.2 above. The second is the real dividend on the CRSP

value-weighted market index, adjusted for share repurchases (Boudoukh et al., 2007).

We solve the model numerically (Appendix C discusses the numerical approach) and simulate 10,000

samples of monthly stock market returns, risk-free rates, and price-dividend ratios, each spanning a period

of 80 years. We aggregate the monthly series at the yearly frequency. For each of the 10,000 simulated

samples, we compute summary statistics for these series. We report the mean value of these statistics, as

well as the 5th, 50th, and 95th percentiles. We repeat the analysis with two simulation schemes. In the

first set of simulations, we initialize the probability process p at p(t = 0) = pPre, which corresponds to the

pre-crash economy. In the second set, we initialize p(t = 0) = pPost, which corresponds to the post-crash

economy.

Panel A in Table 3 shows the moments for the real stock market return. The sample mean estimate

is very close to the mean in model simulations. The sample standard deviation for the yearly return is

a bit high relative to the model predictions when estimated over the 1929–2008 sample. However, the

estimate computed with post-World War II data falls well within the model confidence bands, and the

model matches the (annualized) monthly return standard deviation estimate well. Moreover, the model fits

the market return kurtosis accurately, both in monthly and annual data. The sample skewness is more

imprecisely estimated, but remains reasonably close to the model predictions, especially in monthly data.

Panel B shows the mean and standard deviation of the risk-free rate. While the model matches the mean

accurately, the standard deviation is somewhat higher in the data than in the model. This is a well-known

feature of the long-run risk setup. It is arguably a desirable property of the model, rather than a weakness.

For instance, Beeler and Campbell (2009, p. 8) report similar results and note that “the data record the ex

post real return on a short-term nominally riskless asset, not the ex ante (equal to ex post) real return on a

real riskless asset. Volatile inflation surprises increase the volatility of the series in the data, but not in the

model.”10

10Other studies have attempted to filter out the predictable component in real rate fluctuations prior to computing its volatility.
For instance, Barro (2006) finds that the annual standard deviation of the residuals from an AR(1) process for realized real rates
of return on U.S. Treasury bills or short-term commercial paper from 1880 to 2004 is 0.018. In our calibration, the risk-free
rate volatility does not exceed that value.
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The properties of the stock market return and the risk-free rate extend to the equity premium, which

the model matches quite well (Panel C). Finally, the model seems to underestimate the mean level of the

logarithmic price-dividend ratio (Panel D). However, when we account for share repurchases in the measure

of dividends, as in, e.g., Boudoukh et al. (2007), the sample estimate of the price-dividend ratio is revised

downward and is perfectly in line with the model predictions.

In sum, these results support two main conclusions. First, the model matches several important asset

pricing moments quite well. Second, the asset pricing moments predicted by the model pre- and post-1987

crash are similar. Yet, we show in the next section that option prices differ quite dramatically before and

after the crash.

3.4. Option prices

Fig. 1 shows the spread of in-the-money and out-of-the-money implied volatilities relative to at-the-money

implied volatilities from 1985 to 2006. (Appendix D explains how we constructed the implied volatility

series.) Prior to the crash, 10% OTM puts with one month to maturity had an average implied volatility

spread of 1.83%. Similarly, the spread for 2.5% ITM put options averaged −0.12% prior to the crash. On

some dates the implied volatility function had the shape of a mild ‘smile’ and on others it was shaped

like a mild ‘smirk.’ Overall, the Black-Scholes formula priced all options relatively well prior to the crash,

underpricing deep OTM options only slightly. This all changed on October 19, 1987, when the spread for

OTM puts spiked up to a level above 10%. Since then, implied volatilities for deep OTM puts have averaged

8.21% higher than ATM implied volatilities. Moreover, since the crash, implied volatilities for ITM options

have been systematically lower than ATM implied volatilities, with an average spread of −1.33%.

We simulate 500,000 paths and compute option prices on the S&P 500 index, with one month to maturity,

across different strike prices. Fig. 2 illustrates the results for the pre-crash economy, i.e., p = pPre, and for

the post-crash economy, i.e., p = pPost. The two plots capture the stark regime shift in index option prices.

Prior to the crash, the implied volatility function is nearly flat, with a very mild upward tilt. In the model,

the pre-crash spread between OTM and ATM implied volatilities is 1.69%, while the spread between ITM

and ATM implied volatilities is −0.06%. After the crash, the implied volatility function tilts into a steep

smirk: in the model, the spread between OTM and ATM implied volatilities is 8.39%, while the spread

between ITM and ATM implied volatilities is −0.38%. These values closely match the numbers we find in

the data.

Another important property of S&P 500 option prices, which is evident from Fig. 1, is that the regime

shift in S&P 500 options has persisted since the 1987 crash. Fig. 3 demonstrates that our model is also able

to capture this empirical observation. Indeed, it shows the volatility smirk retains a value of approximately

8% for values of p in the range of p ∈ (0, 0.95). Thus, our model predicts that as the value of p updates via

Eq. (8), the post-crash smirk will be persistent. As a particular example, if we assume that no additional

crashes are observed for 20 years after the 1987 crash, Eq. (8) implies that the probability of being in the

low jump state will drift up to approximately p ≈ 0.94. This value of p still generates a volatility smirk of

almost 8%. Moreover, there may be additional jumps in fundamentals after the 1987 crash. If that were to

happen, the agent would revise her posterior probability down, erasing any increase in p due to the effect
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of the drift. Also in this case, Fig. 3 shows that lowering p below pPost would have a minimal effect on the

shape of the volatility smirk.

3.4.1. Sensitivity analysis

We illustrate the sensitivity of the pre- and post-crash volatility functions to some key underlying pa-

rameters:

Preferences coefficients. Fig. 4 shows that when the coefficient of risk aversion is lowered to 7.5, most of the

post-crash volatility smirk remains intact. Increasing the value of γ to 12.5 steepens the post-crash smirk

considerably. Most importantly, even when γ = 12.5, a value that exceeds the range that most economists

find to be ‘reasonable’ (e.g., Mehra and Prescott, 1985), the pre-crash smirk remains relatively flat.

As noted previously, researchers have obtained a wide array of estimates for the EIS parameter Ψ. In

our baseline case, we use Ψ = 2. Fig. 5 shows that even lower estimates for Ψ, such as 1.5, still produce

steep post-crash volatility smirks.

Jump coefficients. Fig. 6 illustrates the effect of a one-standard-deviation perturbation of the average jump

size coefficient. Not surprisingly, the steepness of the post-crash smirk is quite sensitive to the level of this

coefficient. Lowering ν increases the steepness of the smirk, especially in the post-crash economy.

