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Abstract

The deflation protection option embedded in Treasury inflation-protected securities

(TIPS) has received limited attention in the literature. However, since the financial crisis

of 2008-2009, elevated spreads of seemingly identical TIPS bonds distinguished only by

their issuance date suggest that the value of this deflation protection has been sizable.

We use an arbitrage-free, Nelson-Siegel term structure model with spanned stochastic

volatility to determine the value of this deflation option. The model accurately prices

the deflation protection option prior to the financial crisis when its value was near zero

and during the peak of the crisis in late 2008 when deflationary concerns spiked sharply.

During 2009, the average value of this option was 41 basis points.
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1 Introduction

The U.S. Treasury first issued inflation-indexed bonds, which are now commonly known as

Treasury inflation-protected securities (TIPS), in 1997. TIPS bonds provide inflation protec-

tion since their coupons and principal payments are indexed to the headline Consumer Price

Index (CPI) produced by the Bureau of Labor Statistics.1 In addition, TIPS bonds provide

some protection against price deflation since their principal payments are not permitted to

decrease below their original par value.

This deflation protection option has received limited attention in the literature, most likely

since it has not been of much value in the U.S. inflationary environment since 1997. However,

the sharp drops in price indexes during the financial crisis that started in the fall of 2008

increased deflationary concerns markedly, thus providing further motivation for examining

the value of this protection. For example, Christensen et al. (2011a) provide evidence that

one-year-ahead deflation probabilities extracted from Treasury yields spiked shortly after the

Lehman bankruptcy in September 2008 and remained above 5% until April 2010. Two recent

papers have used different arbitrage-free term structure models to examine the values of

these deflation protection options. Grishchenko et al. (2010) use a Gaussian affine model

whose two factors are nominal Treasury rates and the inflation rate observed at the monthly

frequency. They found that the option value is close to zero for most months, except for the

deflationary periods observed in 2003-2004 and in 2008-2009. They calculate the maximum

observed option value in December 2008 to be roughly 45 cents for every $100 in TIPS bond

par value (or 45 basis points).

Christensen et al. (2011a) use a “yields-only” approach based on the arbitrage-free Nelson-

Siegel (AFNS) model developed by Christensen et al. (CLR, 2010) to value these deflation

protection options. That model uses four factors to capture the joint dynamics of the nominal

and real Treasury yield curves. The first three factors can be characterized as the level, slope,

and curvature of the nominal yield curve, while the fourth factor can be characterized as

the level of the real yield curve. As shown in Figure 1, the authors find that the option

value, measured as the spread between two TIPS bonds of similar remaining maturity but

of differing vintages, reached a maximum of almost 80 basis points in December 2008 for

TIPS bonds maturing in 2013. While the model-implied option value is highly correlated

with the observed TIPS spread chosen as a proxy for the deflation option value, the implied

values are mainly lower than the observed values. The authors suggest that this shortcoming

1The actual indexation has a lag structure since the Bureau of Labor Statistics publishes price index values
with a one-month lag; i.e., the index for a given month is released in the middle of the subsequent month. The
reference CPI is thus set to be a weighted average of the CPI for the second and third months prior to the
month of maturity. See Gürkaynak et al. (2010) for a detailed discussion as well as Campbell et al. (2009) for
an overview of inflation-indexed bonds.
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could be addressed by incorporating stochastic volatility into the model in the hope of better

characterizing the lower tail of their model-implied distribution of inflation outcomes.

An example of such a model is developed by Christensen et al. (2011b), who intro-

duce a class of AFNS models of nominal Treasury yields that incorporate spanned stochastic

volatility; that is, the factors driving the model’s volatility dynamics are the same factors as

those that drive the conditional mean dynamics. This class of models is shown to retain the

properties of good in-sample fit and out-of-sample forecasting performance exhibited by the

AFNS model with constant volatility, but in addition, the extended model’s fitted stochastic

volatility series are found to capture well the data’s volatility dynamics.

In this paper, we extend the CLR (2010) model of the nominal and real Treasury yield

curves to incorporate spanned stochastic volatility. In particular, the volatility dynamics are

specified to be driven by the nominal and real level factors in the model. Using the same

Treasury yield data, the AFNS-stochastic volatility (sv) model exhibits similar in-sample fit

and out-of-sample forecast performance relative to the AFNS-constant volatility (cv) model.

In contrast, the two models’ transformations of their conditional mean specifications into

such objects of interest as five-year inflation expectations and inflation risk premiums ex-

hibit similar dynamics, but different levels. More importantly for valuing the TIPS deflation

protection option, the models exhibit important differences related to the transformations of

their conditional volatility dynamics into conditional distributions of headline CPI changes.

In particular, the one-year deflation probability forecasts generated by the AFNS-sv model

are generally higher than those generated by the AFNS-cv model. As might be expected, the

differing deflation probabilities lead to important differences in the model-implied values of

the TIPS deflation protection option. As shown in Figure 1, the AFNS-sv model generates a

yield spread that more directly captures the observed spread in the last few months of 2008

and into 2009. In fact, while both sets of model-implied spreads have correlations of nearly

0.94 with the observed spread, the AFNS-sv model has a root-mean squared error over 2009

of 9.5 basis points as compared to 28.7 basis points for the AFNS-cv volatility model. These

results suggest that the AFNS-sv model is well equipped to measure and price deflation risk

within the Treasury market, and thus should be well equipped to price the inflation derivatives

increasingly being traded in the United States.2

The paper is structured as follows. Section 2 presents the AFNS models with constant

volatility as developed by CLR (2010) as well as the specification of the AFNS-sv model

used for this study. Section 3 presents the model estimation results and diagnostics. Section

4 presents our proposed methodology for deriving the model-implied value of the deflation

protection option as well as the empirical results for the two models. This section also reports

2See Christensen and Gillan (2011) for further discussion of U.S. inflation swaps and related liquidity issues.
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Figure 1: Yield Spread of pair of 2013 TIPS.

Illustration of the spread in the yield-to-maturity as reported by Bloomberg between the seasoned

ten-year TIPS that matures on July 15, 2013 and the newly issued five-year TIPS that matures on

April 15, 2013. Included are the model-implied five-year par-coupon yield spreads from the AFNS-cv

model and the AFNS-sv model introduced in this paper.

a set of alternative model estimations presented as robustness checks. Section 5 concludes and

presents directions for future research. The appendices contain additional technical details

and calculations of interest.

2 AFNS Models of Nominal and Real Treasury Yield Curves

2.1 Deriving Market-Implied Inflation Expectations and Risk Premiums

We start with a review of how an arbitrage-free term structure model can decompose the

difference between nominal and real Treasury yields, also known as the breakeven inflation

(BEI) rate, into the sum of inflation expectations and an inflation risk premium. Define the

nominal and real stochastic discount factors, denoted MN
t and MR

t , respectively. The no-

arbitrage condition enforces a consistency of pricing for any security over time. Specifically,

the price of a nominal bond that pays one dollar at time τ and the price of a real bond that
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pays one unit of the defined consumption basket at time τ must satisfy the conditions that

PNt (τ) = EPt

[
MN
t+τ

MN
t

]
and PRt (τ) = EPt

[
MR
t+τ

MR
t

]
,

where PNt (τ) and PRt (τ) are the observed prices of the zero-coupon, nominal and real bonds

for maturity τ on day t. and EPt [.] is the conditional expectations operator under the real-

world (or P−) probability measure. The no-arbitrage condition also requires a consistency

between the prices of real and nominal bonds such that the price of the consumption basket,

denoted as the overall price level Πt, is the ratio of the nominal and real stochastic discount

factors:

Πt =
MR
t

MN
t

.

