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ABSTRACT

This appendix contains additional results on the estimation of structural parameters in life-cycle
models in the face of the age-time-cohort problem. Section 1 gives a more detailed proof of proposi-
tion 1. Section 2 further discusses the relationship between nonlinear least squares and the estimator
in the paper. Section 3 gives details on the derivation of the cross-sectional variance of consumption
in the analytic example in the main paper. Section 4 proves that condition NL holds in the analytic
example.
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1. Detailed proof of proposition 1

Let R = I − a(a′Wa)−1a′W be the matrix that produces residuals from projecting

any vector of length A on a linear trend in a− ā in a generalized least squares regression with

weighting matrix W. Then

q(θ) = c1(θ)a + Rq(θ), (A.1)

where c1(θ) is the slope in the GLS regression of q(a;θ) on a with weighting matrix W and

Rq(θ) is orthogonal to a under the weighting given by W. Similarly, let ĉ2 be the slope in

the GLS regression of α̂a on a and write

α̂ = ĉ2a + Rα̂. (A.2)

Then, for any k and θ,

q(θ)− α̂− ka = Rq(θ)−Rα̂− [k − c1(θ) + ĉ2]a. (A.3)

Because R′Wa = 0, we then have

[q(θ)− α̂− ka]′W[q(θ)− α̂− ka]

= [Rq(θ)−Rα̂]′W[Rq(θ)−Rα̂] + [k − c1(θ) + ĉ2]
2a′Wa. (A.4)

Hence the solution to the minimization problem in equation (3) of the main paper is

θ̂ ∈ arg min
θ∈Θ

[Rq(θ)−Rα̂]′W[Rq(θ)−Rα̂], (A.5a)

k̂ = c1(θ̂)− ĉ2. (A.5b)

Now let M be the first A rows of the Moore-Penrose pseudoinverse of the design matrix of

the regression in step 1, so α̂ = My. Then, as indicated in the main paper, the estimator of

θ∗ can be expressed as

θ̂ ∈ arg min
θ∈Θ

[Rq(θ)−RMy]′W[Rq(θ)−RMy]. (A.6)



We now need to show that there is a function Q0(θ) such that (i) Q0 is uniquely

minimized at θ∗, (ii) Θ is compact, (iii) Q0 is continuous, and (iv) the objective function in

(A.6) converges uniformly in probability to Q0.

Let g(θ,u) be the objective function in (A.6). Under assumption 1,

α̂ = q(θ∗)− k∗a + Mu, (A.7)

where k∗ is an unknown real number determined by the normalization in step 1. Therefore,

RMy = Rα̂ = R[q(θ∗)− k∗a + Mu] = Rq(θ∗) + RMu, (A.8)

where we have used Ra = 0. Hence

g(θ,u) = [Rq(θ)−Rq(θ∗)−RMu]′W[Rq(θ)−Rq(θ∗)−RMu]

= Q0(θ) + [RMu]′W[RMu]− 2[Rq(θ)−Rq(θ∗)]′W[RMu]
(A.9)

where

Q0(θ) = [Rq(θ)−Rq(θ∗)]′W[Rq(θ)−Rq(θ∗)]. (A.10)

Because Θ is compact and q is continuous by assumption 3, q is bounded on Θ. Therefore

there exists a number b <∞ such that, for all a and all θ ∈ Θ, |q(a;θ)− q(a;θ∗)| < b. Let

b be an A× 1 column vector all of whose entries are b. Then

0 ≤ sup
θ∈Θ
|g(θ,u)−Q0(θ)|

= sup
θ∈Θ
|[RMu]′W[RMu]− 2[Rq(θ)−Rq(θ∗)]′W[RMu]|

≤ sup
θ∈Θ
|[RMu]′W[RMu]|+ 2 sup

θ∈Θ
|[Rq(θ)−Rq(θ∗)]′W[RMu]|

= |u′(M′R′WRM)u|+ 2 sup
θ∈Θ
|[q(θ)− q(θ∗)]′R′WRMu|

≤ |u′(M′R′WRM)u|+ 2Ab′|R′WRMu|.

(A.11)

By assumption 2,

|u′(M′R′WRM)u| p→ 0 (A.12)
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and

2Ab′|R′WRMu| p→ 0. (A.13)

Therefore,

sup
θ∈Θ
|g(θ,u)−Q0(θ)| p→ 0 (A.14)

and we have shown that g(θ,u) converges uniformly in probability to Q0(θ), satisfying hy-

pothesis (iv).

