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A Theoretical details

This appendix presents the several theoretical results that are referred to in the main text.

A.1 Optimal policy in the forward-looking model with uncertainty
about cost-push shocks

Our previous analysis assumed that the unknown shock that might trigger a binding ZLB at
time 1 is the natural real rate. We now consider the case where it is the cost-push inflation
shock u1 : i.e. ρnt = ρ for t ≥ 1, and ut = 0 for all t ≥ 2, but u1 is distributed according to
the probability density function fu(.). We assume E(u1) = 0.

To find optimal policy, we again solve the model backward. As before, optimal policy
after time 2 is simply xt = πt = 0, which is obtained by setting it = ρ > 0. At time 1, the
ZLB may bind if the cost-push shock is negative enough. Specifically, after seeing u1, we
solve

min
x1

1

2

(
π2
1 + λx21

)
,

s.t. :

π1 = κx1 + u1,

x1 ≤
ρ

σ
.

with the following solution:

• If u1 ≥ u∗1 = − ρ
σ
λ+κ2

κ
, the ZLB does not bind, and optimal policy strikes a balance

∗Any views expressed herein are those of the authors and do not necessarily represent those of the Federal
Open Market Committee or the Federal Reserve System.



between the inflation and output gap objectives, as in section 2.1:

x1 = − κu1
λ+ κ2

,

π1 =
λu1
λ+ κ2

.

• If u1 < u∗1, the ZLB binds, so even though the central bank would like to cut rates more
to create a larger boom and hence more inflation, this is not feasible. Mathematically,

x1 =
ρ

σ
,

π1 = κ
ρ

σ
+ u1.

To calculate optimal policy at time 0, we require expected inflation and output. These
are given by

Eπ1 =

∫ u∗1

−∞

(
κ
ρ

σ
+ u
)
fu(u)du+

λ

λ+ κ2

∫ ∞
u∗1

ufu(u)du,

= κ
ρ

σ
P +

κ2

λ+ κ2
M,

where P =
∫ u∗1
−∞ fu(u)du is the probability that the ZLB binds and M =

∫ u∗1
−∞ ufu(u)du. Note

M < 0 since Eu1 = 0. Expected output is similarly

Ex1 =
Eπ1
κ

=
ρ

σ
P +

κ

λ+ κ2
M.

If there was no ZLB, we would have Eπ1 = Ex1 = 0. With the ZLB, we do worse on output
and inflation when there is a negative enough cost-push shock, and hence Ex1 < 0 and
Eπ1 < 0.

This implies that optimal policy at time 0 is affected exactly as in the case of a natural
rate uncertainty: (i) the lower expected output gap at time 1 leads to a lower output gap at
time 0 through the IS equation; (ii) the lower expected inflation Eπ1 leads to lower output
gap at time 0 through higher real rates; (iii) the lower expected inflation finally reduces
inflation today. All these lead to looser policy. Formally, the optimal policy problem at time
0 is, given shocks ρn0 , u0, to solve

min
x0

1

2

(
π2
0 + λx20

)
,

s.t. : x0 ≤
ρn0
σ

+ Ex1 +
Eπ1
σ
,

π0 = βEπ1 + κx0 + u0.

The solution is the following. Define

ρ∗0 = −σ
(
ρ

σ
P +

κ

λ+ κ2
M

)(
1 +

βκ2

λ+ κ2

)
− σκ

λ+ κ2
u0.
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If ρn0 ≥ ρ∗0, then optimal policy is described by

x0 = − κ

λ+ κ2
(βEπ1 + u0) ,

π0 =
λ

λ+ κ2
(βEπ1 + u0) ,

where Eπ1 = κ ρ
σ
P + κ2

λ+κ2
M . The appropriate interest rate is

i0 = σ

(
κ

λ+ κ2
βEπ1 + Ex1 + u0

)
+ Eπ1 + ρn0 ,

so that lower Eπ1 and lower Ex1 require lower i0.

If ρn0 < ρ∗0, then i0 = 0, and x0 =
ρn0
σ

+ Ex1, and π0 = (1 + β)κEx1 + κ
ρn0
σ

+ u0. We can
summarize the results in the following proposition:

Proposition 1 Suppose the uncertainty is about cost-push shocks. Then: (1) optimal policy
is looser today when the probability of a binding ZLB tomorrow is positive; (2) optimal policy
is independent of the distribution of the cost-push shock tomorrow un1 over values for which
the ZLB does not bind, i.e. of {fu(u)}u≥u∗ ; only {fu(u)}u<u∗ is relevant, and only through

the sufficient statistics
∫ u∗
−∞ fu(u)du and

∫ u∗
−∞ ufu(u)du.

Because Ex1 and Eπ1 now depend on P = Pr(u ≤ u∗), one cannot state a general result
about mean-preserving spreads, since this probability might fall with uncertainty for some
“unusual” distributions. However, if u is normally distributed with mean 0, and given that
u∗ < 0, the result that more uncertainty leads to lower rates today still hold.

An important implication is that the risk that inflation picks up does not affect policy
today. If a high u is realized tomorrow, it will be bad; however, there is nothing that policy
today can do about it.

A.2 Calculation of W in the backward-looking model

The value function for t ≥ 2 solves the following Bellman equation, corresponding to a
deterministic optimal control problem:

V (π−1, x−1) = min
x,π

1

2

(
π2 + λx2

)
+ βV (π, x),

s.t. :

π = ξπ−1 + κx,

x = δx−1 −
1

σ
(i− ρ− π−1).
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We use a guess-and-verify method to show that the value function takes the form

V (π−1, x−1) =
W

2
π2
−1,

and that the policy rules are linear: π = gπ−1 and x = hπ−1 for two numbers g and h. To
verify the guess, solve

min
x

1

2
(1 + βW ) (ξπ−1 + κx)2 +

1

2
λx2

The first order condition yields

(1 + βW ) (ξπ−1 + κx)κ+ λx = 0

x = − (1 + βW )κξ

(1 + βW )κ2 + λ
π−1,

leading to

π =
λξ

(1 + βW )κ2 + λ
π−1,

which verifies our guess of linear rules. To find W , plug this back in the minimization
problem; we look for W to satisfy, for all π−1, :

W

2
π2
−1 =

1

2
(1 + βW )

(
λ

(1 + βW )κ2 + λ

)2

ξ2π2
−1 +

1

2
λ

(
(1 + βW )κ

(1 + βW )κ2 + λ

)2

ξ2π2
−1

which can be simplified to a simple quadratic equation:

βκ2W +W
(
κ2 + λ− βλξ2

)
= ξ2λ.