We assume that the nominal and real stochastic discount factors have the standard dy-

namics given by

dMN
t /M

N
t = −rNt dt− Γ′

tdW
P
t ,

dMR
t /M

R
t = −rRt dt− Γ′

tdW
P
t .

where rNt and rRt are the instantaneous, risk-free nominal and real yields, respectively. Γt is

a standard expression for the error covariance. By Ito’s lemma, the dynamic evolution of Πt

is given by

dΠt = (rNt − rRt )Πtdt.

Thus, with the absence of arbitrage, the instantaneous growth rate of the price level is equal

to the difference between the instantaneous nominal and real risk-free rates. (Note that there

is no risk premium for the instantaneous rates, and the Fisher equation applies.) Correspond-

ingly, we can express the price level at time t+τ can be expressed as

Πt+τ = Πte
∫ t+τ
t

(rNs −rRs )ds.

The relationship between the yields and inflation expectations can be expressed as follows.
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The price of the nominal bond can be decomposed as

PNt (τ) = EPt

[
MN
t+τ

MN
t

]

= EPt

[
MR
t+τ/Πt+τ

MR
t /Πt

]
= EPt

[
MR
t+τ

MR
t

Πt
Πt+τ

]

= EPt

[
MR
t+τ

MR
t

]
× EPt

[
Πt

Πt+τ

]
+ covPt

[
MR
t+τ

MR
t

,
Πt

Πt+τ

]

= PRt (τ)× EPt

[
Πt

Πt+τ

]
×
(
1 +

covPt

[
MR
t+τ

MR
t

, Πt
Πt+τ

]

EPt

[
MR
t+τ

MR
t

]
× EPt

[
Πt

Πt+τ

]
)
.

Converting this price into a yield-to-maturity, we obtain

yNt (τ) = yRt (τ) + πet (τ) + φt(τ), (1)

Converting this price into a yield-to-maturity as

yN (τ) = −1

τ
lnEPt

[
N
t+τ
N
t

]
, (2)

we obtain

yNt (τ) = yRt (τ) + πet (τ) + φt(τ), (3)

where the market-implied rate of inflation expected at time t for the period from t to t+ τ is

πet (τ) = −1

τ
lnEPt

[
Πt

Πt+τ

]
= −1

τ
lnEPt

[
e−

∫ t+τ
t

(rNs −rRs )ds
]
. (4)

The φt(τ) term is the expression for the inflation risk premium. In this notation, the BEI

rate is

BEIt(τ) ≡ yNt (τ)− yRt (τ) = πet (τ) + φt(τ). (5)

2.2 Affine Term Structure Models

Given this theoretical framework, we briefly summarize the original AFNS model of nominal

and real yields with constant volatility developed by CLR (2010) and introduce the extended

version with stochastic yield volatility presented in full detail in CLR (2011b).
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2.2.1 The AFNS Model with Constant Volatility

The joint four-factor model of nominal and real yields is a direct extension of the three-factor

model developed by Christenesen, Diebold and Rudebusch (CDR, 2010) for nominal yields.

In the CLR model, the state vector is denoted by Xt = (LNt , St, Ct, L
R
t ), where L

N
t is the level

factor for nominal yields, St is the common slope factor, Ct is the common curvature factor,

and LRt is the level factor for real yields. The instantaneous nominal and real risk-free rates

are defined as:

rNt = LNt + St,

rRt = LRt + αRSt.

Note that the differential scaling of the real rates to the common slope factor is captured by

the parameter αR.

To preserve the Nelson-Siegel factor loading structure in the yield functions, the risk-

neutral (or Q-) dynamics of the state variables are given by the stochastic differential equa-

tions: 


dLNt

dSt

dCt

dLRt




=




0 0 0 0

0 −λ λ 0

0 0 −λ 0

0 0 0 0







LNt

St

Ct

LRt



dt+Σ




dWLN ,Q
t

dW S,Q
t

dWC,Q
t

dWLR,Q
t



,

where Σ is the constant covariance (or volatility) matrix.3 Based on this specification of

the Q-dynamics, nominal Treasury zero-coupon bond yields preserve the Nelson-Siegel factor

loading structure as

yNt (τ) = LNt +

(
1− e−λτ

λτ

)
St +

(
1− e−λτ

λτ
− e−λτ

)
Ct +

AN (τ)

τ
,

where AN (τ) is a maturity-dependent yield adjustment term. Similarly, real TIPS zero-

coupon bond yields have a Nelson-Siegel factor loading structure expressed as

yRt (τ) = LRt + αR
(
1− e−λτ

λτ

)
St + αR

(
1− e−λτ

λτ
− e−λτ

)
Ct +

AR(τ)

τ
.

Note that AR(τ) is another maturity-dependent yield adjustment term. These two equations

when combined in state-space form constitute the measurement equation needed for Kalman

filter estimation.

To complete the model, we define the price of risk, which links the risk-neutral and real-

3As per CDR (2010), Σ is a diagonal matrix, and θQ is set to zero without loss of generality.
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world yield dynamics, using the essentially affine risk premium specification introduced by

Duffee (2002). The real-world dynamics of the state variables are then expressed as

dXt = KP (θP −Xt)dt+ΣdWP
t , (6)

which in its most general form can be written as




dLNt

dSt

dCt

dLRt




=




κP11 κP12 κP13 κP14

κP21 κP22 κP23 κP24

κP31 κP32 κP33 κP34

κP41 κP42 κP43 κP44










θP1

θP2

θP3

θP4




−




LNt

St

Ct

LRt






dt+Σ




dWP,LN

t

dWP,S
t

dWP,C
t

dWP,LR

t



.

This is the transition equation used in the Kalman filter estimation.

2.3 The AFNS Model with Stochastic Volatility

Financial time series, such as interest rates and bond yields, have been shown to have time-

varying volatility, which is a feature not often incorporated into arbitrage-free term structure

models; see Andersen and Benzoni (2006) for further discussion. To address this concern,

CLR (2011b) develop a general class of AFNS models that incorporate spanned stochastic

volatility according to two criteria:

(i). The time-varying volatility matrix Σ(Xt) incorporates at least one stochastic volatility

factor.

(ii). The AFNS-stochastic volatility (sv) model preserves as much of the Nelson-Siegel factor

structure as possible to preserve the conditional mean properties of the AFNS-constant

volatility (cv) model.

To distinguish between the various types of models that fit within the general AFNS-sv class,

we use notation outlined in Dai and Singleton (2000), such that the AFNS-cv model is within

the A0(4) class of models which has no volatility dynamics. As detailed in CLR (2011b), there

are several possible volatility specifications within their three-factor framework, and clearly,

the introduction of the fourth factor within the CLR (2010) generates an even larger set of

specifications.

For this paper, we chose an A2(4) volatility specification that incorporates stochastic

volatility based on the nominal and real level factors. This specification choice was motivated

by a desire to focus on the longer maturity TIPS yields in our sample. The yields in the five-

to ten-year maturity range should provide the greatest opportunity to examine the value of
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the deflation protection option. In addition, the use of the individual factors for driving their

own volatility dynamics greatly simplifies the model estimations and analysis.