In contrast, a change in the expected size of the jump in volatility, 1/ξ, has a limited effect on the

steepness of the smirk. This is evident from Fig. 7, which shows results for ξ = ξhigh, a value that corresponds

to an average jump size 1/ξhigh ≈ 0, and ξ = ξlow, a value that corresponds to an average jump size that

is double the baseline case. This result is due to the low persistence of the Ω processes in our calibration:

Unlike shocks to x, shocks to Ω are short-lived. Moreover, jumps are rare events in our calibration. Thus,

in sum, changing the expected volatility jump size has little impact on the volatility smirk.

3.4.2. Options on individual stocks

We now turn to the pricing of individual stock options. We simulate option prices for a typical stock, as

discussed in Section 2.4, and extract Black-Scholes implied volatilities for different option strike prices. Fig.

8 compares this implied volatility function to the volatility smirk for S&P 500 options. Consistent with the

empirical evidence, our model predicts that the volatility smile for individual stock options is considerably

flatter than that for S&P 500 options.

Bakshi, Kapadia, and Madan (2003) conclude that the differential pricing of individual stock options

is driven by the degree of skewness/kurtosis in the underlying return distribution in combination with the

agent’s high level of risk aversion. Here, we propose a plausible endowment economy that, in combination

with recursive utility, yields predictions consistent with their empirical findings. Combined with our results

discussed above, this evidence is not inconsistent with the notion that the markets for S&P 500 and individual

stock options, as well as the market for the underlying stocks, are well integrated.

3.5. The change in stock and bond prices around the 1987 crash

In our model, the 1987 crash is caused by a downward jump ν̃ in expected consumption growth x

and a simultaneous upward jump M̃ in consumption volatility Ω. Here, we quantify the magnitude of
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these jumps implied by our model. Prior to the crash, the stock market price-dividend ratio is LPre =

L(xPre, ΩPre, pPre), where pPre is the agent’s prior on the probability that λt = λG. In our calibration,

pPre ≈ 1. Immediately after the crash, the price-dividend ratio drops to LPost = L(xPre + ν̃, ΩPre +

M̃, pPost), where pPost is the agent’s posterior probability that λt = λG, i.e., according to Eq. (8), pPost =

pPre + pPre
(

λG−λ(pPre)

λ(pPre)

)
. Similarly, the change in the risk-free rate at the time of the crash is

∆r = rPost − rPre = r(xPre + ν̃, ΩPre + M̃, pPost)− r(xPre, ΩPre, pPre) . (24)

Using S&P 500 data, we find LPre = 32.64 and LPost = 25.96, while the change in the three-month

Treasury bill yield measured over the two weeks before and after the crash is −1.39%. The model matches

these numbers when pPre = 99.85%, pPost = 90.48%, xPre = 0.0317, ν̃ = −0.0034, ΩPre = 0.000533, and

M̃ = 0.000169.

Now, ν̃ = −0.0034 is a very small jump in x. The expected growth rate of a persistent process is difficult

to measure. Thus, it will be difficult for the econometrician to detect this jump in ex post dividend data.

The jump in economic uncertainty, M̃ = 0.000169, is bigger relative to the long-run mean of Ω, but in the

calibration the persistence of the economic uncertainty process Ω is much lower than the persistence of the

growth process x. After a jump, the process Ω is quickly pulled back towards its steady-state value by its

drift (the half-life of a shock to Ω is around seven to eight months). Moreover, prior to the crash the value

of economic uncertainty, ΩPre = 0.000533, is not far from the steady-state value of Ω, 0.0006 (the standard

deviation of a diffusive shock is 0.000068). Thus, this jump will be hardly detectable in low-frequency

dividend and consumption data as well.

These computations show that the model explains the change in stock and bond prices around the 1987

market crash with minimal change in fundamentals. In fact, the crash is mainly driven by the updating

of the agent’s beliefs. If we omit the effect of the jumps ν̃ and M̃ and focus only on the effect of the

change in the agent’s prior from pPre to pPost, we find L(xPre, ΩPre, pPost) = 26.70. That is, Bayesian

updating over p alone drives an 18.20% drop in prices (26.70/32.64 − 1 = −0.1820). Similarly, we find

r(xPre, ΩPre, pPost) − r(xPre, ΩPre, pPre) = −0.95%, which accounts for most of the drop in the risk-free

rate.

3.6. Final thoughts

We conclude this section with two observations. First, Fig. 1 conveys two main points. One, as mentioned

previously, there has been a permanent shift in the shape of the implied volatility function due to the crash.

Two, there are daily fluctuations in the shape of the smirk. This second feature has been studied extensively

in the literature. Prior contributions have shown that these fluctuations can be understood in both a general

equilibrium framework (e.g., David and Veronesi (2002 and 2009)) and a partial equilibrium setting (e.g.,

Bakshi et al., 1997, 2000, Bates, 2000, Pan, 2002, and Eraker, 2004). Such high-frequency fluctuations

can be captured within the context of our model by introducing additional state variables that drive high-

frequency changes in expected dividend growth and/or volatility. However, since these daily fluctuations

have already been explained, we do not investigate such variables in order to maintain parsimony.
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Second, another aspect of S&P 500 options is that expected return volatility computed under the risk-

adjusted probability measure is typically higher than expected return volatility computed under the actual

probability measure. The difference between these two expected volatility measures is often termed the

‘variance risk premium,’ or VRP. Moreover, previous studies have shown that the VRP fluctuates over time

and predicts future stock market returns at the short/medium horizon (Bollerslev, Tauchen, and Zhou, 2009,

and Drechsler and Yaron, 2008). Our model does not capture this evidence, but it can be extended to include

higher-frequency jumps (similar to Drechsler and Yaron, 2008) or time-varying volatility-of-volatility (as in

Bollerslev, Tauchen, and Zhou, 2009). Since this is not our contribution, we point the interested reader to

those studies for more details.

4. Conclusions

The 1987 stock market crash is associated with many asset pricing puzzles. Examples include: i)

Stocks fell 20-25%, interest rates fell approximately 1-2%, yet there was minimal impact on observable

economic variables (e.g., consumption), ii) the slope of the implied volatility curve on index options changed

dramatically after the crash, and this change has persisted for more than 20 years, iii) the magnitude of

this post-crash slope is difficult to explain, especially in relation to the implied volatility slope on individual

firms. We propose a general equilibrium model that can explain these puzzles while capturing many other

salient features of the U.S. economy. We accomplish this by extending the model of Bansal and Yaron

(2004) to account for jumps and learning. In particular, we specify the representative agent to be endowed

with KPEZ preferences and assume that the aggregate dividend and consumption processes are driven by a

persistent stochastic growth variable that can jump. Economic uncertainty fluctuates and is also subject to

jumps. Jumps are rare and driven by a hidden state the agent filters from past data. In such an economy,

there are three sources of long-run risk: expected consumption growth, volatility of consumption growth, and

posterior probability of the jump intensity in expected growth rates and volatility. Jumps in fundamentals,

even small, can lead to substantial jumps in prices of long-lived assets because of the updating of beliefs

about the likelihood of future such jumps. In that sense, learning acts as an amplifier of long-run risk

premiums associated with small persistent jumps in growth rates and their volatility. Indeed, we identify

a realistic calibration of the model that matches the prices of short-maturity at-the-money and deep out-

of-the-money S&P 500 put options, as well as the prices of individual stock options. Further, the model,

calibrated to the stock market crash of 1987, generates the steep shift in the implied volatility ‘smirk’ for

S&P 500 options observed around the 1987 crash. This ‘regime shift’ occurs in spite of a minimal change in

observable macroeconomic fundamentals.