It is immediate to verify that, if λ > 0 and ξ 6= 0, there are two real roots to this equation,
one negative and one positive. The positive root is our solution and is given by the formula:

W =
− (κ2 + λ(1− βξ2)) +

√
(κ2 + λ(1− βξ2))2 + 4λβκ2

2βκ2
,

and we can calculate g and h given W and the formula above for x and π.

A.3 Proof of Proposition 2

We start with a simple more general result, then we show how our model fits as a special
case of this result.

Lemma 1 Consider the problem

V (θ) = max
x0

EεJ(x0, ε),
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where θ indexes the distribution of ε, and the function J is defined as

J(x0, ε) = max
x1

F (x1, x0, ε),

s.t. : x1 ≤ f(x0) + ε,

where F is quadratic (with F11 < 0) and f is linear. Suppose that higher θ indexes more
risky distribution of ε in the sense of second-order stochastic dominance. Suppose that the

scalar F13 + F11 < 0 and that the scalar f ′ (F11 + F13) + F21

(
1 + F13

F11

)
< 0. Then, x0 is

increasing in θ.

Proof. For a given distribution of ε, i.e. a given θ, the optimal x0 satisfies the first-order
condition

EεJ1(x
∗
0(θ), ε) = 0.

It is straightforward from the implicit function theorem that

dx∗0
dθ

= −
∫ +∞
−∞ J1(x

∗
0(θ), ε)hθ(ε, θ)dε∫ +∞

−∞ J11(x∗0(θ), ε)h(ε, θ)dε
,

and the denominator is negative by the second-order condition. Given that higher θ indexes
more risky distribution, the numerator will be positive if the function J1 is convex in ε; we
will prove this which demonstrates our result.

To prove that J1 is convex in ε, we first calculate J . Define the unconstrained maximum

x∗1(x0, ε) = arg max
x1

F (x1, x0, ε).

This maximum is unique since F is quadratic; indeed, x1 can be written

x∗1(x0, ε) = αx0 + βε+ γ,

with α = −F12

F11
and β = −F13

F11
. We then have the following expression for J :

J(x0, ε) = F (x∗1(x0, ε), x0, ε), if x∗1(x0, ε)− f(x0) ≤ ε,

= F (f(x0) + ε, x0, ε) , if x∗1(x0, ε)− f(x0) > ε,

and using the envelope theorem we calculate

J1(x0, ε) = F2(x
∗
1(x0, ε), x0, ε), if x

∗
1(x0, ε)− f(x0) ≤ ε,

= f ′(x0)F1 (f(x0) + ε, x0, ε) + F2 (f(x0) + ε, x0, ε) , if x∗1(x0, ε)− f(x0) > ε.

Since F is quadratic and f is linear, (and hence x1 is linear), the two expressions for J1 are
both linear in ε. To determine the convexity of this function simply requires comparing the
slopes.1

1Note that J1 is continuous in ε since at the boundary between the two expression, F1 (f(u0) + ε, u0, ε) =
F1(u∗1(u0, ε), u0, ε) = 0 by optimality of u1.
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More precisely, given the linearity of x1 in ε, and our assumption that β = −F13/F11 < 1,
there is a threshold value ε such that, if ε ≥ ε, we are in the first case (i.e. x∗1(x0, ε)−f(x0) ≤
ε), and if ε < ε, we are in the second case (i.e. x∗1(x0, ε)− f(x0) > ε).

The slope of J1, as a function of ε, is

J1ε = F21
∂x1
∂ε

+ F23 = F23 −
F13F21

F11

for ε ≥ ε,

= f ′F11 + f ′F13 + F21 + F23 for ε < ε.

J1 is convex provided that its slope is increasing, i.e.

f ′ (F11 + F13) < −F21

(
1 +

F13

F11

)
.

We now return to our original problem. We first rewrite the choice in terms of inflation.
As a reminder, the general Bellman equation is

Wt(πt−1, xt−1, ρ, u) = min
πt,xt,it

1

2

(
π2
t + λx2t

)
+ βEρ′Wt+1(πt, xt, ρ

′, u′),

s.t. :

xt = δxt−1 −
1

σ
(it − ρ− πt−1) ,

πt = ξπt−1 + κxt + u,

it ≥ 0.

To replace the output gap by inflation in this problem, note that

xt =
πt − ξπt−1 − ut

κ
,

and the ZLB constraint can be rewritten as

xt ≤ δxt−1 +
ρ+ πt−1

σ
,

or
πt ≤ πt,

where

πt = ξπt−1 + κδ

(
πt−1 − ξπt−2 − ut−1

κ

)
+
κ

σ
(ρ+ πt−1) + ut

=
(
ξ + δ +

κ

σ

)
πt−1 +

κ

σ
ρ− ξδπt−2 − δut−1 + ut
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It is thus possible to rewrite the Bellman equation as

Wt(πt−1, πt, ρ, u) = min
πt

1

2

(
π2
t +

λ

κ2
(πt − ξπt−1 − u)2

)
+ βEρ′|ρWt+1(πt, πt+1, ρ

′, u′),

s.t. :

πt ≤ πt,

πt+1 =
(
ξ + δ +

κ

σ

)
πt +

κ

σ
ρ′ − ξδπt−1 − δu+ u′.

We can simplify this further given our specific scenario. Given that there is no uncertainty

for t ≥ 2 and that the ZLB constraint does not bind, the value function is simply

W (πt−1) = min
πt

1

2

(
π2
t +

λ

κ2
(πt − ξπt−1)2

)
+ βW (πt).

This value function will of course be quadratic:

W (π) =
W

2
π2.