For the AFNS-sv model, the state vector and instantaneous risk-free rates are the same

as before. To preserve the Nelson-Siegel factor loading structure and impose our volatility

specification, the Q-dynamics of the state variables are given by




dLNt

dSt

dCt

dLRt




=




κQ
LN

0 0 0

0 λ −λ 0

0 0 λ 0

0 0 0 κQ
LR










θQ
LN

0

0

θQ
LR




−




LNt

St

Ct

LRt






dt

+




σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44







√
LNt 0 0 0

0
√
1 0 0

0 0
√
1 0

0 0 0
√
LRt







dWLN ,Q
t

dW S,Q
t

dWC,Q
t

dWLR,Q
t



,

where κQ
LN

and κQ
LR

are constants needed to bound the volatility dynamics above zero.

The representation of the nominal zero-coupon bond yield function becomes

yNt (τ) = gN
(
κQ
LN

)
LNt +

(
1− e−λτ

λτ

)
St +

(
1− e−λτ

λτ
− e−λτ

)
Ct +

AN

(
τ, κQ

LN

)

τ
,

where gN
(
κQ
LN

)
is a modified loading on the nominal level factor. Note that the slope and the

curvature factor preserve their Nelson-Siegel factor loadings exactly, although the structure

of the yield adjustment term AN
(
τ, κQ

LN

)
is different than before. Correspondingly, the real

zero-coupon bond yield function is now

yRt (τ) = gR
(
κQ
LR

)
LRt + αR

(
1− e−λτ

λτ

)
St + αR

(
1− e−λτ

λτ
− e−λτ

)
Ct +

AR(τ, κQ
LR

)

τ
,

where gR
(
κQ
LR

)
is a modified loading on the real level factor and AR

(
τ, κQ

LR

)
is a modified

yield adjustment term.4

To link the risk-neutral and real-world dynamics of the state variables, we use the extended

affine risk premium specification introduced by Cheridito et al. (2007), as suggested by CLR

4Note that in our estimation, we fix κQ
LN

= κQ
LR

= 10−7 without loss of generality.
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(2011b). The maximally flexible affine specification of the P -dynamics is thus




dLNt

dSt

dCt

dLRt




=




κP11 0 0 κP14

κP21 κP22 κP23 κP24

κP31 κP32 κP33 κP34

κP41 0 0 κP44










θP1

θP2

θP3

θP4




−




LNt

St

Ct

LRt






dt

+




σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44







√
LNt 0 0 0

0
√
1 0 0

0 0
√
1 0

0 0 0
√
LRt







dWLN ,P
t

dW S,P
t

dWC,P
t

dWLR,P
t



.

To keep the model arbitrage-free, the two level factors must be prevented from hitting the

lower zero-boundary. This positivity requirement is ensured by imposing the Feller conditions

under both probability measures, i.e.,

κP11θ
P
1 + κP14θ

P
4 >

1

2
σ211 and 10−7 · θQ

LN
>

1

2
σ211,

and

κP41θ
P
1 + κP44θ

P
4 >

1

2
σ244 and 10−7 · θQ

LR
>

1

2
σ244.

Furthermore, to have well-defined processes for LNt and LRt , the sign of the effect that these

two factors have on each other must be positive, which requires the restrictions that

κP14 ≤ 0 and κP41 ≤ 0.

These conditions ensure that the two square-root processes will be non-negatively correlated.

As discussed in the estimation section below, certain of the Feller conditions turn out to be

binding. In the robustness section, we present the results for model estimation with a looser

set of restrictions, but as will be discussed, this approach generates values for the deflation

protection option that do not match the observable data well.

The model estimation technique used in prior AFNS studies was the Kalman filter; that

is, nominal and real zero-coupon yields are affine functions of the state variables such that

yt(τ) = −1

τ
B(τ)′Xt −

1

τ
A(τ) + εt(τ),
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where εt(τ) are assumed to be i.i.d. Gaussian errors. The conditional mean for multi-

dimensional affine diffusion processes is given by

EP [XT |Xt] = (I − exp(−KP (T − t)))θP + exp(−KP (T − t))Xt, (7)

where exp(−KP (T−t)) is a matrix exponential. In general, the conditional covariance matrix

for affine diffusion processes is given by

V P [XT |Xt] =

∫ T

t

exp(−KP (T − s))ΣD(EP [Xs|Xt])D(EP [Xs|Xt])
′Σ′ exp(−(KP )′(T − s))ds. (8)

Stationarity of the system under the P -measure is ensured if the real components of all the

eigenvalues of KP are positive, and this condition is imposed in all estimations. For this

reason, we can start the Kalman filter at the unconditional mean and covariance matrix.5

However, the introduction of stochastic volatility implies that the factors are no longer

Gaussian as in the AFNS-cv model since their variances are now dependent on the path of the

state variables. For tractability, we chose to approximate the true probability distribution of

the state variables using the first and second moments described above and use the Kalman

filter algorithm as if the state variables were Gaussian.6 The state equation is given by

Xt = (I − exp(−KP∆t))θP + exp(−KP∆t)Xt−1 + ηt, ηt ∼ N(0, Vt−1),

where ∆t is the time between observations and Vt−1 is the conditional covariance matrix given

in Equation (8).7 In the Kalman filter estimations, the error structure is given by

(
ηt

εt

)
∼ N

[(
0

0

)
,

(
Vt−1 0

0 H

)]
,

where H is assumed to be a diagonal matrix of the measurement error standard deviations,

σε(τi), that are specific to each yield maturity in the data set. Furthermore, the discretization

can cause the square-root processes to become negative despite the fact that the parameter

sets are forced to satisfy Feller conditions and other non-negativity restrictions. Whenever

5In the estimation, we calculate the conditional and unconditional covariance matrices using the analytical
solutions provided in Fisher and Gilles (1996), unlike in the earlier studies by CLR (2010, 2011a).

6A few notable examples of papers that follow this approach include Duffee (1999), Driessen (2005), and
Feldhütter and Lando (2008). An unreported simulation study shows that the added bias from using the
Kalman filter in estimating AFNS models with stochastic volatility generated solely through the level factor,
which is a comparable case for the approach in this paper, is modest for the parameters in the KP matrix.

7For the first eight years without TIPS yields in the sample, e−K
P∆t, (1 − e−K

P∆t)θP , and the condi-

tional covariance matrix
∫ t+τ

t
e−K

P (t+τ−s)ΣD(EP [Xs|Xt])D(EP [Xs|Xt])
′Σ′e−(KP )′(t+τ−s)ds are calculated

using the upper 3× 3 part of KP and the upper 3× 1 part of θP .

10



this happens, we follow the literature and simply truncate those processes at zero; see Duffee

(1999) for an example.

2.4 Deflation Probabilities Within the AFNS-sv Model

CLR (2011a) use the AFNS-cv model to generate deflation probabilities at various horizons

appropriate for macroeconomic and monetary policy purposes. Similarly, the AFNS-sv model

can be used to calculate deflation probabilities, although additional steps are necessary; see

CLR (2011b) for a more complete description.

