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Online Appendix

A CEX Durable Service Flows

This section follows Meyer and Sullivan (2017)’s data appendix very closely. For simplicity and because
there are a couple of very minor differences with what they do, we describe the computation of service flows
in this section.

Housing Services: For renters, housing consumption is defined as the annual rent they pay. For Homeown-
ers, it is the self-reported rental equivalent for their house. Homeowner housing expenses such as mortgage in-
terest, property tax, maintenance, repairs, insurance and other expenses are substracted from total expenditures
andreplacedbytherentalequivalent.Forrenters inpublichousing(only2.37%ofthesample),weimputearental
valueusingaquantileregressionofthelogrentonanurbanindicator,regionandstatedummies, theSMSAstatus,
number of bathrooms, bedrooms, half bathrooms and rooms, the presence of window or central air conditioning
as well as region specific cubic trends. We impute the predicted 40th quantile of rent based on the house and
geographic characteristics. This is justified by evidence from the PSID mentioned by Meyer and Sullivan (2017).

Vehicle Service Flows: The purchase price of new and used vehicles as well as finance charges are
substracted from expenditures and converted into a service flow. The service flow is computed as δ∗(1−δ)t

∗P
where P is the original purchase price (in real terms) and t is the number of years since the vehicle was bought.
The depreciation rate, δ is estimated by regressing log price of the car on its age at the time of purchase
and make-model-year fixed effects. This regression is ran on a sample of all vehicles for which the purchase
price is reported and which were bought within one year of the interview (this sample includes 172,160
vehicles). The coefficient from this regression is −0.17. It is then converted into a depreciation rate by taking
δ=1−exp(−0.17)=0.156. There is a substantial number of vehicles in the sample for which the purchase price is
not reported. We impute a current market price for these vehicles by running the regression described below on
the same estimation sample as above (sample of cars bought within 12 months of the interview with a reported
purchaseprice).Weruntwoseparateregressions for theyears1980-2002and2003-2016becauseofachange inthe
set of variables available in those years. For years 1980-2002, we regress log purchase price on a cubic in the age
of the vehicle, an indicator for new/used, automatic transmission, power brake, power steers, air conditioning,
diesel, an urban indicator, a quadratic in log total family expenditures, fixed effects for family size, age and
education of the head of household and make-model-year fixed effects. For years, 2003-2016, the independent
variables are: a cubic in the age of the vehicle, an indicator for new/used, an urban indicator, a quadratic in
log total family expenditures, fixed effects for family size, age and education of the head of household and
make-year fixed effects. The coefficients from those regressions are used to predict current market price where
it is missing. The prediction is scaled up by the coefficient of a regression (again in the estimation sample)
,without constant, of the reported purchase price on the predicted price. This is because by Jensen’s inequality
- we ran the regression on log price - the predicted price in levels will tend to be an underestimate.

B Discussion of Inferring Total Consumption IGE

We start with the Engel curves for housing in each generation v:
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proxies for consumption in each generation v∈
{
o,y

}
:
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Let us assume that 0≤ρνν≤1. The fact that ρνν is potentially greater than 0 reflects the fact that the portion
of housing that is not explained by total consumption may be partially correlated over generations (if taste for
housing is hereditary for instance). We rule out data generating processes in whichρ<0 as it seems implausible.
Finally, when estimating the housing Engel curve equations in the CEX data, we obtain an estimate of:
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B.1 Potential OLS bias

Running OLS is impossible in our dataset because we do not have individual linkages across time. For
the sake of intuition, it is however useful to consider the probability limit of the OLS coefficient (in the
intergenerational elasticity of consumption regression) when using housing consumption as a proxy. The
probability limit of the OLS estimator is:
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By definition ofεi being the prediction error in the population regression, cov
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Let us focus on the second term which can be re-arranged as:
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Under the assumption of a stationary distribution of consumption, var
(
co

i

)
=var

(
cy

i

)
and the term is equal to

ρνε
√

1−R2
hc,o

√
R2

hc,o

√
1−R2

cc where R2
cc is the R2 of the regression of cy
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threat to consistency of OLS estimates when using housing as a proxy: there may be a correlation between ν and
ε. For instance, if housing is a vehicle for asset accumulation, families who own and consume a lot of housing
relative to their total consumption (large νo

i ) in 1940 may end up with a larger total consumption in 2015 than
predicted by their 1940 total consumption. Notice however that we use both renters and owners in 1940 and
there is presumably no reason to believe that high ν renters in 1940 would systematically have a larger ε in 2015.
From now on, we assume ρνε=0 but keep in mind that housing as a mechanism of asset accumulation may
generate a bias. As made clear by the expression above, the size of the bias is lower for very large R2

hc,o (housing
is such a strong proxy for total consumption that variance in ν is small).1 Under the assumption that ρνε=0:

βOLS =β
var

(
co

i

)
var

(
c∗oi

) +

1
θo

1

1
θ

y
1
cov

(
νo

i ,ν
y
i

)
var

(
c∗oi

) (B.56)

=β

(
θo

1

)2
var

(
co

i

)
var

(
ho

i

) +ρνν

1
θ

y
1

√
var

(
νo

i

)√
var

(
νy

i

)
1
θo

1
var

(
ho

i

) (B.57)

=βR2
hc,o+ρνν

θo
1

θy
1

√
1−R2

hc,o

√
1−R2

hc,y

√√√√var
(
hy

i

)
var

(
ho

i

) (B.58)

Let us assume that distributions are stationary (and Engel curves are time invariant) so that R2
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This expression has two component. First, the use of a proxy for total consumption leads to attenuation
bias because the proxy is a (classical) error ridden version of the true regressor. The attenuation bias stronger
if the R-squared of the Engel curve regression is lower. Note that R2

hc can be estimated in the CEX data and
one can therefore correct for attenuation bias in OLS. Second, intergenerational correlation in ν - preference
for housing for instance - leads to a bias in the estimate. Using the assumption that 0≤ρνν≤1 we can bound
the size of this second term by 0≤ρνν

(
1−R2

hc

)
≤1−R2

hc. As reported in Appendix Table OA.3, the R2 of the Engel
curve regression in the CEX data ranges from 0.55 to 0.83.

C Placebo and Robustness

In this section, we discuss in more details the placebos shown on table OA.4. Comparing the first and
second columns, we note that whether unadjusted surname-level correlations recover the true family-level
correlations likely hinges on whether the process of intergenerational transmission of consumption is more
intimately linked to race, geography, or human capital. Indeed, the surname-level correlations between
housing consumption and proxies for geography and race are markedly different than the individual-level
correlations. On the other hand, the surname-level correlations with proxies for human capital are of similar
magnitude to the individual-level correlations.

In the last three columns, we show the estimated relationship between each proxy and the log of housing
consumption in 1940 under the three different covariate adjustments presented in section 3 (i.e. race, Census
region, and race by Census region). These placebo tests can be interpreted in two ways. First, it is a test
of the conditions required in Propositions 1 and 3 for consistency of the estimator. The second (related)
interpretation is that the placebo tests act as a "laboratory" for our adjustment: they compare the coefficients

1The bias is also larger when the variance of ε is large relative to consumption - that is when 1940 actual consumption
is not a strong predictor of 2015 consumption.

3



of an individual-level regression with the corresponding last name level regression (after performing our
adjustment). By the analogy principle, if surname- and individual- level estimates are close in the placebos,
we also expect them to be close in the intergenerational regression.

The results from these placebos tests are somewhat mixed. They suggest that, when it comes to studying the
correlation between log of housing consumption and proxies that are very closely related to the covariates in G
(i.e. the covariates included in the adjustment), the adjustment closes the gap between the individual-level and
surname-levelcorrelations.Forinstance,adjustingforracebringsthesurname-levelcorrelationbetweenhispanic
and log housing consumption very close to its individual-level counterpart. Similarly, adjusting for Census
regions greatly reduces the gap in estimated correlation with County Wage (the average wage in one’s county of
residence). On the other hand, the covariate adjustment usually slightly increase the gap between surname-level
and individual-level correlations for measures of human capital. We note however that magnitudes remain
roughly comparable for most proxies of human capital (despite the increased gap). In addition, the unadjusted
surname-level correlations were already very similar to their individual-level counterpart.

Our conclusion from these placebo tests is the following: the best specification (unadjusted versus adjusted)
depends on whether the process of intergenerational transmission of consumption is more intimately linked
to race, geography, or human capital. Since it is difficult to take a firm stand on this issue, we present the
results from all four specifications. Fortunately for the sake of interpretation, the magnitude of the difference in
estimated (one-generation) IGE of consumption is not too large across specifications: it varies from 0.73 to 0.79.