Hypotheses (ii) and (iii) are satisfied by assumption 3. It remains to show that θ∗

uniquely minimizes Q0 on Θ. Clearly, Q0(θ
∗) = 0 and Q0 ≥ 0 everywhere. So it is sufficient

to show that Q0(θ) = 0 only if θ = θ∗. Because W is positive definite, Q0(θ) = 0 only if

Rq(θ) −Rq(θ∗) = 0, which in turn is true only if q(θ) − q(θ∗) lies in the null space of R.

The null space of R is a. Hence Q0(θ) = 0 only if q(θ) − q(θ∗) is proportional to a. But

under condition NL, there is no θ ∈ Θ other than θ∗ for which q(θ)−q(θ∗) is proportional to

a. Therefore, θ∗ uniquely minimizes Q0 on Θ. Thus the conditions of Newey and McFadden

(1994), theorem 2.1, are satisfied and θ̂
p→ θ∗. �.

2. Comparison with nonlinear least squares

As indicated in the main paper, an alternative approach would be to estimate θ∗ and

the period and cohort effects simultaneously by nonlinear least squares (NLS) on:

(θ́ ∈ Θ, ξ́0, {β́t}, {γ́c}) ∈ arg min
θ,ξ0,{βt},{γc}

∑
a,t

[ya,t − ξ0 − q(a;θ)− βt − γc]2

s.t.
∑
t

βt =
∑
c

γc = 0. (A.15)

Under assumptions 1 and 2, the true parameters θ∗, ξ∗0 , β
∗
t , γ

∗
c are one (asymptotic) solution

to (A.15). The asymptotic objective function is zero at this solution. Because the asymptotic

objective function is non-negative, it must be zero — and all of the residuals must be zero

— at any asymptotic solution. The solution therefore will be asymptotically unique in terms

of θ́ if and only if there does not exist θ̀ 6= θ∗ such that the residuals are exactly the same

at all a and t whether the objective function is evaluated at θ∗ or at θ̀. In other words, the

solution is asymptotically unique in terms of θ́ if and only if there do not exist θ̀ 6= θ∗ and
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ξ̀0, {β̀t}, {γ̀c} such that

∀a, t q(a; θ̀)− q(a;θ∗) = ξ∗0 − ξ̀0 + β∗t − β̀t + γ∗c − γ̀c. (A.16)

Equation (A.16) implies there is some real number k̄ such that

∀c, t γ̀c = γ∗c + k̄(c− c̄), β̀t = β∗t − k̄(t− t̄). (A.17)

Also, because we have normalized
∑

a q(a;θ) =
∑

t βt =
∑

c γc for all parameter vectors,

(A.16) requires ξ∗0 = ξ̀0. Hence the NLS solution is asymptotically unique in terms of θ́ if

and only if there is no real number k̄ such that

∀a, t q(a; θ̀)− q(a;θ∗) = k̄(a− ā). (A.18)

This is exactly condition NL. Therefore, NLS asymptotically identifies the parameters if

and only if condition NL holds, which is the same situation in which this paper’s method

asymptotically identifies the parameters.

3. Derivation of the consumption function in the analytic example

This section presents additional details on the derivation of the consumption function

and the cross-sectional variance of consumption in the paper’s analytic example.

Krueger (2016, equation 5.46) shows that

Ci,a,c+a = θ−1a
rWi,a,c+a

1 + r
(A.19)

where

θa = 1− 1

(1 + r)A−a+1
, (A.20a)

Wi,a,c+a = xi,a,c+a + yi,a,c+a + Ea,c+a

A−a∑
s=1

yi,a+s,c+a+s
(1 + r)s

, (A.20b)

xi,a,c+a = (1 + r)(xi,a−1,c+a−1 + yi,a−1,c+a−1 − Ci,a−1,c+a−1). (A.20c)
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Using the i.i.d. distribution of income and (1 + r) = ρ−1,

Wi,a,c+a = xi,a,c+a + yi,a,c+a + µ
A−a∑
s=1

ρs = xi,a,c+a + yi,a,c+a + µφa (A.21)

where

φa =
A−a∑
s=1

ρs. (A.22)