The change in the price index implied by the model’s “yields-only” approach for the period

from t to t+ τ is given by
Πt+τ
Πt

= e
∫ t+τ
t

(rNs −rRs )ds.

To determine whether the change in the price index may be below a critical level q, we are

interested in the states of the probability of

Πt+τ
Πt

≤ 1 + q,

or, equivalently,

Yt,τ =

∫ t+τ

t

(rNs − rRs )ds ≤ ln(1 + q).

Given that rNt = LNt + St and rRt = LRt + αRSt, we are interested in the distributional

properties of the process

Y0,t =

∫ t

0
(rNs −rRs )ds =

∫ t

0
(LNs +Ss−LRs −αRSs)ds ⇒ dY0,t = (LNt +(1−αR)St−LRt )dt.

This process is then introduced into the system of equations containing the P -dynamics of

the state variables Xt.

Due to the introduction of stochastic volatility into the two level factors, this is a system

of equations no longer has non-Gaussian state variables. As a consequence, we must use

the Fourier transform analysis described in full generality for affine models in Duffie, Pan,

and Singleton (2000), as opposed to the approach detailed in CLR (2011a) for the AFNS-cv

model. The intuition of this approach is to express expectations of contingent payments in a

tractable, mathematical form. By simplifying these expectations to indicator variables such

as 1(Yt,τ≤ln(1+q)), event probabilities are readily generated.

11



3 Estimation of the AFNS Models

3.1 Data

In this paper, the nominal Treasury bond yields used are the zero-coupon yields constructed

as in Gürkaynak et al. (2007).8 These yields are constructed by fitting a zero-coupon yield

curve of the Svensson (1995)-type to a large pool of underlying off-the-run Treasury bonds.

As demonstrated by Gürkaynak et al. (2007), the model fits the underlying pool of bonds

extremely well. By implication, the zero-coupon yields derived from this approach constitute

a very good approximation to the true underlying Treasury zero-coupon yield curve. From

this dataset, we use eight Treasury zero-coupon bond yields with maturities of 3-months,

6-months, 1-year, 2-years, 3-years, 5-years, 7-years, and 10-years. We use weekly Friday

data and limit our sample to the period from January 6, 1995 to December 31, 2009, which

provides us with 783 weekly observations. Similarly for the real Treasury yields, we use the

zero-coupon bond yields constructed with the same method as detailed by Gürkaynak et al.

(2010).9 The data is available from January 1999, but due to weak liquidity in the first

years of trading, we follow CLR (2010) and limit our sample to the period since 2003. We

have weekly real Treasury yields from January 2, 2003 to December 31, 2009, a total of 366

observations. Since our focus is on the long-term real yields, we use the six yearly maturities

from five- to ten-years.

3.2 Estimation Results

To select the best fitting specifications of the AFNS models’ real-world dynamics, we use

a general-to-specific modeling strategy that restricts the least significant parameter in the

estimation to zero and then re-estimates the model. This strategy of eliminating the least

significant coefficients is carried out up to the most parsimonious specification, which has a

diagonal KP matrix. The final specification choice is based on the values of the Akaike and

Bayes information criteria as per CLR (2010).10 .

For the AFNS-cv model, the summary statistics of the model selection process are reported

in Table 1. Both information criteria are minimized by specification (9), which has a KP

8The Board of Governors of the Federal Reserve frequently updates the factors
and parameters of this method. The output is publicly available on its website at
www.federalreserve.gov/econresdata/researchdata/feds2006281.html.

9This dataset is also maintained on the website of the Board of Governors of the Federal Reserve System.
The webpage is www.federalreserve.gov/econresdata/researchdata/feds2008051.html.

10See Harvey (1989) for further details
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Alternative Goodness-of-fit statistics
specifications Max logL k p-value AIC BIC

(1) Unrestricted KP 48,263.09 40 n.a. -96,446.18 -96,259.65
(2) κP24 = 0 48,263.09 39 1.0000 -96,448.18 -96,266.32
(3) κP24 = κP43 = 0 48,263.08 38 0.8875 -96,450.16 -96,272.96
(4) κP24 = κP43 = κP32 = 0 48,262.87 37 0.5169 -96,451.74 -96,279.20
(5) κP24 = . . . = κP12 = 0 48,262.47 36 0.3711 -96,452.94 -96,285.07
(6) κP24 = . . . = κP13 = 0 48,262.44 35 0.8065 -96,454.88 -96,291.67
(7) κP24 = . . . = κP31 = 0 48,262.12 34 0.4237 -96,456.24 -96,297.69
(8) κP24 = . . . = κP34 = 0 48,261.68 33 0.3482 -96,457.36 -96,303.48
(9) κP24 = . . . = κP14 = 0 48,261.32 32 0.3961 -96,458.64 -96,309.42

(10) κP24 = . . . = κP21 = 0 48,254.02 31 0.0001 -96,446.04 -96,301.48
(11) κP24 = . . . = κP42 = 0 48,248.22 30 0.0007 -96,436.44 -96,296.55
(12) κP24 = . . . = κP41 = 0 48,240.17 29 0.0001 -96,422.34 -96,287.11
(13) κP24 = . . . = κP23 = 0 48,220.82 28 < 0.0001 -96,385.64 -96,255.07

Table 1: Evaluation of Alternative Specifications of the AFNS-cv Model.
Thirteen alternative estimated specifications of the AFNS-cv model of nominal and real Treasury

bond yields are evaluated. Each specification is listed with its maximum log likelihood (Max logL),

number of parameters (k), the p-value from a likelihood ratio test of the hypothesis that the

specification differs from the one directly above that has one more free parameter. The information

criteria (AIC and BIC) are also reported, and their minimum values are given in boldface.

matrix specified as

KP =




κP11 0 0 0

κP21 κP22 κP23 0

0 0 κP33 0

κP41 κP42 0 κP44



.

Table 2 contains the estimated parameters for this specification. All the off-diagonal elements

are highly significant and consistent with the empirical results reported in CLR (2010).11 In

terms of dynamic properties, the nominal level factor is a persistent, slowly varying process

not affected by any of the other factors. The common curvature factor is also unaffected by

the other factors, but is much less persistent and more volatile. The common slope factor is

in between these two extremes as it is less persistent than the nominal level factor and less

volatile than the curvature factor. Finally, the real level factor is less persistent likely due to

the shorter sample of real yields.

Turning to the chosen specification of the AFNS-sv model, Table 3 contains the summary

statistics of the model selection. For reasons of parsimony and in light of the relatively weak

11The primary difference with the specification favored by CLR (2010) is that the κP14 parameter is set to
zero. Note that this difference also holds relative to the specification favored in CLR (2011a), which was
estimated on daily yield curve data.
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 0.3271 0 0 0 0.0636 Σ1,1 0.0058

(0.2546) (0.0048) (0.0002)
KP

2,· 1.3056 0.7437 -0.8656 0 -0.0297 Σ2,2 0.0086

(0.4772) (0.1711) (0.1172) (0.0170) (0.0002)
KP

3,· 0 0 0.7057 0 -0.0171 Σ3,3 0.0299

(0.3167) (0.0107) (0.0006)
KP

4,· -4.0695 -0.6271 0 2.9894 0.0373 Σ4,4 0.0069

(0.5750) (0.2050) (0.3784) (0.0051) (0.0001)

Table 2: Parameter Estimates for the Preferred AFNS-cv Model.