D Surname Group Size

In this section we refer to the intersection of races and regions as “groups" and explore the variation in group
specific housing consumption across surnames. The goal is to get a sense of (i) whether the data contains enough
variation in group specific log housing consumption to consistently estimate the heterogeneous parameters, and
(ii)whethertheanswerto(i)dependsonthesizeofsurnamesincludedinthesample. Inordertodoso,weperform
simulations. The simulations work as follow. First, we draw (with replacement) a sample of size N from the 1940
Census - similar to what we would do for a bootstrap. From this sample, we generate the xy data (log housing
consumption in 2015) by using the following model: xy

i =
∑

g

[
αgDg

i +βg
(
Dg

i x0
i

)]
+ηi for known values of {αg

} and{
βg}.2. Notice that because ηi is drawn independently from αg and βg, the condition required for consistency

in Proposition 3 holds. We generate 200 different split samples and run the surname-level estimation in each of
them. Tables OA.6 and OA.5 report the mean and standard deviation of the estimates across the 200 estimations.

The estimated parameters are all (almost exactly) equal to their “true" value. Estimates are unbiased and
standard errors are small. The simulation exercise suggests that there is enough variation in the data. We
further explore variations in the data by performing the same simulations with restricted samples: one that
contains only last names with less than 50 male heads of household in 1940 (table OA.7) and another sample
containing only last names with more than 50 male heads of households (table OA.8). There is not much of
a difference between table OA.7 and OA.8. The estimates remain unbiased and standard errors are reasonable
albeit slightly larger when restricting the sample to large surnames only.

Online Appendix References

Meyer, B. D. and J. X. Sullivan (2017): “Consumption and Income Inequality in the US Since the 1960s,” Tech.
rep., National Bureau of Economic Research.

2We draw ηi from a normal with mean zero and variance 1.4 (which is equal to the actual variance of log housing
consumption in the 1940 data)
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FigureOA.1
Data Schematic
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FigureOA.2
Motivating SampleRestrictions

(A) Before imposing sample restrictions
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(B) After imposing sample restrictions
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Notes. Panel (A) plots the mean of the individual log wage, as well as the mean of the predicted log wage based on,
respectively, the occupational score, the average county wage, years of education, occupational prestige, and all these
socio-characteristics at once against the percentiles of the distribution of log housing consumption in the 1940 Census
including renters with rent above $81 and homeowners with home value below $100. Panel (B) plots the same mean
outcomes against percentiles of the distribution of log housing consumption after dropping renters with rent above $81
and homeowners with home value below $100.

6



FigureOA.3
2SLS
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Notes. The figure displays binscatters corresponding to two 2SLS specifications (linear and non-linear) for each of two
outcomes: 2015 labor income and 2015 housing value. The linear specification is a simple 2SLS at the surname-level in
which 1940 (surname-) average housing consumption is instrumented with 1940 (surname-) average labor income. The
non-linear specification leverages the share of male heads of households, in each surname, belonging to 100 percentiles
of the 1940 distribution of labor income to instrument for 1940 log housing consumption. The hollowed dots show the
predicted 2015 outcome against the predicted 1940 log housing value for each percentile. The reported coefficient is the
slope of a OLS regression through these 100 dots. All four reported coefficients are slopes of log-log specifications but
units displayed on the x- and y-axes are converted to dollar values for ease of interpretation.
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TableOA.1
Adjusted IGE: Full estimates by race

bg Log Housing Unadjusted Adj. (Region)

E
[
x0

i

]
a b â b̂

Race
8.354 0.462 8.790 0.432White 7.504

(0.010) (0.003) (0.009) (0.003)

9.891 0.167 9.872 0.172Black 6.435
(0.021) (0.011) (0.026) (0.015)

8.478 0.477 8.396 0.529Other 6.767
(0.026) (0.013) (0.019) (0.011)

8.362 0.464 8.979 0.389All 7.407
(0.009) (0.003) (0.009) (0.002)

bg Log Income Unadjusted Adj. (Region)

E
[
x0

i

]
a b â b̂

Race
9.837 0.162 10.239 0.102White 7.005

(0.004) (0.001) (0.004) (0.001)

9.217 0.166 9.677 0.113Black 6.177
(0.014) (0.007) (0.015) (0.008)

9.617 0.177 9.985 0.154Other 6.442
(0.011) (0.006) (0.010) (0.005)

9.784 0.211 10.189 0.145All 6.935
(0.003) (0.001) (0.004) (0.001)

Notes. The upper panel of this table reports the mean log housing consumption in 1940, the intercept and slope from
surname-level regression of log housing consumption on log housing consumption, and the intercept and slope from
the region-adjusted regression, all by race. The lower panel reports the corresponding statistics for income. Standard
errors are block-boostrapped at the surname-level.
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TableOA.2
By surname country of origin vs. immigration

Country N of Count in 1,000s Share Consumption Income

of origin surname 1940 2015 post-1940 Slope S.e. Slope S.e.