The value function at time t = 1 must take into account that the ZLB may bind. We call
this value V :

V (π0, π1, u1) = min
π1

1

2

(
π2
1 +

λ

κ2
(π1 − ξπ0 − u1)2

)
+ β

W

2
π2
1,

s.t. : π1 ≤ π1.

Finally, the time 0 problem is

U(π−1, u0; θ) = min
π0

1

2

(
π2
0 +

λ

κ2
(π0 − ξπ−1 − u0)2

)
+ βEρ1,u1V (π0, π1, u1),

s.t. : π1 =
(
ξ + δ +

κ

σ

)
π0 +

κ

σ
ρ1 − δξπ−1 − δu0 + u1,

where θ indexes the distribution of either ρn1 or u1. Note that once we have solved for π0,
we can find x0 = π0−ξπ−1−u0

κ
and i0 = ρ + π−1 + σ(δx−1 − x0) immediately. Hence a higher

(lower) π0 implies a higher (lower) x0 and lower (higher) i0.

To map our problem in the formulation of the lemma, we first consider the case where
the uncertainty is over natural rate shocks (so u1 is known). In this case, we define

F (π1, π0, ε) = −1

2

(
π2
0 +

λ

κ2
(π0 − ξπ−1 − u0)2

)
− 1

2

(
π2
1 +

λ

κ2
(π1 − ξπ0 − u1)2

)
− βW

2
π2
1,

and
f(π0) =

(
ξ + δ +

κ

σ

)
π0 − δξπ−1 − δu0 + u1.
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The problem is then
U(π−1, u0; θ) = max

π0
EεJ(π0, ε),

where

J(π0, ε) = max
π1

F (π1, π0, ε)

s.t. : π1 ≤ f(π0) + ε,

with ε = κ
σ
ρ1. Clearly F is quadratic and f is linear. We have F13 = 0 so F11 + F13 < 0 is

satisfied, and

f ′ (F11 + F13) +F21

(
1 +

F13

F11

)
= f ′F11 +F12 = −

(
ξ + δ +

κ

σ

)
(βW + 1)− λ

κ2

(
δ +

κ

σ

)
< 0,

so the theorem applies, i.e. π0 (and hence x0, i0) is increasing in θ.

To now apply our result in the case of cost-push shocks, we define

f(π0) =
(
ξ + δ +

κ

σ

)
π0 − δξπ−1 − δu0 +

κ

σ
ρ1,

and ε = u1 (and assume ρ1 is known). We now need to verify the two conditions. First,

F13 + F11 =
λ

κ2
−
(
βW + 1 +

λ

κ2

)
= − (βW + 1) < 0.

Second,

f ′ (F11 + F13) + F21

(
1 +

F13

F11

)
,

= −
(
ξ + δ +

κ

σ

)
(βW + 1) +

λ

κ2
ξ

βW + 1

βW + 1 + λ
κ2

< −
(
ξ + δ +

κ

σ

)
(βW + 1) +

λ

κ2
ξ
βW + 1

λ
κ2

< −
(
δ +

κ

σ

)
(βW + 1) < 0.

B Forward-looking model solution methods

We present here the numerical methods used to solve the forward-looking model. We make
the following assumptions regarding exogenous variables. First, there is a date T such that,
for t ≥ T, the cost-push shock is zero and the natural rate is constant, ut = 0 and ρnt = ρ.
Second, for t < T, the cost-push shock ut follows a Markov chain with transition probability
Pu(u

′|u). The natural rate ρnt is the sum of a deterministic component and a Markov chain:
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ρnt = ft + εt, where εt has transition Pε(ε
′|ε), and ft is increasing and satisfies fT = ρ. We

will write ρnt (ε) = ft + ε. The stochastic processes εt and ut are independent. In practice we
use simply ft = ρn0 + t

T0
(ρ− ρn0 ) for 0 ≤ t ≤ T0 and ft = ρ for T0 ≤ t < T. We will choose the

Markov chains for ε and for u to each approximate an AR(1) process using the Rouwenhorst
method.

The model we study is

πt = βEtπt+1 + κxt + ut,

xt = Etxt+1 −
1

σ
(it − ρnt (ε)− Etπt+1) ,

it ≥ 0.

Our theoretical analysis assumed for simplicity (and as is common in the literature) a
zero inflation steady-state. To provide more useful numerical illustrations, we consider the
case of a positive inflation target. We assume that the equations above apply if πt is inflation
deviation from target and it is the nominal rate minus the inflation target. The ZLB is then

modified as it ≥ Z
def
= −π∗.2

B.1 Calculation of optimal policy under discretion

Optimal policy under discretion can be easily calculated in this model. For t ≥ T, we have
xt = πt = 0. For t < T, the optimal policy is given by the solution to

Lt(ε, u) = min
it≥Z

1

2

(
π2
t + λx2t

)
+ βEtLt+1(ε

′, u′)

s.t. :

πt = βEtπt+1 + κxt + u,

xt = Etxt+1 −
1

σ
(it − ρnt (ε)− Etπt+1) ,

where future expectations Etπt+1 and Etxt+1 are taken as given. Since the current decision
for it does not affect the future loss Lt+1, the optimal choice is found by simply minimizing
π2
t + λx2t .

Denote
at(ε, u) = Et (xt+1|εt = ε and ut = u) ,

2One technical issue is that the long-run Phillips curve is not vertical in this model. To make sure that
π∗ is indeed the long-run inflation when there is no uncertainty, we assume that the true model is

πt = βEtπt+1 + (1− β)π∗ + κxt + ut,

and the IS curve is unchanged. The policymaker objective is to minimize the expected discounted sum of
(πt − π∗

t )
2

+ λx2t . We can then redefine π̃t = πt − π∗ and ĩt = it − π∗. The model is now exactly the one
written above. Our modification of the Phillips curve is minimal since (1−β)π∗ is a very small number. We
make the same assumption in the backward-looking model.
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and
bt(ε, u) = Et (πt+1|εt = ε and ut = u) ,

and define Xt(ε, u) = 1 if ZLB binds at time t in state (ε, u), and 0 if not.