The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix are shown for the

specification of the AFNS-cv model preferred according to both AIC and BIC information criteria.

The estimated value of λ is 0.5146 (0.0040), while αR is estimated to be 0.5446 (0.0060). The numbers

in parentheses are the estimated parameter standard deviations. The maximum log likelihood value

is 48,261.32.

Alternative Goodness-of-fit statistics
specifications Max logL k p-value AIC BIC

(1) Unrestricted KP 50,238.90 38 n.a. -100,401.8 -100,224.6
(2) κP31 = 0 50,238.82 37 0.6892 -100,403.6 -100,231.1
(3) κP31 = κP32 = 0 50,238.64 36 0.5485 -100,405.3 -100,237.4
(4) κP31 = κP32 = κP24 = 0 50,238.60 35 0.7773 -100,407.2 -100,244.0
(5) κP31 = . . . = κP34 = 0 50,238.20 34 0.3711 -100,408.4 -100,249.9
(6) κP31 = . . . = κP41 = 0 50,237.75 33 0.3428 -100,409.5 -100,255.6
(7) κP31 = . . . = κP21 = 0 50,236.24 32 0.0812 -100,408.5 -100,259.2

(8) κP31 = . . . = κP14 = 0 50,224.58 31 < 0.0001 -100,387.2 -100,242.6
(9) κP31 = . . . = κP23 = 0 50,216.57 30 0.0001 -100,373.1 -100,233.2

Table 3: Evaluation of Alternative Specifications of the AFNS-sv Model With Feller
Conditions Imposed.
Seven alternative estimated specifications of the AFNS s.v. model with Feller conditions imposed are

evaluated. Each specification is listed with its log likelihood (Max logL), number of parameters (k),

the p-value from a likelihood ratio test of the hypothesis that the specification differs from the one

directly above that has one more free parameter. The information criteria (AIC and BIC) are also

reported, and their minimum values are given in boldface.

significance of the marginal parameter κP21, we choose to focus on the specification preferred

according to BIC with a mean-reversion matrix given by

KP
BIC =




κP11 0 0 κP14

0 κP22 κP23 0

0 0 κP33 0

0 0 0 κP44



.
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 2.9705 0 0 -2.1861 0.0451 Σ1,1 0.0653

(0.5961) (0.8249) (0.0027) (0.0005)
KP

2,· 0 0.6574 -0.7244 0 -0.0088 Σ2,2 0.0131

(0.2543) (0.1959) (0.0163) (0.0004)
KP

3,· 0 0 0.8698 0 -0.0026 Σ3,3 0.0304

(0.3340) (0.0101) (0.0007)
KP

4,· 0 0 0 0.2428 0.0277 Σ4,4 0.0597

(0.1816) (0.0071) (0.0009)

Table 4: Parameter Estimates for the Specification of the AFNS-sv Model with

Feller Conditions Imposed Preferred According to BIC.

The estimated parameters of the KP -matrix, the θP -vector, and the Σ-matrix for the preferred speci-

fication of the AFNS s.v. model of nominal and real yields with Feller conditions imposed according to

BIC. The Q-related parameters are estimated at: λ = 0.6179 (0.0027), αR = 0.3803 (0.0080), θQ
LN

=

33,103 (14.43), and θQ
LR

= 17,844 (43.90). The numbers in parentheses are the estimated standard

deviations of the parameter estimates. The maximum log likelihood value is 50,236.24.

The estimated parameters for this preferred specification are reported in Table 4.12 Relative

to the results from the AFNS-cv model, κP21 and κP41 are not significant, but κP14 is now highly

statistically significant. Its negative sign shows that the nominal and real level factors are

positively correlated, which is consistent with the statistical properties of the estimated level

factor paths. However, interestingly, it is the real yield level factor that affects the nominal

level factor, and not the other way around.

Table 5 contains summary statistics for the fitted errors from both models. For the nominal

yields, the AFNS-cv model fits the very short end of the nominal yield curve relatively better

than the longer maturities in the one- to ten-year maturity range. In contrast, the AFNS-sv

model provides a better in-sample fit in the one- to ten-year maturity range. For the real

yields, the AFNS-sv model provides a significant overall improvement in model fit relative to

the AFNS-cv model.

3.3 Diagnostics: Inflation Expectations and Risk Premiums

A key property of these joint AFNS models of nominal and real yields is decompose BEI rates

into inflation expectations and inflation risk premiums for further analysis. To conduct this

analysis, we generate out-of-sample forecasts based on a rolling model estimation procedure.

We construct 4-, 26-, and 52-week-ahead forecasts from each model for the eight nominal

Treasury yield maturities and six TIPS yield maturities. We use a recursive procedure that

12Analysis reveals that the Feller condition pertaining to the real yield level factor, LRt , under the Q-measure
is systematically binding. Unreported results show that the three other Feller conditions are never binding
independent of the specification of the mean-reversion matrix KP . Thus, it is mainly the Q-dynamics of LRt
that is impacted by the imposition of the Feller conditions, most notably σ44 as is discussed in a later section.
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Maturity AFNS s.v. model

in months
AFNS c.v. model

Feller conditions No Feller conditions

Nom. yields Mean RMSE σ̂ε(τi) Mean RMSE σ̂ε(τi) Mean RMSE σ̂ε(τi)

3 -0.57 9.78 9.76 1.38 19.68 19.69 0.95 19.66 19.66
6 0.00 0.00 0.00 0.12 8.39 8.39 -0.11 8.39 8.39
12 1.89 5.93 5.91 0.00 0.00 0.00 0.00 0.00 0.00
24 2.34 4.06 4.04 0.40 1.56 1.56 0.48 1.57 1.58
36 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
60 -2.78 3.77 3.79 -0.29 1.28 1.34 -0.36 1.29 1.38
84 0.23 3.33 3.58 0.13 0.33 0.80 0.21 0.49 1.01
120 10.47 12.39 12.66 -1.13 4.17 4.30 -0.87 4.08 4.27

TIPS yields Mean RMSE σ̂ε(τi) Mean RMSE σ̂ε(τi) Mean RMSE σ̂ε(τi)

60 -5.02 21.52 21.49 -1.67 14.25 14.27 0.91 10.35 10.34
72 -3.28 12.95 12.92 -0.28 6.12 6.12 0.11 4.25 4.22
84 -1.64 5.96 5.94 0.00 0.00 0.00 -0.09 0.62 0.00
96 0.00 0.00 0.00 -0.69 4.92 4.92 0.08 3.18 3.10
108 1.64 5.19 5.17 -2.21 9.14 9.14 0.43 5.58 5.52
120 3.28 9.78 9.73 -4.44 12.99 13.00 0.81 7.56 7.50

Max logL 48,220.82 50,216.57 50,942.03

Table 5: Summary Statistics of the Fitted Errors.

The mean fitted errors and root mean squared fitted errors (RMSE) for the independent-factors spec-

ification of the AFNS-cv model and AFNS-sv models are shown. All numbers are measured in basis

points. The nominal yields cover the period from January 6, 1995, to December 31, 2009, while the

real TIPS yields cover the period from January 3, 2003, to December 31, 2009.

re-estimates the models every week by adding one observation. That is, for the first set of

forecasts, each model is estimated using the sample covering the twelve-year period from

January 6, 1995 to January 5, 2007 and used to generate the forecasts of interest. For each

subsequent week, a weekly observation is added to the sample and all the models are re-

estimated, and another set of forecasts is constructed. The largest estimation sample for the

4-week-ahead forecasts ends on December 4, 2009 (153 forecasts in total). For the 26- and

52-week horizons, the largest samples end on July 2, 2009 and January 2, 2009 (131 and 105

forecasts), respectively.