Ireland 9,933 7,575 15,578 0.10 0.51 (0.01) 0.49 (0.01)
Germany 48,668 9,919 18,548 0.23 0.42 (0.01) 0.24 (0.02)
Norway 2,585 558 1,070 0.29 0.28 (0.05) 0.14 (0.03)
Sweden 3,891 1,496 2,542 0.31 0.45 (0.07) 0.29 (0.06)
Finland 3,189 116 255 0.32 0.21 (0.02) 0.07 (0.01)
France 18,042 2,881 7,084 0.36 0.39 (0.01) 0.24 (0.01)
Lithuania 1,566 47 121 0.36 0.35 (0.08) 0.09 (0.04)
Denmark 511 608 1,295 0.37 0.56 (0.09) 0.34 (0.07)
Czech 3,868 496 1,019 0.46 0.23 (0.03) 0.08 (0.01)
Austria 445 533 1,019 0.46 0.48 (0.06) 0.33 (0.05)
Hungary 5,648 443 976 0.47 0.23 (0.04) 0.08 (0.02)
Netherlands 15,585 2,076 4,335 0.49 0.37 (0.01) 0.25 (0.01)
Romania 1,031 34 135 0.53 0.32 (0.08) 0.16 (0.05)
Belgium 558 93 168 0.53 0.29 (0.05) 0.27 (0.04)
Poland 25,360 1,208 2,730 0.56 0.19 (0.01) 0.04 (0.01)
Italy 48,309 3,366 9,553 0.62 0.43 (0.01) 0.12 (0.02)
Latvia 370 16 35 0.64 0.06 (0.09) 0.18 (0.05)
Estonia 170 23 41 0.75 0.41 (0.12) 0.11 (0.05)
Portugal 1,354 189 1,078 0.76 0.47 (0.06) 0.24 (0.03)
Greece 8,925 197 639 0.77 0.45 (0.08) 0.08 (0.04)

Notes. Each row of the table describes a subset of surnames whose origin can be traced to one origin country. First three
columns list the number of unique surnames in each subset, and the number of individuals with that surname in 1940
and 2015. The fourth column shows the share of immigration into the US from that origin country that took place after
1940. The last four columns display the surname-level b from equation 2, for average log consumption on average log
consumption (slope and standard error) and for average log income on average log income (slope and standard error).

9



TableOA.3
Housing Engel curves

1960s 1970s 1980s 1990s 2000s 2010s All Decades

Housing Consumption (incl. rent/rent equivalent, utilities, housing services, etc.)

1.027 0.865 0.917 0.909 0.950 0.912 0.925
Slope

(0.012) (0.012) (0.005) (0.004) (0.003) (0.004) (0.002)

R2 0.692 0.626 0.813 0.789 0.819 0.818 0.826

N 13,387 16,930 14,837 31,715 42,476 25,141 144,486

Notes. Results from regressing a measure of housing consumption on total consumption in CEX. All regressions include
year fixed effects and control for age, race, Census region and urban/rural status. The sample includes years 1959-1961,
1972-1973, 1984-2016. Standard errors are robust to heteroskedasticity.
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TableOA.4
Placebo Test - Comparison of individual-level regressions with surname-level regressions

(1) (2) (3) (4) (5)

Race & Ethnicity

White 0.086 0.219 . . .
Black -0.077 -0.159 . . .
Other race -0.009 -0.060 . . .
Hispanic -0.007 -0.055 -0.008 -0.074 -0.009
Foreign 0.054 0.233 0.236 0.078 0.097

Geography

Northeast 0.128 0.341 . . .
Midwest 0.033 0.134 . . .
South -0.174 -0.458 . . .
West 0.013 -0.016 . . .
County Wage 0.261 0.450 0.458 0.311 0.332

Human Capital

Education 1.480 1.353 1.167 2.163 1.896
Occ. Score 4.698 5.266 5.086 5.934 5.693
Occ. Prestige 3.615 3.502 2.761 5.559 4.748
Farmer -0.162 -0.207 -0.231 -0.168 -0.189
Employer 0.011 0.014 0.012 0.021 0.020
Self-employed -0.060 -0.064 -0.080 - 0.034 -0.049
Private Employee 0.066 0.073 0.088 0.036 0.052
Public Employee -0.007 -0.018 -0.015 -0.015 -0.013