Suppose first that the ZLB does not bind; taking first-order conditions then yields

xnbt (ε, u) = − κ

λ+ κ2
(βEtπt+1 + u) = − κ

λ+ κ2
(βbt(ε, u) + u) ,

πnbt (ε, u) =
λ

λ+ κ2
(βEtπt+1 + u) =

λ

λ+ κ2
(βbt(ε, u) + u) ,

inbt (ε, u) = ρnt (ε) + bt(ε, u) + σ (at(ε, u)− xt(ε, u)) .

If this solution is feasible, then it is clearly the optimum. If this solution is not feasible, then
the optimum is simply to set the nominal interest rate to zero. Hence, the ZLB binds if the
nominal interest rate required to implement that solution is negative, i.e.

Xt(ε, u) = 1 if ρnt (ε) + bt(ε, u) + σ

(
at(ε, u) +

κ

λ+ κ2
(βbt(ε, u) + u)

)
≤ Z.

In that case, the solution is:

xzlbt (ε, u) = −
(
Z − ρnt (ε)

)
σ

+ Etxt+1 +
Etπt+1

σ
= −

(
Z − ρnt (ε)

)
σ

+ at(ε, u) +
bt(ε, u)

σ
,

πzlbt (ε, u) = κ

(
−
(
Z − ρnt (ε)

)
σ

+ at(ε, u) +
bt(ε, u)

σ

)
+ βbt(ε, u) + u,

izlbt (ε, u) = 0.

To solve for the optimal path, we only need to know at(ε, u) and bt(ε, u). We can solve
for these recursively. We have aT−1(ε, u) = bT−1(ε, u) = 0 for all ε, u, since xT = πT = 0. To
update the recursion, we write

at(ε, u) = Et (xt+1|εt = ε, ut = u)

=
∑
ε′,u′

Pε(ε
′|ε)Pu(u′|u)

(
Xt+1(ε

′, u′)xzlbt+1(ε
′, u′) + (1−Xt+1(ε

′, u′))xnbt+1(ε
′, u′)

)
,

and

bt(ε, u) = Et (πt+1|εt = ε, ut = u)

=
∑
ε′,u′

Pε(ε
′|ε)Pu(u′|u)

(
Xt+1(ε

′, u′)πzlbt+1(ε
′, u′) + (1−Xt+1(ε

′, u′)) πnbt+1(ε
′, u′)

)
.

We can then calculate recursively xt(ε, u) and πt(ε, u) for all t, ε, u; consequently we can
calculate the loss function Lt(ε, u) recursively. Start from

LT (ε, u) =
∞∑
t=T

βt
(
π2
t + λx2t

)
= 0,
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and backwards for t = 0...T − 1 :

Lt(ε, u) = πt(ε, u)2 + λxt(ε, u)2 + β
∑
ε′,u′

Pε(ε
′|ε)Pu(u′|u)Lt+1(ε

′, u′).

B.2 Calculation of equilibrium under a Taylor rule

Suppose that the central bank follows the policy:

it = max
(
Z, gt(εt) + φπt + γxt

)
,

where gt(εt) is a function; for t ≥ T , gt(εt) is assumed to be constant, equal to g > Z. This
formulation nests the three examples we study in the paper:

• Set it equal to the current natural real rate of interest, it = max
(
Z, ρnt (εt)

)
; this

corresponds to gt(εt) = ρnt (εt), and φ = γ = 0;

• A Taylor rule with a constant intercept, it = max
(
Z, ρ̂+ φπt + γxt

)
.

The system of equations to solve is

πt = βEtπt+1 + κxt + ut,

xt = Etxt+1 −
1

σ

(
max

(
Z, gt(εt) + φπt + γxt

)
− ρnt (εt)− Etπt+1

)
,

and the difficulty is that which formula applies for the interest rate depends on the value
of inflation and the output gap, which themselves depend on the interest rate. However it
is easy to solve the model by backward induction, in a way roughly similar to the optimal
policy calculation above. For t ≥ T, it = g > 0, and the equilibrium is

π = g − ρ,

x =
1− β
κ

π.

In particular, if g = ρ, the terminal state is x = π = 0. (This case is the outcome for cases
(a) and (b) but not necessarily for case (c), depending on whether ρ̂ = ρ.)

Use a superscript W to denote the outcomes with this rule. Define again

aWt = Et
(
xWt+1|εt = ε and ut = u

)
,

bWt = Et
(
πWt+1|εt = ε and ut = u

)
,

and note that

πWt (ε, u) = βbWt (ε, u) + u+ κxWt (ε, u)

xWt (ε, u) = aWt (ε, u)− 1

σ

(
max

(
Z, gt(εt) + φπWt (ε, u) + γxWt (ε, u)

)
− ρnt (εt)− bWt (ε, u)

)
.
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There are two possible cases, depending on whether gt(εt) + φπWt (ε, u) + γxWt (ε, u) > Z.
Consider first the case where it is positive. In this case, simple algebra yields

xWt (ε, u) =
1

1 + γ+κφ
σ

(
aWt (ε, u)− φ

σ

(
βbWt (ε, u) + u

)
− 1

σ

(
gt(εt)− ρnt (εt)− bWt (ε, u)

))
,

and πWt (ε, u) can be obtained from the equation above. We can now check if indeed gt(εt) +
φπWt (ε, u) + γxWt (ε, u) > Z is satisfied. If it is not, we then look for a solution at the ZLB,
i.e.

πWt (ε, u) = βbWt (ε, u) + u+ κxWt (ε, u)

xWt (ε, u) = aWt (ε, u)− 1

σ

(
Z − ρnt (εt)

)
+

1

σ
bWt (ε, u),

and we check that with this solution, gt(εt)+φπWt (ε, u)+γxWt (ε, u) < Z.3 Given the value of
πWt (ε, u) and xWt (ε, u) for all ε, u, we can update aWt−1(ε, u) and bWt−1(ε, u) and hence proceed
backwards until time 0. We can furthermore calculate the loss function in the same way as
for optimal policy.