Figure 2 illustrates the estimated market-implied expected inflation at the five-year hori-

zon as well as the median of the five-year CPI inflation forecast from the Survey of Profes-

sional Forecasters (SPF). Both the AFNS-cv and AFNS-sv modelsproduce sharp declines in

the expected inflation shortly after the failure of the investment bank Lehman Brothers in

September 2008, which seems to be consistent with realized inflation; that is, headline CPI

did register negative year-over-year changes during 2009 for the first time since 1955. Since

the beginning of 2009, the two models suggest a gradual decline in the five-year expected
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Figure 2: Estimated Five-Year Inflation Expectations.

Illustration of the estimated inflation expectations at the five-year horizon according to the AFNS-cv

model and the AFNS-sv model. Included is the median five-year forecast of CPI inflation from the

Survey of Professional Forecasters.

inflation throughout 2009 consistent with the downward trend in the survey measure. Note,

though, that since 2009 there has been a systematic wedge between the estimated inflation

expectations from the models that did not exist previously.

Figure 3 illustrates the estimated inflation risk premiums at the five-year horizon from

the models. The inflation risk premium turned markedly negative towards the end of 2008

and remained so until mid-2009. This pattern seems to be in line with the models’ inflation

expectations. When there is a deflation scare as in the fall of 2008, there is little need for

a risk premium on inflation; instead, the inflation risk premium became negative and thus a

disadvantage since TIPS bonds’ coupon payments, unlike their principal, would be adjusted

downward with the decline in the general price level. However, by mid-2009, deflationary

concerns had decreased in light of both extraordinary monetary policy measures and efforts

to stabilize the financial system.
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Figure 3: Estimated Five-Year Inflation Risk Premiums.

Illustration of the estimated inflation risk premiums at the five-year horizon according to the AFNS-cv

model and the AFNS-sv model.

3.4 Diagnostics: Model-implied deflation probabilities

Another relevant comparison measure for these models is their implied probability forecasts of

net deflation one year ahead, as presented in CLR (2010) and in Figure 4. The risk of deflation

in 2007 and leading up to the failure of Lehman Brothers in September 2008 was basically

zero under both models. In late 2009, the models assigned a high probability to net deflation

over the following twelve-month period, which is consistent with the observed negative year-

over-year change in headline CPI observed during these months. The probabilities from the

AFNS-sv model are markedly higher than from the AFNS-cv model starting in the second

quarter of 2009 through year-end 2010. These higher and more persistent probabilities are due

to both the AFNS-sv model’s lower inflation expectations and higher conditional volatility

estimates.

4 The Value of the Deflation Protection Embedded in TIPS

The primary focus of this paper is the value of the deflation protection embedded in TIPS

bonds and how, during the financial crisis of 2008 and 2009, it affected the relative prices
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Figure 4: Estimated One-Year Deflation Probabilities.

Illustration of the estimated probability of negative net inflation over the following one-year period

according to the AFNS-cv model and the AFNS-sv model.

of pairs of TIPS bonds differentiated only by their accrued inflation compensation. Under

standard inflationary conditions, the value of the deflation protection should not play an

important role in TIPS bond pricing since the probability of having negative net accrued in-

flation compensation at maturity is negligible; that is, the option was well out-of-the-money.13

However, at the peak of the financial crisis in the fall of 2008, neither the perceived nor the

priced probability of deflation were negligible. In that case, a wedge can develop between the

prices of seasoned TIPS bonds with a significant amount of accrued inflation compensation

and recently issued on-the-run TIPS bonds, which have no cumulated inflation compensa-

tion. As suggested by Wright (2009), this wedge is a proxy for the value of the TIPS deflation

protection option.

To examine the ability of the proposed AFNS models to price these deflation options, we

use the models’ implied yield curves and deflation probabilities. We calculate the deflation

options value by comparing under the risk-neutral pricing measure the prices of a newly

issued TIPS bond without any accrued inflation compensation and a seasoned TIPS bond

13This also explains why little attention has been paid to this aspect of TIPS in the existing literature.
To the best of our knowledge, Grishchenko, Vanden, and Zhang (2010) is the only other paper to explicitly
address the valuation of the TIPS deflation protection within a dynamic term structure model.
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Figure 5: Five-Year Par-Coupon Yield Spread Between Seasoned and Newly Issued

TIPS.

Illustration of the estimated five-year par-coupon yield spread between a seasoned and a newly issued

TIPS according to the AFNS-cv model and the AFNS-sv model. Included is also the corresponding

result from the original CLR model as well as the difference in yield-to-maturity as reported by

Bloomberg between the ten-year TIPS that matures on July 15, 2013 and the five-year TIPS that

matures on April 15, 2013.

with sufficient accrued inflation compensation. First, consider a hypothetical seasoned TIPS

bond with T years remaining to maturity that pays an annual coupon C semi-annually.

Assume this bond has accrued sufficient inflation compensation so it is impossible to reach

the deflation floor before maturity. Under the risk-neutral pricing measure, the par-coupon

bond satisfying these criteria has a coupon rate determined by the equation

2T∑

i=1

C

2
EQt

[
e−

∫ ti
t rRs ds

]
+ EQt

[
e−

∫ T
t
rRs ds

]
= 1. (9)

The first term is the sum of the present value of the 2T coupon payments using the model’s

fitted real yield curve at day t. The second term is the discounted value of the principal

payment. The coupon payment for this seasonal bond that solves this equation is denoted as

CS .

Next, consider a new TIPS bond with no accrued inflation compensation with T years to
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maturity. Since the coupon payments are not protected against deflation, the difference is in

accounting for the deflation protection on the principal payment:

2T∑

i=1

C

2
EQt

[
e−

∫ ti
t rRs ds

]
+ EQt

[
ΠT
Πt

· e−
∫ T
t
rNs ds1

{
ΠT
Πt

>1}

]
+ EQt

[
1 · e−

∫ T
t
rNs ds1

{
ΠT
Πt

≤1}

]
= 1.

The first term is the same as before. The second term represents the present value of the

principal payment conditional on a positive net change in the price index over the bond’s

maturity; i.e., ΠT
Πt

> 1. Under this condition, full inflation indexation applies, and the price

change ΠT
Πt

is placed within the expectations operator and weighted by the probability of

accumulated inflation at time T . The third term represents the present value of the floored

TIPS principal conditional on accumulated net deflation; i.e., when the price level change

is below one, ΠT
Πt

is replaced by a value of one to provide the promised deflation protection.

Since
ΠT
Πt

= e
∫ T
t
(rNs −rRs )ds,

the equation can be rewritten as

2T∑

i=1

C

2
EQt [e

−
∫ ti
t rRs ds]+EQt

[
e−

∫ T
t
rRs ds

]
+

[
EQt

[
e−

∫ T
t
rNs ds1

{
ΠT
Πt

≤1}

]
−EQt

[
e−

∫ T
t
rRs ds1

{
ΠT
Πt

≤1}

]]
= 1,

where the last term on the left-hand side represents the net present value of the deflation

protection of the principal in the TIPS contract. The par-coupon yield of a new hypothetical

TIPS bond that solves this equation is denoted as C0. The difference between CS and C0 is a

measure of the advantage of being at the inflation adjustment floor for a newly issued TIPS

bond and thus of the value of the embedded deflation protection option.