In sum, our model points to a simple mechanism, based on learning about the riskiness of the economy,

that explains why market prices suddenly crashed with little change in fundamentals, and why buyers of

OTM put options were willing to pay a much higher price for these securities after the crash. Of course,

we acknowledge that other mechanisms probably also contributed to the crash. For example, portfolio

insurance and its implementation via dynamic hedging strategies is often cited as a major culprit. Let us

just point out that, while not directly a ‘shock to fundamentals,’ the failure of portfolio insurance could
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well have contributed to deteriorating prospects for economic fundamentals through a ‘financial accelerator’

mechanism. It is a common belief that the growth rate of consumption and consumption volatility are tied

to the strength of the financial system. Thus, if the crash revealed that risk-sharing was not as effective

as previously thought, then this could have negatively affected investors’ expectations about the future

prospects of the economy. In this respect, further learning about economic fundamentals occurs through the

experience of a crash in prices and might result in a further drop in prices via the mechanism we describe.

Explicitly modeling this feedback mechanism between prices and economic fundamentals is outside the scope

of the present paper, but seems an interesting avenue for future research.
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Appendix A. Equilibrium prices in a jump-diffusion exchange economy with recursive utility

There are several formal treatments of stochastic differential utility and its implications for asset pricing

(see, e.g., Duffie and Epstein, 1992a,b, Duffie and Skiadas, 1994, Schroder and Skiadas, 1999, 2003, and

Skiadas, 2003). For completeness, in this Appendix we offer a simple formal derivation of the pricing

kernel that obtains in an exchange economy where the representative agent has a KPEZ recursive utility.

Our contribution is to characterize equilibrium prices in an exchange economy where aggregate output has

particular jump-diffusion dynamics (Propositions 1 and 2).

A.1. Representation of preferences and pricing kernel

We assume the existence of a standard filtered probability space (Ω,F , {Ft}, P ) on which there exists a

vector z(t) of d independent Brownian motions and one counting process N(t) =
∑

i 1{τi≤t} for a sequence

of inaccessible stopping times τi, i = 1, 2, . . ..11

Aggregate consumption in the economy is assumed to follow a continuous process, with stochastic growth

rate and volatility, which both may experience jumps:

d log Ct = µC (Xt) dt + σC (Xt) dz(t) (A.1)

dXt = µX (Xt) dt + σX (Xt) dz(t) + Γ̃ dN(t) , (A.2)

where Xt is an n-dimensional Markov process [we assume sufficient regularity on the coefficient of the

stochastic differential equation (SDE) for it to be well-defined, e.g., Duffie, 2001, Appendix B]. In particular,

µX is an (n, 1) vector, σX is an (n, d) matrix, and Γ̃ is an (n, 1) vector of i.i.d. random variables with joint

density (conditional on a jump dN(t) = 1) of (ν). We further assume that the counting process has a

(positive integrable) intensity λ(Xt) in the sense that
(
N(t)− ∫ t

0 λ(Xs) ds
)

is a (P,Ft) martingale.

Following Epstein and Zin (1989), we assume that the representative agent’s preferences over a consump-

tion process {Ct} are represented by a utility index U(t) that satisfies the following recursive equation:

U(t) =
{

(1− e−βdt)C1−ρ
t + e−βdtEt

(
U(t + dt)1−γ

) 1−ρ
1−γ

} 1
1−ρ

. (A.3)

With dt = 1, this is the discrete time formulation of KPEZ, in which Ψ ≡ 1/ρ is the EIS and γ is the

risk-aversion coefficient.

To simplify the derivation, let us define the function

uα(x) =

{
x1−α

(1−α) 0 < α 6= 1
log(x) α = 1 .

Further, let us define

g(x) = uρ(u−1
γ (x)) ≡





((1−γ)x)1/θ

(1−ρ) γ, ρ 6= 1
uρ(ex) γ = 1, ρ 6= 1

log((1−γ)x)
(1−γ) ρ = 1, γ 6= 1 ,

11N(t) is a pure jump process and hence is independent of z(t) by construction (in the sense that their quadratic co-variation
is zero).
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where

θ =
1− γ

1− ρ
.

Then, defining the ‘normalized’ utility index J as the increasing transformation of the initial utility index

J(t) = uγ(U(t)), Eq. (A.3) becomes:

g(J(t)) = (1− e−βdt)uρ(Ct) + e−βdt g (Et [J(t + dt)]) . (A.4)

Using the identity J(t + dt) = J(t) + dJ(t) and performing a simple Taylor expansion, we obtain:

0 = βuρ(Ct)dt− βg(J(t)) + g′(J(t)) Et [dJ(t)] . (A.5)

Slightly rearranging the above equation, we obtain a backward recursive stochastic differential equation

that could be the basis for a formal definition of stochastic differential utility (see Duffie and Epstein,

1992a,b; Skiadas, 2003):

Et[dJ(t)] = −βuρ(Ct)− βg(J(t))
g′(J(t))

dt . (A.6)

Indeed, let us define the so-called ‘normalized’ aggregator function:

f(C, J) =
βuρ(C)− βg(J)

g′(J)
≡





βuρ(C)

((1−γ)J)1/θ−1 − βθJ γ, ρ 6= 1
(1− γ)βJ log(C)− βJ log((1− γ)J) γ 6= 1, ρ = 1

βuρ(C)

e(1−ρ)J − β
1−ρ γ = 1, ρ 6= 1 .

(A.7)

We obtain the following representation for the normalized utility index:

J(t) = Et

(∫ T

t

f(Cs, J(s)) + J(T )
)

. (A.8)

Further, if the transversality condition limT→∞ Et(J(T )) = 0 holds, letting T tend to infinity, we obtain

the simple representation:

J(t) = Et

(∫ ∞

t

f(Cs, J(s))ds

)
. (A.9)

Fisher and Gilles (1999) discuss many alternative representations and choices of the utility index and

associated aggregator as well as their interpretations. Here, we note only the well-known fact that when

ρ = γ (i.e., θ = 1), then f(C, J) = βuρ(C)− βJ , and a simple application of Itô’s lemma shows that

J(t) = Et

(∫ ∞

t

e−β(s−t)βuρ(Cs)ds

)
.