B.3 Calculation of equilibrium under “Naive” Policy

Since the Fed does not recognize the possibility of future shocks, in any given period t,
starting with shocks ρnt and ut, the Fed assumes that in the future, the natural rate and the
cost push shock will simply revert deterministically to their respective trends. This implied

path for
{
ρnt+k, ut+k

}T−t
k=1

is calculated using the true persistence of the transitory shocks (ε, u)
and the true deterministic trend of the natural real rate. The Fed then sets the nominal
interest rate it to minimize the loss

∑T−t
k=0 β

k
(
π2
t+k + λx2t+k

)
, subject to

xt+k = xt+k+1 −
1

σ

(
it+k − ρnt+k − πt+k+1

)
,

πt+k = βπt+k+1 + κxt+k + ut+k,

and assuming discretion. Hence, at each point in time, the Fed solves the backward induction

problem from time T on, for a given path
{
ρnt+k, ut+k

}T−t
k=1

, and deduces the optimal interest
rate today it = it(ε, u).

Once this rule has been calculated, we can then use it to solve for the behavior of private
agents. This implies that we assume the agents understand that the Fed will behave naively
in the future.

If the Fed follow this policy, it is then surprised each period in two ways: first and most
obviously, it is surprised by the realization of new shocks each period. Second, after setting
the interest rate, the Fed is surprised by the realized value of xt and πt. This is because the

3In principle, it is possible that either none, or both solutions exist, but we never encountered this case
in our calculations.
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Fed has used its projected values for xt+1 and πt+1 in the model, while the true values are
agent’s expectations Etxt+1 and Etπt+1. Of course, if there was no uncertainty in reality, or
if the zero lower bound was never binding, the two would coincide.

C Backward-looking model solution methods

The backward-looking model is

πt = ξπt−1 + κxt + ut,

and

xt = δxt−1 −
1

σ
(it − ρnt (εt)− πt−1) .

We make the same assumptions about the exogenous variables as we do for the forward-
looking model. As in the forward-looking case, we assume that this model applies to devia-
tions of inflation from the target, and it is the difference between the nominal rate and the
inflation target π∗. (Formally, this can be justified as in the previous footnote.) As a result,
we have the ZLB constraint it ≥ Z = −π∗.

C.1 Calculation of optimal policy under discretion

The optimal policy under discretion can be set up using a Bellman equation:

Vt(x−1, π−1, ε, u) = min
i≥Z

1

2

(
π2 + λx2

)
+ βEε′,u′|ε,uVt+1(x, π, ε

′, u′),

s.t. :

π = ξπ−1 + κx+ u,

x = δx−1 −
1

σ
(i− ρnt (ε)− π−1) .

We first solve for the value in the final steady-state, VT (x−1, π−1); we have a closed form
solution if the ZLB does not bind for all values of x, π (see appendix B); or we can solve it
numerically using the Bellman equation

VT (x−1, π−1) = min
i≥Z

1

2

(
π2 + λx2

)
+ βVT (x, π),

s.t. :

π = ξπ−1 + κx,

x = δx−1 −
1

σ
(i− ρ− π−1) .

For t < T , we solve numerically the Bellman equation above. For simplicity, we assume
that only a discrete set of interest rates is allowed, call it G = {i1, ..., iN} . We then solve

13



this Bellman equation by interpolating the value functions around a grid for x and for π.
Specifically, at time t, and for each value of x and π in these grids, we calculate the payoff
of using any given interest rate i ∈ G today, and select the optimal one. This may require
us to interpolate to find the expected future value; we use a linear interpolation. This solu-
tion method produces the optimal policy it(x−1, π−1, ε, u) and the output gap and inflation
xt(x−1, π−1, ε, u) and inflation πt(x−1, π−1, ε, u) as well as the loss function Vt(x−1, π−1, ε, u)
for all points in the grid. We then move to on to period t− 1, and so on until time 0.

C.2 Equilibrium under a Taylor rule

We can also calculate the equilibrium in this model under a rule of the form

it = max
(
Z, gt(εt) + φπt + γxt

)
.

Specifically, given xt−1 and πt−1 and the values of εt, ut, we must solve the system:

πt = ξπt−1 + κxt + ut,

xt = δxt−1 −
1

σ

(
max

(
Z, gt(εt, ut) + φπt + γxt

)
− ρnt (εt)− πt−1

)
,

and so we need to consider the two possible cases to find the solution. Either gt(εt) + φπt +
γxt > Z, in which case

xt =
1

1 + γ
σ

+ κφ
σ

(
−φ
σ
ξπt−1 −

φ

σ
ut + δxt−1 −

1

σ
(gt(εt, ut)− ρnt (εt)− πt−1)

)
,

and πt = ξπt−1 + κxt + ut; and we need to verify that indeed gt(εt) + φπt + γxt > Z; or we
have

xt = δxt−1 −
1

σ

(
Z − ρnt (εt)− πt−1

)
,

πt = ξπt−1 + κxt + ut,

and we need to verify that indeed gt(εt) + φπt + γxt < Z.

C.3 Calculation of equilibrium under “Naive” Policy

We also compute a counterfactual where the Fed behaves “naively” in the sense that it
optimizes but does not recognize the possibility of future shocks. This section details our
computation of this counterfactual in the backward-looking model.

Similar to the forward-looking model, the naive Fed does not recognize the possibility

of future shocks, and in each state t, ρnt , ut, xt−1, πt−1, it assumes a path for
{
ρnt+k, ut+k

}T−t
k=0

.
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The Fed then solves the optimal stabilization problem without uncertainty, which can be
represented with the Bellman equation:

Ṽt(x−1, π−1) = min
i≥Z

1

2

(
π2 + λx2

)
+ βṼt+1(x, π),

s.t. :

π = ξπ−1 + κx+ ut,

x = δx−1 −
1

σ
(i− ρnt − π−1) ,

and the key difference is that the path for
{
ρnt+k, ut+k

}T−t
k=0

is now fixed. Solving this problem
(again backwards from time T ) yields a policy function at time t, call it it(x−1, π−1, ρ

n
t , ut).

Once we have solved for this policy at each point in time and for each possible value of the
states, we can again simulate the model given this interest rate rule.

There are two important differences with the forward-looking naive policy. First, agents’
expectations are not relevant and hence whether they assume the Fed is naive or not does
not feed back on their decisions except through the interest rate. Second, the Fed is not
surprised by the achieved levels of output gap and inflation given its interest rate.