Observe that

1 + φa =
A−a∑
s=0

ρs =
1− ρA−a+1

1− ρ
(A.23)

and hence

Ci,a,c+a = (1 + φa)
−1 (xi,a,c+a + yi,a,c+a + µφa) . (A.24)

Substituting (A.24) and (1 + r) = ρ−1 into (A.20c), we have

xi,a+1,c+a+1 = ρ−1[1− (1 + φa)
−1](xi,a,c+a + yi,a,c+a)− ρ−1φa(1 + φa)

−1µ. (A.25)

Observe that

1− (1 + φa)
−1 = 1− 1− ρ

1− ρA−a+1
=
ρ− ρA−a+1

1− ρA−a+1
= ρ

1− ρA−(a+1)+1

1− ρA−a+1
= ρ

1 + φa+1

1 + φa
(A.26)

and that

φa =
1− ρA−a+1

1− ρ
− 1 =

ρ− ρA−a+1

1− ρ
= ρ

1− ρA−(a+1)+1

1− ρ
= ρ(1 + φa+1). (A.27)

Substituting (A.26) and (A.27) into (A.25) gives

xi,a+1,c+a+1 =
1 + φa+1

1 + φa
(xi,a,c+a + yi,a,c+a − µ). (A.28)

Working backwards from (A.28), we have

xi,a,c+a =
1 + φa
1 + φ0

xi,0,c +
a∑
j=1

1 + φa
1 + φa−j

(yi,a−j,c+a−j − µ). (A.29)
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The cross-sectional variance of consumption in cohort c at age a is therefore

Var[Ci,a,c+a|a, c] = (1 + φa)
−2 (Var[xi,a,c+a] + σ2

)
= (1 + φa)

−2

[(
1 + φa
1 + φ0

)2

Var[xi,0,c] +
a∑
j=1

(
1 + φa

1 + φa−j

)2

σ2 + σ2

]

= (1 + φ0)
−2Var[xi,0,c] + σ2

a∑
j=0

[1 + φa−j]
−2

= (1 + φ0)
−2Var[xi,0,c] + σ2

a∑
s=0

[1 + φs]
−2

(A.30)

as claimed in the main paper.

4. Proof that condition NL holds in the analytic example

Using φs = ρ(1 − ρA−s)/(1 − ρ), condition NL requires that the following equations

have a unique solution σ̂2 = σ2, ρ̂ = ρ, k = 0:

σ2

a∑
s=0

(
1 + ρ

1− ρA−s

1− ρ

)−2
= ka+ σ̂2

a∑
s=0

(
1 + ρ̂

1− ρ̂A−s

1− ρ̂

)−2
, a = 0, . . . , A. (A.31)

One obvious solution is σ̂2 = σ2, ρ̂ = ρ, k = 0; we need to prove that there is no other.

Specializing to a = 0, 1, 2, we have

σ2

(
1 + ρ

1− ρA

1− ρ

)−2
= σ̂2

(
1 + ρ̂

1− ρ̂A

1− ρ̂

)−2
(A.32a)

σ2

1∑
s=0

(
1 + ρ

1− ρA−s

1− ρ

)−2
= k + σ̂2

1∑
s=0

(
1 + ρ̂

1− ρ̂A−s

1− ρ̂

)−2
(A.32b)

σ2

2∑
s=0

(
1 + ρ

1− ρA−s

1− ρ

)−2
= 2k + σ̂2

2∑
s=0

(
1 + ρ̂

1− ρ̂A−s

1− ρ̂

)−2
. (A.32c)

Using (A.32a) to substitute for σ̂2 in (A.32b) and (A.32c), then using (A.32b) to eliminate k

and simplifying, we have

(
1− ρA−1

1− ρA+1

)−2
−
(

1− ρA

1− ρA+1

)−2
=

(
1− ρ̂A−1

1− ρ̂A+1

)−2
−
(

1− ρ̂A

1− ρ̂A+1

)−2
. (A.33)
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For ρ̂ ∈ (0, 1), the right-hand side of (A.33) is monotonically increasing in ρ̂; therefore, (A.33)

has a unique solution, ρ̂ = ρ. We then obtain σ̂2 = σ2 from (A.32a) and k = 0 from (A.32b).

Thus, the solution is unique, and condition NL holds.
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