To obtain an expression for the pricing kernel, note that under the assumption (which we maintain

throughout) that an ‘interior’ solution to the optimal consumption-portfolio choice of the agent exists, a

necessary condition for optimality is that the gradient of the utility index is zero for any small deviation

of the optimal consumption process in a direction that is budget feasible. More precisely, let us define the

utility index corresponding to such a small deviation by:

Jδ(t) = Et

(∫ ∞

t

f
(
C∗

s + δC̃(s), Jδ(s)
)

ds

)
.
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Then we may define the gradient of the utility index evaluated at the optimal consumption process C∗(t)

in the direction C̃(t):

∇J(C∗
t ; C̃t) = lim

δ→0

Jδ(t)− J(t)
δ

= lim
δ→0

Et

[∫ ∞

t

f(C∗
s + δC̃(s), Jδ(s))− f(Cs, J

δ(s))
δ

ds

]

= Et

[∫ ∞

t

fC(C∗
s , J(s))C̃s + fJ(Cs, J(s))∇J(C∗

s ; C̃s)ds

]
. (A.10)

Assuming sufficient regularity (essentially the gradient has to be a semi-martingale and the transversality

condition has to hold: limT→∞ Et[e
∫ T

t
fJ (Cs,Js)ds∇J(C∗

T ; C̃T ) = 0), a simple application of the generalized

Itô-Doeblin formula gives the following representation:

∇δJ(C∗
t ; C̃t) = Et

(∫ ∞

t

e
∫ s

t
fJ (Cu,Ju)du

fC(Cs, Js)C̃sds

)
. (A.11)

This shows that

Π(t) = e
∫ t
0 fJ (Cs,Js)dsfC(Ct, Jt) (A.12)

is the Riesz representation of the gradient of the normalized utility index at the optimal consumption. Since

a necessary condition for optimality is that ∇J(C∗
t ; C̃t) = 0 for any feasible deviation C̃t from the optimal

consumption stream C∗
t , we conclude that Π(t) is a pricing kernel for this economy; see, e.g., Chapter 10 of

Duffie (2001) for further discussion.

A.2. Equilibrium prices

Assuming the equilibrium consumption process given in Eqs. (A.1)–(A.2) above, we obtain an explicit

characterization of the felicity index J and the corresponding pricing kernel Π.

For this we define, respectively, the continuous diffusion, jump, and jump-compensator operators for any

h(·) : Rn − R:

Dh(x) = hx(x)µX (x) +
1
2
trace(hxxσX (x)σX (x)>)

J h(x) =
h(x + ν̃)

h(x)
− 1

J h(x) = E[J h(x)] =
∫

. . .

∫
h(x + ν)

h(x)
(ν)dν1 . . . dνn − 1, (A.13)

where hx is the (n, 1) Jacobian vector of first derivatives and hxx denotes the (n, n) Hessian matrix of second

derivatives. With these notations, we find:

Proposition 1. Suppose I(x) : Rn → R solves the following equation:




0 = I(x)
(
(1− γ)µC (x) + (1− γ)2 ||σC

(x)||2
2 − βθ

)
+

DI(x)θ

I(x)(θ−1) + (1− γ)θσC (x)σX (x)>Ix(x) + θ + I(x)λ(x)J I(x)θ for ρ, γ 6= 1
0 = I(x) ((1− ρ)µC (x)− β) + I(x)D log I(x) + 1 + I(x)λ(x) log

(
1 + J I(x)

)
for γ = 1, ρ 6= 1

0 = I(x)
(
(1− γ)µC (x) + (1− γ)2 ||σC

(x)||2
2

)
+DI(x)+

(1− γ)σC (x)σX (x)>Ix(x)− βI(x) log I(x) + I(x)λ(x)J I(x) for ρ = 1, γ 6= 1
(A.14)
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and satisfies the transversality condition (limT→∞ E[J(T )] = 0 for J(t) defined below), then the value func-

tion is given by: 



J(t) = uγ(Ct)(βI(Xt))θ for ρ, γ 6= 1
J(t) = log(Ct) + log(βI(Xt))

1−ρ for γ = 1, ρ 6= 1
J(t) = uγ(Ct)I(Xt) for ρ = 1, γ 6= 1 .

(A.15)

The corresponding pricing kernel is:




Π(t) = e
− ∫ t

0 (βθ+
(1−θ)
I(Xs)

)ds(Ct)−γ(I(Xt))(θ−1) for ρ, γ 6= 1

Π(t) = e
− ∫ t

0
β

I(Xs)
)ds 1

(CtI(Xt))
for γ = 1, ρ 6= 1

Π(t) = e−
∫ t
0 β(1+log I(Xs))ds(Ct)−γI(Xt) for ρ = 1, γ 6= 1 .

(A.16)

Proof. We provide the proof for the case γ, ρ 6= 1. The special cases are treated similarly.

From its definition

J(t) = Et

(∫ ∞

t
f(Cs, J(s))

)
. (A.17)

Thus, J(Xt, Ct) +
∫ t
0 f(Cs, J(Xs, Cs))ds is a martingale. This observation implies that:

E[dJ(Xt, Ct) + f(Ct, J(Xt, Ct))dt] = 0 . (A.18)

Equivalently:
DJ(Ct, Xt)
J(Ct, Xt)

+ J J(Ct, Xt) +
f(Ct, J(Ct, Xt))

J(Ct, Xt)
= 0 . (A.19)

To obtain the equation of the proposition, we use our guess (J(t) = uγ(Ct)βθI(Xt)θ) and apply the Itô-

Doeblin formula using the fact that

f(C, J)
J

=
uρ(C)

((1− γ)J)1/θ−1J
− βθ =

θ

I(X)
− βθ (A.20)

DJ

J
= (1− γ)µC (X) +

1
2
(1− γ)2||σC (X)||2 +

DI(X)θ

I(X)θ
+ (1− γ)θσC (X)σI(X)> , (A.21)

where we have defined σI(x)> = σ
X

(x)>Ix(x)

I(x) .

Now suppose that I(·) solves this equation. Then, applying the Itô-Doeblin formula to our candidate

J(t), we obtain

J(T ) = J(t) +
∫ T

t
DJ(s)ds +

∫ T

t
(JCσC + JXσX )dz(s) +

∫ T

t
J(s−)J I(Xs)θdN(s)

= J(t)−
∫ T

t
f(Cs, Js)ds+

∫ T

t
J(s) {(1− γ)σC (Xs) + θσI(Xs)} dz(s) +

∫ T

t
dM(s),

where we have defined the pure jump martingale

M(t) =
∫ t

0
J(s−)J I(Xs)

θ dN(s)−
∫ t

0
λ(X

s− )J(s−)J I(Xs)θ ds .
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If the stochastic integral is a martingale,12 and if the transversality condition is satisfied, then we obtain

the desired result by taking expectations and letting T tend to infinity:

J(t) = E
[∫ ∞

t
f(Cs, Js) ds

]
, (A.22)

which shows that our candidate J(t) solves the recursive stochastic differential equation. Uniqueness follows

(under some additional technical conditions) from the appendix in Duffie and Epstein (1992a).

The next result investigates the property of equilibrium prices.