C.4 Deflationary traps

An important issue in this model is the risk of deflation trap (Reifschneider and Williams
(2000)). For given parameters, there is a set of initial values x−1 and π−1 that diverges
to −∞ even under optimal policy, at least for some shock realizations. Mechanically, this
arises because if the output gap is negative and ξ is large enough, inflation will fall; and
the output gap will likely fall is δ is large enough and/or the natural rate or inflation are
negative enough. Hence, low inflation and output gap can be self-reinforcing. These deflation
traps capture an economically meaningful mechanism, but obviously the divergence to −∞ is
extreme. In reality, it seems more likely that the divergence would stop at some point due to
a regime change in the way policy, expectations, or price setting is determined. For instance,
fiscal policy might step in at some point and ensure that the deflation does not perpertuate
itself. In our solution method, we impose this - i.e. there is a worst possible outcome, π
for inflation and x for the output gap, which “caps” inflation and output gap and hence
prevents the divergence to −∞. Obviously, our simulations start from initial conditions such
that the deflation trap can be avoided by appropriate policy, so the assumptions regarding
the deflation trap are not key to our results. However, policy in this model is also motivated
by the desire to prevent the economy from falling under a deflation trap should a negative
sequence of shocks arise, and for some parameters this can have a significant effect to increase
the “buffer stock” i.e. stay with inflation and output gap above target persistently.
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D Effects of assuming alternative parameter values in

the simulations

This appendix summarizes various perturbations of our simulations based on changing one
parameter at a time. These simulations are designed to illustrate the effects of key parameters
on our findings.

D.1 Forward-looking model

For the forward-looking model we focus on changes in the initial natural real interest rate
ρ0 and the unconditional volatility in the random component of the natural rate, σε. We
considered five scenarios summarized in Table 1. The results for the forward-looking model
under optimal discretion, the naive policy and the Taylor rule are reported in Tables 2, 3
and 4. Column 1 is the baseline parameterization considered in the main text.

Table 1: Alternative parameters in the forward-looking model

Perturbations

Parameter 1 2 3 4 5

ρ0 -0.50 -0.50 -0.50 -1.00 0.00
σε 2.50 2.00 3.00 2.50 2.50

Table 2: Forward-looking perturbations: Optimal Discretion

Statistic 1 2 3 4 5

Expected loss 0.02 0.02 0.03 0.03 0.02
Mean time at liftoff 4.13 1.00 5.74 5.27 1.00
Median time at liftoff 3 1 4 4 1
Median π at liftoff -0.08 0.04 -0.88 -0.03 0.06
Median x at liftoff 2.19 1.90 1.38 1.57 1.84
75th percentile max(π) 2.77 2.77 2.75 2.38 2.66
25th percentile min(x) -0.31 -0.31 -1.44 -0.15 -1.22
Median standard deviation ∆i 1.85 1.77 1.94 1.77 1.91
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Table 3: Forward-looking perturbations: Naive

Statistic 1 2 3 4 5

Expected loss 0.06 0.03 0.11 0.07 0.05
Mean time at liftoff 1.00 1.00 1.00 1.00 1.00
Median time at liftoff 1 1 1 1 1
Median π at liftoff -1.44 -0.84 -2.20 -1.68 -1.23
Median x at liftoff 0.88 1.36 0.26 0.71 1.02
75th percentile max(π) 2.77 2.77 2.72 2.38 2.34
25th percentile min(x) -1.44 -0.97 -2.54 -1.68 -1.48
Median standard deviation ∆i 1.88 1.79 1.99 1.83 1.92

Table 4: Forward-looking perturbations: Taylor rule

Statistic 1 2 3 4 5

Expected loss 0.16 0.13 0.19 0.20 0.12
Mean time at liftoff 1.00 1.00 1.00 3.54 1.00
Median time at liftoff 1 1 1 3 1
Median π at liftoff -1.62 -1.57 -1.69 -1.73 -1.23
Median x at liftoff 0.35 0.38 0.30 0.55 0.73
75th percentile max(π) 3.10 2.82 2.68 3.04 2.09
25th percentile min(x) -1.78 -2.08 -3.27 -2.10 -3.15
Median standard deviation ∆i 0.97 0.90 1.05 0.94 0.99

D.2 Backward-looking model

For the backward-looking model we focus on changes in the output gap persistence, δ in the
IS curve, inflation persistence in the Phillips curve, ξ, initial natural real interest rate ρ0
and the unconditional volatility in the random component of the natural rate, σε, the initial
output gap x0 and the initial inflation rate π0. We considered ten scenarios summarized in
Table 5. The results for the backward-looking model under optimal discretion, the naive
policy and the Taylor rule are reported in Tables 6, 7 and 8. Column 1 is the baseline
parameterization considered in the main text.
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Table 5: Alternative parameterizations in the backward-looking model

Perturbations

Parameter 1 2 3 4 5 6 7 8 9 10

δ 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.65 0.85 0.75
ξ 0.95 0.95 0.95 0.95 0.95 0.93 0.97 0.95 0.95 0.95
ρ0 -0.50 -0.50 -0.50 -4.00 0.00 -0.50 -0.50 -0.50 -0.50 -0.50
σ(ε) 2.50 2.00 3.00 2.50 2.50 2.50 2.50 2.50 2.50 2.50
x0 -1.50 -1.50 -1.50 -1.50 -1.50 -1.50 -1.50 -1.50 -1.50 0.00
π0 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70
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E Data

This appendix describes the sources of the data we use in our empirical analysis.

E.1 Narrative Analysis and Human-coded FOMC-based variables

The narrative analysis is based on Federal Reserve documents, including monetary policy
reports, minutes of FOMC meetings, and Records of Policy Actions. These documents are
all available through links at the web site:

http://www.federalreserve.gov/monetarypolicy/default.htm.

The documentation describing how the human-coded variables were constructed from the
Records of Policy Actions and the portions of the FOMC minutes that describe the rationale
for the Committee’s policy action is in a separate document:

EFGK-2015-Human-Coding-Appendix.pdf.