4.1 Deflation Probabilities and Model-Implied Deflation Option Values

Figure 6 illustrates the model-implied value of the TIPS deflation protection for a newly

issued TIPS relative to a comparable seasoned TIPS when converted into five-year par-coupon

spreads. In the figure, the model-implied values are compared to the yield difference between

the seasoned ten-year 2013 TIPS bonds and the recently issued five-year 2013 TIPS bonds,

as shown by the grey line. As observed by CLR (2011a), the AFNS-cv model consistently

undervalues the deflation protection even though it captures its time-variation well. The

AFNS-sv model is much more successful at matching the observed value of the deflation

protection prior to the crisis, at the peak of the crisis, as well as in the post-crisis period.

We take this as further evidence that this model more accurately captures bond investors’

perceived outlook for future changes in the price level. As such and provided investors are
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Figure 6: Five-Year Par-Coupon Yield Spread Between Seasoned and Newly Issued

TIPS.

Illustration of the estimated five-year par-coupon yield spread between a seasoned and a newly issued

TIPS according to the AFNS-cv model and the AFNS-sv model. Included is also the corresponding

result from the original CLR model as well as the difference in yield-to-maturity as reported by

Bloomberg between the ten-year TIPS that matures on July 15, 2013 and the five-year TIPS that

matures on April 15, 2013.

rational and forward looking (they have every thinkable monetary incentive to be so) and

therefore get things right, at least on average, the model could be capturing fairly accurately

the dynamics for the actual inflation process. Based on this reasoning we think this model

should carry some weight in judging the risk of deflation going forward. Also, this is the

theoretical argument for why a “yields-only” approach like ours would work in the first place.

Figure 7 attempts to disentangle whether it was large probabilities of deflation, large

deflation outcomes, or a combination of the two that drove the significant rise in the value

of the TIPS deflation protection during the financial crisis. It should be noted that these

are probabilities under the pricing Q-measure. The results show that the deflation fear was

severe at the peak of the crisis as the priced probability of a 10 percent net decline in the

general price level over the following five years was about one-in-three. At the end of our

sample, markets still put more than a 10 percent chance on outcomes with 5 percent net

deflation—three times its pre-crisis level. Thus, both the probability of deflation as well as

its expected magnitude was sizeable throughout 2009.
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Figure 7: Priced Probabilities of Negative Inflation Outcomes over the Next Five

Years.

Illustration of the probability of negative net inflation outcomes over the next five years under the

Q-measure according to the preferred AFNS s.v. model with Feller conditions imposed.

In the following subsection, we present some robustness tests to support our preferred

AFNS-sv model.

4.1.1 First Robustness Check: Without Feller conditions

***To be completed.

It turns out that the Feller conditions above are binding restrictions. As a result, we

will also analyze the model that uses only the essentially affine risk premiums introduced in

Duffee (2002). In that case, the most flexible specification of the P -dynamics we consider is
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Figure 8: Five-Year Par-Coupon Yield Spread Between Seasoned and Newly Issued

TIPS.

Illustration of the estimated five-year par-coupon yield spread between a seasoned and a newly issued

TIPS according to various modifications of the original CLR model of nominal and real yields. Included

is also the yield-to-maturity as reported by Bloomberg between the ten-year TIPS that matures on

July 15, 2013 and the five-year TIPS that matures on April 15, 2013.

given by




dLNt

dSt

dCt

dLRt




=




κP11 0 0 0

κP21 κP22 κP23 κP24

κP31 κP32 κP33 κP34
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







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θP2
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
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

LNt

St

Ct

LRt






dt

+




σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44







√
LNt 0 0 0

0
√
1 0 0

0 0
√
1 0

0 0 0
√
LRt







dWLN ,P
t

dW S,P
t

dWC,P
t

dWLR,P
t



.

The advantage of this risk premium specification is that we only need to require LNt and LRt

not to become negative (as opposed to ensuring strict positivity as required with the extended
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Alternative Goodness-of-fit statistics
specifications Max logL k p-value AIC BIC

(1) Unrestricted KP 50,959.32 34 n.a. -101,850.6 -101,692.1
(2) κP32 = 0 50,958.99 33 0.4166 -101,852.0 -101,698.1
(3) κP32 = κP31 = 0 50,958.59 32 0.3711 -101,853.2 -101,704.0
(4) κP32 = κP31 = κP21 = 0 50,956.73 31 0.0538 -101,851.5 -101,706.9
(5) κP32 = . . . = κP24 = 0 50,954.42 30 0.0316 -101,848.8 -101,708.9

(6) κP32 = . . . = κP34 = 0 50,950.25 29 0.0039 -101,842.5 -101,707.3
(7) κP32 = . . . = κP23 = 0 50,942.03 28 0.0001 -101,828.1 -101,697.5

Table 6: Evaluation of Alternative Specifications of the AFNS s.v. Model Without

Feller Conditions Imposed.

Seven alternative estimated specifications of the AFNS s.v. model without Feller conditions imposed

are evaluated. Each specification is listed with its maximum log likelihood (Max logL), number of

parameters (k), the p-value from a likelihood ratio test of the hypothesis that the specification differs

from the one directly above that has one more free parameter. The information criteria (AIC and

BIC) are also reported, and their minimum values are given in boldface.

affine risk premium specification). This is ensured with the following set of weaker restrictions

κP11 > 0, κP11θ
P
1 > 0, κP44 > 0, and κP44θ

P
4 > 0.

The tradeoff is twofold. First, κP14 and κP41 must be fixed at 0 as they must be equal to their

counterparts under the Q-measure. Second, for LNt and LRt , there is a restriction on their

mean values given by the equations

10−7 · θQ
LN

= κP11θ
P
1 and 10−7 · θQ

LR
= κP44θ

P
4 .

By implication, θP1 and θQ
LN

(and θP4 and θQ
LR

) cannot both vary freely when we switch from

the Q-measure to the P -measure under the essentially affine risk premium structure. The

way we implement these two restrictions is to let θQ
LN

and θQ
LR

vary, while θP1 and θP4 are

determined as residuals

θP1 =
10−7 · θQ

LN

κP11
and θP4 =

10−7 · θQ
LR

κP44
.

In light of the binding Feller condition we also study the performance of the AFNS s.v.

model without Feller conditions imposed as detailed in the model description. Table 6 reports

the results of the model selection within this class of models. Again, for reasons of parsimony,

we choose to focus on the specification preferred according to BIC. Its mean-reversion matrix
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 0.0714 0 0 0 0.0419 Σ1,1 0.0579

(0.1227) (0.0005)
KP

2,· 0 0.6318 -0.6999 0 -0.0040 Σ2,2 0.0129

(0.2282) (0.1700) (0.0123) (0.0003)
KP

3,· 0 0 2.0478 4.4055 0.0025 Σ3,3 0.0305

(0.3703) (0.7086) (0.0049) (0.0007)
KP

4,· 0 0 0 0.7539 0.0055 Σ4,4 0.2203

(0.2587) (0.0006)

Table 7: Parameter Estimates for the Specification of the AFNS s.v. Model with-

out Feller Conditions Preferred by BIC.