Proposition 2. The risk-free interest rate is given by:




r(x) = β + ρ(µC (x) + ||σ
C

(x)||2
2 )− γ(1 + ρ) ||σC

(x)||2
2 −

(1− θ)σI (x)>(σC (x) + 1
2σI (xt)) + λ(x)

(
θ−1

θ J Iθ − J I(θ−1)
)

for ρ 6= 1

r(x) = β + µC (x) + ||σ
C

(x)||2
2 − γ||σC (x)||2 for ρ = 1 .

(A.23)

Further, the value of the claim to aggregate consumption is given by:
{

V (t) = C(t)I(Xt) for ρ 6= 1
V (t) = C(t)

β for ρ = 1 .
(A.24)

Thus,
dVt

Vt
= µV (Xt)dt +

(
σC (Xt) + σI (Xt)1{ρ6=1}

)
dz(t) + J I(Xt)dN(t) . (A.25)

The risk premium on the claim to aggregate consumption is given by

µV (X) +
1

I(X)
− r(X) = (γσC (X) + (1− θ)σI (X))> (σC (X) + σI (X))

+λ(X)
(
J I(X)θ − J I(X)θ−1 − J I(X)

)
. (A.26)

Proof. To prove the result for the interest rate, apply the Itô-Doeblin formula to the pricing kernel. It

follows from r(t) = −E[dΠ(t)
Π(t) ]/dt that:

r(Xt) = βθ +
(1− θ)
I(Xt)

+ γµc(Xt)− 1
2
γ2||σc(Xt)||2 − DI(Xt)(θ−1)

I(Xt)(θ−1)
− λ(Xt)J I(X)θ−1 . (A.27)

Now substitute the expression for 1
I(X) from the equation in (A.14) to obtain the result.

To prove the result for the consumption claim, define V (t) = ctI(Xt). Then using the definition of

Π(t) = e
−βθt−∫ t

0
(1−θ)
I(Xs)

ds
c−γ
t I(Xt)θ−1 ,

we obtain:

d (Π(t) V (t)) = e
−βθt−∫ t

0
(θ−1)
I(Xs)

ds
(

dJ(t)− J(t)
(

βθ +
(1− θ)
I(Xt)

)
dt

)
. (A.28)

12Sufficient conditions are:

E

[∫ T

0

J(s)2
(||(1− γ)σC (Xs) + θσI(Xs)||2

)
ds

]
< ∞ ∀T > 0 .
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Note that by definition we have:

dJ(t) = −f(ct, J)dt + dMt

= −J(t)
(

θ

I(Xt)
− θβ

)
dt + dMt (A.29)

for some P -martingale M . Combining this observation with (A.28), we get:

d (Π(t) V (t)) = e
−βθt−∫ t

0
(1−θ)
I(Xs)

ds (−J(t))
I(Xt)

dt + e
−βθt−∫ t

0
(1−θ)
I(Xs)

ds
dMt

= −Π(t) c(t) dt + e
−βθt−∫ t

0
(1−θ)
I(Xs)

ds
dMt . (A.30)

Thus integrating we obtain

Π(T )V (T ) +
∫ T

t
Π(s)csds = Π(t)V (t) +

∫ T

t
e
−βθ(u−t)−∫ u

t
(1−θ)
I(Xs)

ds
dMu . (A.31)

Taking expectations, letting T →∞, and assuming the transversality condition holds

(i.e., limT→∞ E[Π(T )V (T )] = 0), we obtain the desired result:

Π(t)V (t) = Et

[∫ ∞

t
Π(s) cs ds

]
. (A.32)

To derive the excess return equation, note that the martingale condition implies:

Et[
dΠ(t)V (t)
Π(t)V (t)

] +
D(t)
V (t)

dt = 0 . (A.33)

Further, Itô’s lemma implies:

1
dt

Et[
dΠ(t)V (t)
Π(t)V (t)

] =
1
dt

Et

[
dΠ(t)
Π(t)

+
dV (t)
V (t)

+
dΠ(t)
Π(t)

dV (t)
V (t)

]

= µV (X)− r(X) + (γσC (X) + (1− θ)σI (X))> (σC (X) + σI (X)) +
1
dt

Et[J I(X)θ−1J I(X)]

= µV (X)− r(X) + (γσC (X) + (1− θ)σI (X))> (σC (X) + σI (X))

+λ(X)
(
J I(X)θ − J I(X)θ−1 − J I(X)

)
. (A.34)

Combining Eqs. (A.33) and (A.34), we get the expression for the excess return on the consumption claim

given in Eq. (A.26).

Appendix B. Application to the three-dimensional model

Here we apply the general equations given in Appendix A to our three-state variable model, where the

state vector is Xt = (xt, Ωt, pt), whose dynamics are given in Eqs. (3), (4), and (8).
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B.1. Price-consumption ratio

The equation for the price-consumption ratio follows immediately from the dynamics of (xt,Ωt, pt) given

in Eqs. (3), (4), and (8) and the PDE (14):

0 = I
[
(1− γ)µC + (1− γ)x− γ

2
(1− γ)Ω− βθ

]
− θIxκxx

+
θ

2

(
σx0 + (σ2

xc
+ σxΩ)Ω

) [
(θ − 1)

(
Ix

I

)2

I + Ixx

]
+ θIΩκΩ

(
Ω− Ω

)

+
σ2

Ω

2
Ωθ

(
IΩΩ + (θ − 1)

(
IΩ

I

)2

I

)
+ θ

[
(θ − 1)

(
Ix

I

)(
IΩ

I

)
I + IxΩ

]
σxcσΩρΩCΩ

+θ
[− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]
Ip + (1− γ)θIxσxcΩ

+(1− γ)θIΩσΩρΩCΩ + λ(p)I J
[
Iθ

]
+ θ . (B.1)

B.2. Pricing kernel and risk-free rate

When ρ, γ 6= 1, the pricing kernel in our three factor economy is

Π(t) = e
∫ t
0 ds [(θ−1)I(s)−1−βθ] βθ e−γc I(t)(θ−1). (B.2)

Ito’s lemma gives

dΠ
Π

= −r dt + dzC

(
−γ
√

Ω + (θ − 1)
(

Ix

I

)
σxc

√
Ω + (θ − 1)

(
IΩ

I

)
σΩ

√
ΩρΩC

)

+dzx

[
(θ − 1)

(
Ix

I

) √
σx0 + σxΩ Ω

]
+ dzΩ

[
(θ − 1)

(
IΩ

I

)
σΩ

√
Ω

√
1− ρ2

ΩC

]

+dN

[
Iθ−1(x + ν̃,Ω + M̃, p + ∆p)

Iθ−1(x,Ω, p)
− 1

]
− λ(p) dt E

[
Iθ−1(x + ν̃, Ω + M̃, p + ∆p)

Iθ−1(x,Ω, p)
− 1

]
,

(B.3)

where the risk-free rate r equals:

−r(x,Ω, p) =
[
(θ − 1)I−1 − βθ

]− γ

[(
µC + x− 1

2
Ω

)]
+

1
2
γ2Ω + (θ − 1)

(
Ix

I

)
[−κxx]

+
1
2
(θ − 1)

[
(θ − 2)

(
Ix

I

)2

+
(

Ixx

I

)](
σx0 + (σ2

xc
+ σxΩ)Ω

)
+ (θ − 1)

(
IΩ

I

) [
κΩ

(
Ω− Ω

)]

+
1
2
(θ − 1)

[
(θ − 2)

(
IΩ

I

)2

+
(

IΩΩ

I

)]
σ2

Ω
Ω + λ(p) E

[
Iθ−1(x + ν̃,Ω + M̃, p + ∆p)

Iθ−1(x,Ω, p)
− 1

]

+(θ − 1)
Ip

I

[− p
(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]− γ(θ − 1)
(

Ix

I

)
σxcΩ

−γ(θ − 1)
(

IΩ

I

)
σΩρΩCΩ + (θ − 1)

[
(θ − 2)

(
Ix

I

)(
IΩ

I

)
+

(
IxΩ

I

)]
σxcσΩρΩCΩ. (B.4)

B.3. Price-dividend ratio and equity premium

The price of the stock market portfolio, S(t), satisfies the well-known formula

0 =
1
dt

Et [d (Π(t) S(t))] + Π(t)D(t)

=
1
dt

Et [S(t) dΠ(t) + Π(t) dS(t) + dΠ(t) dS(t)] + Π(t)D(t). (B.5)

24



Dividing by Π(t) and using E
[

dΠ
Π

]
= −r dt yields

0 = −rS(t) +
1
dt

Et [dS(t)] +
1
dt

Et

[
dΠ
Π

dS(t)
]

+ D(t). (B.6)

We define the price-dividend ratio L(x,Ω, p) via S(x,Ω, p,D) = DL(x,Ω, p) and substitute in Eq. (B.6).

Then, dividing by D we find

0 = −rL +
L

dt
Et

[
dL

L
+

dD

D
+

dD

D

dL

L

]
+

L

dt
Et

[
dΠ
Π

(
dL

L
+

dD

D
+

dD

D

dL

L

)]
+ 1. (B.7)

To solve this equation, we need the dynamics of L(x,Ω, p), which we obtain from Ito’s lemma and the

dynamics of the state vector in Eqs. (3), (4) and (8). Substituting in Eq. (B.7), we find

0 = 1− rL + (µD + φx) L− κxxLx +
1
2
Lxx

[
σx0 + (σxΩ + σ2

xc
)Ω

]
+ LΩκΩ

(
Ω− Ω

)
+

1
2
LΩΩσ2

Ω
Ω

+LxΩσxcσΩρΩCΩ + Lp

[− p
(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]
+ σDρDC [Lxσxc + LΩσΩρΩC ] Ω

+Ω
[
σDρDCL + Lxσxc + LΩσΩρΩC

] [
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

]

+(θ − 1)Lx

(
Ix

I

)
(σx0 + σxΩΩ) + (θ − 1)LΩ

(
IΩ

I

)
σ2

Ω
Ω

(
1− ρ2

ΩC

)

+λ(p) E

[(
I(θ−1)(x + ν, Ω + M, p + ∆p)

I(θ−1)(x,Ω, p)

) (
L(x + ν, Ω + M, p + ∆p)− L(x, Ω, p)

)]
. (B.8)

Next, we derive the equity risk premium, (µ− r), via the relation (µ− r) = − 1
dtE

[
dΠ
Π

dS
S

]
, which yields

(µ− r) = −(θ − 1)
(

Ix

I

) (
Lx

L

)(
σx0 + σxΩΩ

)
− (θ − 1)

(
IΩ

I

) (
LΩ

L

)
σ2

Ω
Ω

(
1− ρ2

ΩC

)

−Ω
[
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

] [
σDρDC +

(
Lx

L

)
σxc +

(
LΩ

L

)
σΩρΩC

]

−λ(p)E

[(
I(θ−1)(x + ν, Ω + M, p + ∆p)

I(θ−1)(x,Ω, p)
− 1

)(
L(x + ν, Ω + M, p + ∆p)

L(x, Ω, p)
− 1

)]
. (B.9)

B.4. Risk-neutral dynamics

From the pricing kernel, we identify the following risk-neutral dynamics:

dc =
[
µC + x− 1

2
Ω + Ω

(
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

)]
dt +

√
Ω dzQ

C

dD

D
=

[
µD + φx + ρDCσDΩ

(
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

)]
dt

+σD

√
Ω

(
ρDC dzQ

C
+

√
1− ρ2

DC
dzQ

D

)

dx =
[
−κxx + σxcΩ

(
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

)]
dt

+
[
(σx0 + σxΩ Ω) (θ − 1)

(
Ix

I

)]
dt + σxc

√
Ω dzQ

c
+

√
σx0 + σxΩ Ω dzQ

x
+ ν̃ dN

dΩ =
[
κΩ

(
Ω− Ω

)
+ σΩρΩCΩ

(
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

)]
dt
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+
[
σ2

Ω
(1− ρ2

ΩC
)Ω(θ − 1)

(
IΩ

I

)]
dt + σΩ

√
Ω

(
ρΩC dzQ

C
+

√
1− ρ2

ΩC
dzQ

Ω

)
+ M̃ dN

λ
Q(p) = λ(p) E

[
I(θ−1)(x + ν̃, Ω + M̃, p + ∆p)

I(θ−1)(x, Ω, p)

]
, (B.10)

where

πQ(ν̃ = ν, M̃ = M) = π(ν̃ = ν, M̃ = M) ∗ I(θ−1)(x + ν, Ω + M, p + ∆p)

E
[
I(θ−1)(x + ν̃, Ω + M̃, p + ∆p)

] . (B.11)

Appendix C. Affine approximation to the model

To solve the model, we approximate the price-consumption ratio with an exponential affine function,

I(x,Ω, p) = eA(p)+B(p)x+F (p)Ω. (C.1)

Plugging the approximation of I into Eq. (B.1) and dividing by I, we find

0 = (1− γ)µc + (1− γ)x− γ

2
(1− γ)Ω− βθ − θBκxx +

θ2

2
[
σx0 +

(
σ2

xc
+ σxΩ

)
Ω

]
B2

+θFκΩ

(
Ω− Ω

)
+

(
σ2

Ω

2

)
θ2F 2Ω + θ2BFσxcσΩρΩCΩ

+θ
[−p

(
λG − λ(p)

)− pφGB + (1− p)φBG

] [
Ap + xBp + ΩFp

]

+(1− γ)θBσxcΩ + (1− γ)θFσΩρΩCΩ +
θ

I
− λ(p)

+λ(p) eθ[A(pλG/λ(p))−A(p)] eθx(B(pλG/λ(p))−B(p)) eθΩ(F (pλG/λ(p))−F (p))