E.2 Machine-coded FOMC-based variables

We searched the policy portion of the FOMC minutes for occurrences of a set of words (risk
terms) that appear in the same sentence as a second set of words (conditional terms). The
risk terms we use are to capture discussions associated with uncertainty or insurance. The
conditional terms relate to economic activity or inflation. We count the number of sentences
that include risk-conditional term pairs.

Using plain text files provided by Michael McMahon, we count sentences within the
portion of the FOMC minutes that address the policy decision after 1993. From the fifth
meeting of 1987 (the first meeting chaired by Alan Greenspan) up to the last meeting of 1992
we use the “Report of Policy Action.” The latter is obtained from the Board of Governors
web site. Within the text files for the minutes are tags for different sections of the meetings.
The policy discussion follows the tag >>FOMC2>>. There were some bugs in the text files
we received. These were corrected as follows:

• Several tags were incorrectly marked as >> FOMC2<< or >>FOMC2>>>. These
were changed to >>FOMC2>>.

• The transcript for the September 2003 meeting was combined into one file to conform
with how all other two-day meeting minutes were formatted.

• The 3/5/1997 and 5/20/1997 files had their names interchanged since their contents
stated that they were the minutes for the other date.

• The >>FOMC2>> tag was moved in the 3/31/1998 and 11/13/1999 minutes files to
capture the whole policy discussion.
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For each unit of text to be searched, the text must first be broken into sentences. We
accomplished this using a sentence “tokenizer” from the Natural Language Toolkit.4 A
tokenizer is an algorithm that can distinguish between periods marking the end of a sentence
from those that mark abbreviations. While this approach is based on machine learning that
could introduce error into the output, we have verified that it is accurate in our case. Once
the text was broken into sentences, the text searches proceeded by searching for risk and
conditional terms within each sentence. The search terms we use are listed below. Note that
the terms are not searched on a case-sensitive basis.

Risk Terms

• Insurance terms: insurance (when not preceded by unemployment, deposit, health,
medical, casualty, Federal, life, auto, fire, flood, drought, company, companies, indus-
try, or fund) risk-management, risk management, ensure, and assurance.

• Uncertainty: uncertainty, uncertainties, uncertain, and question.

Conditional terms

• Inflation: inflation, prices, deflation, disinflation, labor cost(s), unit cost(s)

• Activity: activity, growth, slack, resource, labor (when not followed by cost), employ-
ment

E.3 Other data

We now describe the remaining data used in our econometric analysis. Some of the data
was obtained from the Haver Analytics database. The mnemonic’s are given below in these
cases.

E.3.1 Fed Funds Rate

We use two different Federal Funds Rate variables. The first is a thirty-day forward average
of the target rate following each FOMC meeting (Haver mnemonic: FFEDTAR@DAILY).
The second variable uses two different methodologies depending on the date. For meetings
prior to 1990 we use the target rate as given in Thornton (2005). Target values for 1990 and
later are given by the New York Fed’s “Historical Changes of the Target Federal Funds and
Discount Rates” available at:

http://www.newyorkfed.org/markets/statistics/dlyrates/fedrate.html.

4See www.nltk.org. For more information on the sentence tokenizer, see
http://www.nltk.org/api/nltk.tokenize.html or http://www.nltk.org/book/ch03.html.
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E.3.2 Credit spread

The spread variable (SPD) is calculated as the difference between Moody’s Seasoned Baa
Corporate Bond Yield percentage points per annum (Haver mnemonic: FBAA@USECON)
and the 10-year Treasury Note Yield at Constant Maturity percentage points per annum
(Haver mnemonic: FCM10@USECON)

E.3.3 Market Volatility

The Chicago Board Options Exchange Volatility Index (VXO) is based on the prices of eight
S&P 100 index put and call options. This measure is also known as the “Original Vix”
(Haver mnemonic: SPVXO@WEEKLY). We use this rather than the newer version because
it extends back to the beginning of our sample. The two series are highly correlated.

E.3.4 Macroeconomic Uncertainty

Quarterly averages of monthly 12-month ahead macroeconomic uncertainty are calculated
using the data and methodology of Jurado, Ludvigson, and Ng (2015). We also create
three new uncertainty measures using subsets of their publicly available data: “activity,”
“inflation,” and “other,” where “other” is calculated using the residual variables that were
unused after calculating activity and inflation uncertainty. All measures are normalized when
used in policy rule calculations

• lunc (JLN): macroeconomic uncertainty (all 132 variables)

• luncact: activity uncertainty (70 variables relevant to activity)

• luncinf: inflation uncertainty (24 variables relevant to inflation)

• luncoth: other uncertainty (38 remaining variables)

E.3.5 Federal Open Market Committee “Greenbook” data

Output gap and core CPI data were downloaded from the Philadelphia Federal Reserve’s
website. This data is from the Board staff’s forecast prepared for each FOMC meeting. For
quarterly data, values corresponding to the first, third, fifth, and seventh FOMC meetings
of each year make up the first, second, third, and fourth quarter values, respectively. The
output gap data is obtained from:

https://www.philadelphiafed.org/research-and-data/real-time-center/

greenbook-data/gap-and-financial-data-set.cfm.

The core CPI data is obtained from:

https://www.philadelphiafed.org/research-and-data/real-time-center/

greenbook-data/philadelphia-data-set.cfm.
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The four-quarter ahead estimate was constructed for each variable by calculating the
simple average of the forecasted values for the current quarter and three subsequent quarters,
e.g.:

outputgap 4q =
outputgap T0 + outputgap T1 + outputgap T2 + outputgap T3

4

where outputgap T0 is the forecasted output gap for the current quarter, outputgap T1 is the
forecasted output gap for the next quarter, etc. A similar expression holds for the corecpi 4q.
The variables we use in our empirical analysis are then:

• fcGap: outputgap 4q

• fcInf: corecpi 4q

We construct the interest rate implied by the Taylor (1993) rule (discussed in Sections
2.3.2 and 2.3.3) using the current quarter estimates of core CPI (corecpi T0) and the output
gap (outputgap T0) from the Greenbook.