Columns:
(1) Individual-level regression
(2) Surname-level regression
(3) Surname-level regression - adjusted for race
(3) Surname-level regression - adjusted for region
(3) Surname-level regression - adjusted for race and region

Notes. Coefficients displayed are from regressing the variable named in the first column on log housing consumption
in 1940 at the individual- and surname level. Columns (3)−(5) contain coefficients corresponding to formula (7) after
estimating race and/or region specific parameters. All last names are weighted by their number of male heads in 1940.
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TableOA.5
Simulations: Estimates versus true parameters (IGE slope)

Region

Northeast Midwest South West All

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Race
0.67 0.67 0.2 0.2 0.245 0.245 0.096 0.096 0.311 0.317

White
. (0.001) . (0.001) . (0.002) . (0.002) . (0.001)

0.071 0.071 -0.093 -0.092 0.206 0.206 0.024 0.023 0.08 0.082
Black

. (0.017) . (0.017) . (0.005) . (0.035) . (0.004)

-0.119 -0.118 0.209 0.209 0.254 0.256 0.497 0.497 0.368 0.368
Other

. (0.019) . (0.011) . (0.009) . (0.005) . (0.004)

0.654 0.655 0.202 0.203 0.247 0.246 0.129 0.13 0.308 0.314
All

. (0.001) . (0.001) . (0.002) . (0.002) . (0.001)
Columns:
(1) True parameter
(2) Between Last Names OLS - adjusted for covariates (standard error in parenthesis)

TableOA.6
Simulations: Estimates versus true parameters (α constant)

Region

Northeast Midwest South West All

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Race
3.248 3.247 5.889 5.889 5.575 5.576 6.583 6.58 5.181 5.133

White
. (0.009) . (0.008) . (0.009) . (0.014) . (0.004)

6.44 6.439 6.037 6.03 5.679 5.679 5.618 5.621 5.789 5.793
Black

. (0.1) . (0.09) . (0.023) . (0.198) . (0.023)

7.942 7.936 5.47 5.47 5.174 5.167 4.713 4.714 5.335 5.351
Other

. (0.117) . (0.051) . (0.04) . (0.023) . (0.023)

3.39 3.377 5.891 5.891 5.59 5.591 6.456 6.45 5.237 5.189
All

. (0.009) . (0.008) . (0.008) . (0.013) . (0.004)
Columns:
(1) True parameter
(2) Between Last Names OLS - adjusted for covariates (standard error in parenthesis)
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TableOA.7
Simulations: Estimates versus true parameters (IGE) - rare names only

Region

Northeast Midwest South West All

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Race
0.67 0.67 0.2 0.2 0.245 0.245 0.096 0.096 0.311 0.343

White
. (0.002) . (0.001) . (0.002) . (0.002) . (0.001)

0.071 0.071 -0.093 -0.092 0.206 0.206 0.024 0.021 0.08 0.095
Black

. (0.016) . (0.016) . (0.005) . (0.038) . (0.004)

-0.119 -0.119 0.209 0.209 0.254 0.254 0.497 0.497 0.368 0.364
Other

. (0.016) . (0.01) . (0.01) . (0.006) . (0.004)

0.654 0.658 0.202 0.203 0.247 0.251 0.129 0.143 0.308 0.341
All

. (0.002) . (0.001) . (0.002) . (0.002) . (0.001)
Columns:
(1) True parameter
(2) Between Last Names OLS - adjusted for covariates (standard error in parenthesis)

TableOA.8
Simulations: Estimates versus true parameters (IGE) - Large names only

Region

Northeast Midwest South West All

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Race
0.67 0.67 0.2 0.2 0.245 0.245 0.096 0.095 0.311 0.31

White
. (0.004) . (0.005) . (0.004) . (0.009) . (0.002)

0.071 0.077 -0.093 -0.09 0.206 0.205 0.024 0.027 0.08 0.081
Black

. (0.079) . (0.067) . (0.018) . (0.212) . (0.014)

-0.119 -0.116 0.209 0.213 0.254 0.253 0.497 0.497 0.368 0.368
Other

. (0.092) . (0.067) . (0.032) . (0.013) . (0.01)

0.654 0.654 0.202 0.202 0.247 0.246 0.129 0.125 0.308 0.307
All

. (0.004) . (0.005) . (0.004) . (0.009) . (0.002)
Columns:
(1) True parameter
(2) Between Last Names OLS - adjusted for covariates (standard error in parenthesis)
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