×e
θB(pλG/λ(p))(ν+α

ξ
)+

σ2
νθ2

2
B(pλG/λ(p))2

(
ξ

ξ + αθB(pλG/λ(p))− θF (pλG/λ(p))

)
. (C.2)

To solve Eq. (C.2), we apply a continuous-time analog of the Campbell and Shiller (1988) log-linear approx-

imation; see, e.g., Campbell and Viceira (2002) and Chacko and Viceira (2005). We use Taylor’s formula to

expand the exponential terms in x and Ω around the points x0 ≡
(

ν
κx

)
λ(p) and Ω0 ≡ Ω +

(
1

ξκ
Ω

)
λ(p). We

then collect terms linear in x, linear in Ω, and independent of x and Ω to obtain a system of three equations

that define the functions A(p), B(p), and F (p):

0 = (1− γ)µc − βθ +
θ2

2
σx0B

2 + θFκΩΩ− λ(p) + θe−(A+x0B+Ω0F ) (1 + x0B + Ω0F )

+ζ1(p)
[
1− θx0

(
B(pλG/λ(p))−B(p)

)− θΩ0

(
F (pλG/λ(p))− F (p)

)]

+θ
[−p(λG − λ(p))− pφGB + (1− p)φBG

]
Ap

0 = (1− γ)− θBκx − θBe−(A+Bx0+FΩ0) + ζ1(p)θ
[
B(pλG/λ(p))−B(p)

]

+θ
[−p(λG − λ(p))− pφGB + (1− p)φBG

]
Bp

0 = −
(γ

2

)
(1− γ) +

θ2

2
(
σ2

xc
+ σxΩ

)
B2 − θFκΩ +

(
σ2

Ω

2

)
θ2F 2 + θ2BFσxcσΩρΩC

+(1− γ)θBσxc + (1− γ)θFσΩρΩC − θFe−(A+Bx0+FΩ0) + ζ1(p)θ
[
F (pλG/λ(p))− F (p)

]

+θ
[−p(λG − λ(p))− pφGB + (1− p)φBG

]
Fp , (C.3)
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where we have defined the function:

ζ1(p) ≡ λ(p) eθ[A(pλG/λ(p))−A(p)]eθ(ν+α
ξ
) B(pλG/λ(p))+

σ2
νθ2

2
B2(pλG/λ(p))

eθx0 [B(pλG/λ(p))−B(p)]

×eθΩ0 [F (pλG/λ(p))−F (p)]
(

ξ

ξ + αθB(pλG/λ(p))− θF (pλG/λ(p))

)
. (C.4)

We approximate the functions A(p), B(p), and F (p) with a linear combination of general Chebyshev polyno-

mials, and determine the coefficients of the approximation via least-squares minimization of the approxima-

tion error (e.g., Judd, 1998). We extend the approximation to include Chebyshev polynomials up to order 20

(adding higher-order polynomials does not change the solution). This approach gives us a semi-closed-form

solution to the model, which facilitates the analysis greatly. To check the accuracy of this approach, we also

solve the model via fixed-point iterations over the price-consumption ratio I. Albeit considerably slower,

this alternative method converges to a nearly identical solution.

We continue our approximation by looking for a price-dividend ratio of the form

L(x, Ω, p ) = eAL(p)+BL(p)x+F L(p)Ω . (C.5)

We plug this expression into the price-dividend ratio Eq. (B.8), divide by L, and Taylor expand the expo-

nential terms to be linear in x and Ω around the points x0 and Ω0. We then collect terms to obtain a system

of three equations that define the functions AL(p), BL(p), and FL(p):

0 = AL
p

[− p
(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

+e−AL(p)−BL(p)x0−F L(p)Ω0(1 + BL(p)x0 + FL(p)Ω0)

+(θ − 1) e−A−Bx0−FΩ0(1 + Bx0 + FΩ0)− βθ − γµC +
1
2
(θ − 1)2B2σx0

+(θ − 1)FκΩΩ− λ(p)

+(θ − 1)Ap(p)
[− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

+µD +
(BL)2

2
σx0 + FLκΩΩ + (θ − 1)BL Bσx0

+ζ2(p)
[
1− [(θ − 1)

[
B(pλG/λ(p))−B(p)

]
+ BL(pλG/λ(p))−BL(p)

]
x0

− [
(θ − 1)

[
F (pλG/λ(p))− F (p)

]
+ FL(pλG/λ(p))− FL(p)

]
Ω0]

0 = BL
p

[− p
(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

−e−AL(p)−BL(p)x0−F L(p)Ω0BL(p)− (θ − 1) e−A−Bx0−FΩ0B − γ − (θ − 1)Bκx

+(θ − 1)Bp(p)
[− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

+φ− κxBL

+ζ2(p)
[
(θ − 1)

[
B(pλG/λ(p))−B(p)

]
+ BL(pλG/λ(p))−BL(p)

]

0 = FL
p

[− p
(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

−e−AL(p)−BL(p)x0−F L(p)Ω0FL(p)− (θ − 1) e−A−Bx0−FΩ0F

+
γ(1 + γ)

2
+

1
2
(θ − 1)2B2(σ2

xc
+ σxΩ)− (θ − 1)FκΩ +

1
2
(θ − 1)2F 2σ2

Ω

+(θ − 1)Fp(p)
[− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

−γ(θ − 1)Bσxc − γ(θ − 1)FσΩρΩC
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+(θ − 1)2BFσxcσΩρΩC +
(BL)2

2
(σxΩ + σ2

xc
)− FLκΩ +

(FL)2

2
σ2

Ω

+BL FLσxcσΩρΩC + σDρDC

[
BLσxc + FLσΩρΩC

]

+[σDρDC + BLσxc + FLσΩρΩC ] [−γ + (θ − 1)Bσxc + (θ − 1)FσΩρΩC ]

+(θ − 1)BL BσxΩ + (θ − 1)FL Fσ2
Ω

(
1− ρ2

ΩC

)

+ζ2(p)
[
(θ − 1)

[
F (pλG/λ(p))− F (p)

]
+ FL(pλG/λ(p))− FL(p)

]
, (C.6)

where we have defined the function ζ2:

ζ2(p) = λ(p)e(θ−1)[A(pλG/λ(p))−A(p)+[B(pλG/λ(p))−B(p)]x0+[F (pλG/λ(p))−F (p)]Ω0]

∗ eAL(pλG/λ(p))−AL(p)+[BL(pλG/λ(p))−BL(p)]x0+[F L(pλG/λ(p))−F L(p)]Ω0

∗χ(BL(pλG/λ(p)) + (θ − 1)B(pλG/λ(p)), FL(pλG/λ(p)) + (θ − 1)F (pλG/λ(p))) , (C.7)

with χ(B,F ) ≡ E
[
eBν̃+FM̃

]
= e

B(ν+α
ξ
)+

σ2
νB2

2 ξ
ξ+αB−F . Similar to A(p), B(p), and F (p), we approximate

AL(p), BL(p), and FL(p) with a linear combination of general Chebyshev polynomials of order 20, and

determine the coefficients of this approximation via least-squares minimization of the approximation error.