The forecast revision variables were calculated as follows. First we calculate the lagged
forecast:

outputgap 4q TM1 =
L.outputgap T1 + L.outputgap T2 + L.outputgap T3 + L.outputgap T4

4

In this expression ’‘L.” denotes “lagged value of.” Some consecutive FOMC meetings occur
in the same quarter. In these cases

outputgap 4q TM1 =
L.outputgap T0 + L.outputgap T1 + L.outputgap T2 + L.outputgap T3

4

The the output gap revision variable (a similar expression holds for the core cpi revision
variable) for each meeting is

gap revision = outputgap 4q − outputgap 4q TM1

The revision variables are:

• frGap: outputgap revision

• frInf: corecpi revision

E.3.6 Survey of Professional Forecasters

We use individual point forecasts and bin-based probability forecasts from the Philadelphia
Fed’s Survey of Professional Forecasters (SPF). These forecasts are contained in Excel files
that are found along with documentation at the following web address:
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https://www.philadelphiafed.org/research-and-data/real-time-center/

survey-of-professional-forecasters/historical-data/individual-forecasts.cfm.

We use the Excel files containing forecasts from the 1980s, 1990s, and 2000s. Relevant
worksheet names are given below, along with each variable’s description from the SPF doc-
umentation.

• RGDP: Quarterly level of real GDP

• PGDP: Quarterly level of the GDP price index

• PRGDP: Probability that annual-average over annual-average percent change in GDP
falls in a particular range

• PRPGDP: Probability that annual-average over annual-average percent change in the
GDP price index falls in a particular range

The point forecasts and binned forecasts are handled differently due to how the data
are collected. Real GDP and GDP deflator point forecasts are given as levels in the SPF.
One-year constant horizon growth rates for real GDP, RGDP ch, are calculated using the
following formula:

RGDP ch = ((RGDP5−RGDP1)/RGDP1) ∗ 100,

where RGDP1 is the historical value for the quarter prior to the survey and RGDP5 is the
3-quarter ahead forecast. See page 13 of the SPF documentation for a description of forecast
horizons and page 14 for a table with examples.

For the bin-based probability forecasts we need to construct our own measures of con-
stant horizon forecasts. For each quarterly survey the probability distributions are collected
corresponding to forecasts for the current year and the following year. We convert these into
probability distributions for forecasts that are one year ahead from the quarter the survey
was conducted using the procedure in D’Amico and Orphanides (2014). In particular, for
each bin i,

probabilityc.h.i = ωt ∗ current year probabilityi + (1− ωt) ∗ next year probabilityi

where ωt = 1.125− 0.25 ∗ t and t is the quarter in which the survey is conducted.

Summary statistics of individual forecaster binned probability distributions were calcu-
lated using the assumption that each bin’s midpoint is the “point value” that the respective
probability is assigned to. Additionally, in order to calculate a point forecast modes and
interquartile ranges we need to construct artificial discrete probability distributions. To do
this each point forecast is placed into a bin and the bin midpoint substitutes as the point
forecast value. We use inflation bins that are 0.25 percentage points wide and range from -1
to 7 percent (24 bins) and GDP bins that are 0.5 percentage points wide and range from -2
to 8 percent (20 bins).
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• vInf: median across forecasters of the standard deviation of probability-based inflation
forecasts

• vGDP: median across forecasters of the standard deviation of probability-based infla-
tion forecasts

• DvInf: interquartile range across forecasters of inflation point forecasts

• DvGDP: interquartile range across forecasters of GDP point forecasts

• sInf: median across forecasters of mean less mode of probability-based inflation fore-
casts

• sGDP: median across forecasters of mean less mode of probability-based GDP forecasts

• DsInf: mean across forecasters of inflation point forecast less inflation point forecast
mode

• DsGDP: mean across forecasters of GDP point forecast less GDP point forecast mode

F Test for risk affecting the policy rule coefficients

Without loss of generality, consider the following simplified policy rule in which uncertainty
affects the responsiveness of the policy rate Rt to uncertainty about the inflation forecast
(notation is not the same as in the main text):

Rt = β(σt)π
f
t + ut, (1)

where πft denotes the time t inflation forecast, σt denotes uncertainty over the inflation
forecast, and β(σt) is given by

β(σt) = β0 + β1σ
2
t .

It follows that (1) can be written

Rt = β0π
f
t + β1σ

2
t π

f
t + ut (2)

Suppose that instead of estimating (2) one estimates

Rt = γ0π
f
t + γ1σ

2
t + ũt.

It is straightforward to show that the ordinary least squares estimate of Γ = [γ0, γ1]
′ can be

expressed as

Γ̂ =

 β0 + β1
Σ′ΣΠ′Φ− Π′ΣΣ′Φ

Π′ΠΣ′Σ− (Π′Σ)2

β1
Π′ΠΣ′Φ− Π′ΣΠ′Φ

Π′ΠΣ′Σ− (Π′Σ)2

 ,
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where Σ is the T × 1 column vector containing the T time series observations on σ2
t ; Π is

the T × 1 column vector containing the T time series observations on πft ; and Φ the T × 1
column vector containing the T time series observations on πft σ

2
t . It follows that a test of

the null hypothesis γ1 = 0 corresponds to a test of β1 (Π′ΠΣ′Φ− Π′ΣΠ′Φ) = 0. As long as
Π′ΠΣ′Φ− Π′ΣΠ′Φ 6= 0 (in large samples), then, testing for γ1 = 0 is equivalent to a test of
β1 = 0.

Of course this test will not have any power if Π′ΠΣ′Φ− Π′ΣΠ′Φ = 0 (in large samples).
In large samples this latter condition is:

plim
T→∞

∑T
t=1 π

f2
t

T

∑T
t=1 π

f
t σ

4
t

T
−
∑T

t=1 π
f
t σ

2
t

T

∑T
t=1 π

f2
t σ

2
t

T
= 0.

This could occur if πft and σ2
t are independent and Eπft = 0 in which case

plim
∑
T→∞

πft σ
4
t /T = E

[
πft σ

4
t

]
= Eπft Eσ

4
t = 0

and
plim

∑
T→∞

πft σ
4
t /T = E

[
πft σ

4
t

]
= Eπft Eσ

4
t = 0.
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