Appendix D. Pre- and post-crash implied volatility patterns

Fig. 1 shows the permanent regime shift in pre- and post-1987 market crash implied volatilities for

S&P 500 options. The plot in Panel A depicts the spread between implied volatilities for S&P 500 options

that have a strike-to-price ratio X = K/S − 1 = −10% and at-the-money implied volatilities. The plot

in Panel B depicts the spread between implied volatilities for options that have a strike-to-price ratio

X = K/S − 1 = 2.5% and at-the-money implied volatilities.

D.1. American options on the S&P 500 futures

We construct implied volatility functions from 1985 to 1995 by using transaction data on American

options on S&P 500 futures. As in Bakshi et al. (1997), prior to analysis we eliminate observations that

have a price lower than $(3/8) to mitigate the impact of price discreteness on option valuation. Since near-

maturity options are typically illiquid, we also discard observations with time-to-maturity shorter than ten

calendar days. For the same reason, we do not use call and put contracts that are more than 3% in-the-

money. Finally, we disregard observations on options that allow for arbitrage opportunities, e.g., calls with

a premium lower than the early exercise value.

We consider call and put transaction prices with the three closest available maturities. For each contract,

we select the transaction price nearest to the time of the market close and pair it with the nearest transaction

price on the underlying S&P 500 futures. This approach typically results in finding a futures price that is

time-stamped within six seconds from the time of the option trade. We approximate the risk-free rate with

the three-month Treasury yield and compute implied volatilities using the Barone-Adesi and Whaley (1987)

pricing formula for American options.

At each date and for each of the three closest maturities, we interpolate the cross-section of implied

volatilities with a parabola. This approach is similar to the one used in Shimko (1993). In doing so, we require
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that we have at least three implied volatility observations, one with a strike-to-price ratio X = K/S − 1

no higher than -9%, one with X no lower than 1.5%, and one in between these two extremes. We record

the interpolated implied volatility at X = 0 and the implied volatility computed at the available X-values

closest to -10% and 2.5%.

Then, at each date and for each of the three X choices, we interpolate the implied volatility values across

the three closest maturities using a parabola. We use the fitted parabola to obtain the value of implied

volatility at 30 days to maturity. If only two maturities are available, we replace the parabola with a linear

interpolation. If only one maturity is available, we retain the value of implied volatility observed at that

maturity, provided that such maturity is within 20 to 40 days.

Trading in American options on the S&P 500 futures contracts began on January 28, 1983. Prior to

1987, only quarterly options maturing in March, June, September, and October were available. Additional

serial options written on the next quarterly futures contracts and maturing in the nearest two months were

introduced in 1987 (e.g., Bates, 2000). This data limitation, combined with the relatively scarce size and

liquidity of the options market in the early years, renders it difficult to obtain smirk observations at the

30-day maturity with -10% moneyness. Therefore, we start the plot in December 1985. After this date,

we find implied volatility values with the desired parameters for most trading days. Relaxing the time-to-

maturity and moneyness requirements results in longer implied volatility series going back to January 1983.

Qualitatively, the plot during the period from January 1983 to December 1985 remains similar to that for

the period from December 1983 to October 1987 (see, e.g., Bates, 2000).

D.2. European options on the S&P 500 index

After April 1996, we use data on S&P 500 index European options. We obtain daily SPX implied

volatilities from April 1996 to April 2006 from the OptionMetrics database. Similar to what we discussed in

Section D.1, we exclude options with a price lower than $(3/8), a time-to-maturity shorter than ten calendar

days, and contracts that are more than 3% in-the-money.

At each date and for each of the three closest maturities, we interpolate the cross-section of implied

volatilities using a parabola. We have also considered a spline interpolation, which has produced similar

results. We use the fitted parabola to compute the value of implied volatilities for strike-to-index-price ratios

X = K/S − 1 = −10%, zero, and 2.5%. Finally, we interpolate implied volatilities at each of these three

levels of moneyness across the three closest maturities. We use the fitted parabola to compute the value of

implied volatility at the 30-day maturity.
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Table 1
Model coefficients

The table reports the value of the coefficients for the baseline calibration of the model given in Eqs. (1)–
(8) and (11). The coefficients are expressed with yearly decimal scaling.

Preferences

γ = 10 Ψ = 2 β = 0.0176

Consumption and dividends

µC = 0.018 µD = 0.025 φ = 2.6050 σD = 5.3229 ρDC = 0.2523

Predictable mean component, x

κx = 0.2785 σxc = 0.1217 σx0 = 0 σxΩ = 0.1301

Economic uncertainty, Ω

κΩ = 1.0484 Ω = 0.0006 σΩ = 0.004 ρΩC = −0.6502

Jumps

ν = −0.035 σν = 0.0216 ξ =2100 α = 3 λG = 0.0005 λB = 0.035

Transition probabilities

φGB = 0.0025 φBG = 0.025

Idiosyncratic return shocks

σi = 0.3137 µνi = 0.0036 σνi = 0.0632 λi = 5
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Fig. 1. Pre- and post-crash implied volatility smirk for S&P 500 options with one month to maturity. The
plot in Panel A depicts the spread between implied volatilities for S&P 500 options with a strike-to-price
ratio X = K/S − 1 = −10% and at-the-money implied volatilities. The plot in Panel B depicts the spread
between implied volatilities for options with a strike-to-price ratio X = K/S − 1 = 2.5% and at-the-money
implied volatilities. Appendix D explains how we constructed the implied volatility series.
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Fig. 2. The plots depict the model-implied volatility smirk pre- and post-1987 market crash for S&P 500
options with one month to maturity. The model coefficients are set equal to the baseline values given in
Table 1.
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Fig. 3. The plot depicts the model-implied volatility smirk as a function of the probability p the agent
assigns to be in the low-crash-intensity economy. Implied volatilities are for S&P 500 options with one
month to maturity. The model coefficients are set equal to the baseline values given in Table 1.
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Fig. 4. The plots illustrate the sensitivity of the model-implied volatility smirk to the elasticity of relative
risk-aversion coefficient γ. Implied volatilities are for S&P 500 options with one month to maturity.
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Fig. 5. The plots illustrate the sensitivity of the model-implied volatility smirk to the elasticity of in-
tertemporal substitution coefficient Ψ = 1

ρ . Implied volatilities are for S&P 500 options with one month to
maturity.
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Fig. 6. The plots illustrate the sensitivity of the model-implied volatility smirk to the jump coefficient ν̄.
Implied volatilities are for S&P 500 options with one month to maturity.
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Fig. 7. The plots illustrate the sensitivity of the model-implied volatility smirk to the jump coefficient ξ.
Implied volatilities are for S&P 500 options with one month to maturity.
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baseline values given in Table 1.
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