The estimated parameters of the KP -matrix, the θP -vector, and the Σ-matrix for the specification of

the AFNS s.v. model of nominal and real yields without Feller conditions imposed preferred by BIC.

The Q-related parameters are estimated at: λ = 0.6156 (0.0026), αR = 0.6702 (0.0101), θQ
LN

= 29,897

(13.99), and θQ
LR

= 41,444 (14.73). Since κQ
LN

= κQ
LR

= 10−7, it follows that θP1 =
κ
Q

LN
θ
Q

LN

κP
11

= 0.0419

and θP4 =
κ
Q

LR
θ
Q

LR

κP
44

= 0.0055. The numbers in parentheses are the estimated standard deviations of the

parameter estimates. The maximum log likelihood value is 50,954.42.

is given by

KP
BIC =




κP11 0 0 0

0 κP22 κP23 0

0 0 κP33 κP34

0 0 0 κP44



.

Across model classes, the only parameter to systematically survive elimination is κP23. As this

is the key off-diagonal element in KQ that generates the hump-shaped factor loading for the

curvature, this result might not be all that surprising. It implies that significant restrictions

on the risk premium structure are required to be consistent with the data.

Table 7 reports the estimated parameters of the preferred specification (5). Note that the

off-diagonal elements in the estimated KP matrix are statistically significant. Furthermore,

the two level factors and the slope factor remain persistent, while the curvature factor exhibits

a much more rapid rate of mean reversion and remains more volatile than the slope factor.

Finally, the estimated mean parameters accord quite well with the estimated paths of the

four factors.

Figure 9 shows the estimated values of σ44 from the AFNS s.v. model with and without

Feller conditions imposed. We note that its estimated value barely change when the Feller

conditions are imposed because the restriction for LRt under the Q-measure is binding which

forces it to take on a low value determined by other model parameters that only vary little,

hence the very stable pattern. Once that restriction is relaxed, σ44 is allowed to vary. In
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Figure 9: Estimated Values of σ44.
Illustration of the estimated values of σ44 from the rolling re-estimation of the AFNS s.v. models with

and without Feller conditions imposed.

particular, it spikes up in the fall of 2008 when general market volatility rose significantly.

However, its estimated value remains high until the end of our sample. Also, we should

note that there are only smaller differences in the other volatility parameters across the two

models. Thus, it is mainly the Q-dynamics of LRt that is impacted by the imposition of the

Feller conditions, most notably σ44. Furthermore, this marked difference in the estimated

volatility of the real level factor achieved via the imposition of the Feller conditions turns out

to affect significantly the model-implied values of the TIPS deflation protection as we will see

below.

4.1.2 Second Robustness Check

In the first robustness check we ask whether we need stochastic volatility in both level factors,

LNt and LRt , to obtain these results or whether it would suffice with stochastic volatility in just

one of them. To address that question, we analyze the two model classes where either only

the nominal level factor, LNt , or the real level factor, LRt , are allowed to generate stochastic

volatility.14

14The model derivations and the estimation results from these alternative model classes are available upon
request.
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Figure 10: Five-Year Par-Coupon Yield Spread Between Seasoned and Newly Is-

sued TIPS.

Illustration of the estimated five-year par-coupon yield spread between a seasoned and a newly issued

TIPS according to various modifications of the original CLR model of nominal and real yields. In-

cluded is also the yield-to-maturity as reported by Bloomberg between the ten-year TIPS that matures

on July 15, 2013 and the five-year TIPS that matures on April 15, 2013.

Figure 8 shows the result from these alternative model specifications and compares them

to the corresponding results from the AFNS c.v. model and the preferred AFNS s.v. model.

We note that both of the alternative model classes improve upon the performance of the

AFNS c.v. model, but they still undervalue the deflation protection. Based on this evidence

we conclude that it is not sufficient just to allow either the nominal or the real level factor

to generate stochastic volatility in order to price the value of the TIPS deflation protection

appropriately. We need both level factors to generate sufficient stochastic volatility to match

the yield spreads between seasoned and newly issued TIPS observed during 2008 and 2009.

4.1.3 Third Robustness Check

***To be completed.

In our third robustness check, we update the data through the end of 2010. The model-

implied values of the TIPS deflation protection measured as par-coupon yield spreads of

seasoned TIPS over comparable newly issued TIPS are shown in Figure 10. Also shown are
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Figure 11: Fitted Error of the Model-implied Five-year Yield Spread of a Seasoned

TIPS over a Newly Issued TIPS.

Illustration of the difference between the yield spread of the pair of TIPS that contains the on-the-run

five-year TIPS and the model-implied five-year par-coupon yield spread of a seasoned TIPS over a

comparable newly issued TIPS from the AFNS s.v. model.

the yield differences between seasoned and recently issued TIPS with maturities in 2013, 2014,

and 2015, respectively.

First, the AFNS c.v. model is represented by the dashed grey line. Its spread continues

to be below the observed spreads except at the very end of 2010. On the other hand, the

preferred AFNS s.v. model, whose estimated par-coupon yield spread is shown with a solid

grey line in Figure 10, continues to produce yield spreads very to close that of the most

recently issued five-year TIPS.

To provide some statistics on the model fit, we calculate the fitted error relative to the

TIPS pair containing the most recently issued five-year TIPS, we refer to this as the on-the-run

pair and it is the closest observable to our model-implied constant-maturity yield spread.15

Figure 11 shows the difference between the on-the-run TIPS pair and the model-implied five-

year par-coupon yield spread equivalent. With the exception of a few weeks at the very peak

15Specifically, from April 23, 2008 to April 22, 2009 we use the 5-year TIPS with maturity in April 2013 and
the 10-year TIPS with maturity in July 2013. From April 23, 2009 to April 23, 2010 we use the 5-year TIPS
with maturity in April 2014 and the 10-year TIPS with maturity in July 2014. Since April 26, 2010 we use
the 5-year TIPS with maturity in April 2015 and the 10-year TIPS with maturity in July 2015.
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of the crisis, where liquidity effects arguably did play a role, the model has matched the value

of the TIPS deflation protection 1) prior to the crisis, 2) during the crisis, and 3) after the

crisis. The mean error is a mere -4.4 basis points, while the root mean squared errors are just

17.3 basis points.

This exercise serves two purposes. First, it highlights that the value of the TIPS deflation

protection manifests itself in consecutive pairs of seasoned versus newly issued TIPS. As

such, it is really in the data and does not reflect some idiosyncratic abnormal trading pattern

in individual TIPS. Second, it underscores that the favored AFNS s.v. model is able to

systematically capture bond investors’ perceived risk of deflation, in particular as these TIPS

yield spreads are not in the data used in the model estimation. The model’s accuracy is

entirely a byproduct of the estimated model dynamics.

We interpret these findings as evidence that the refined model is capturing the outlook for

the expected inflation and the tail risk of deflation priced into the indexed and non-indexed

Treasury yield curves accurately, and better than the original model. As a result, the output

from the refined model should carry some weight in judging the risk of deflation going forward,

a task that we now turn to.

5 Conclusion

In this paper, we introduce an extension of the joint model of nominal and real bond yields in-

troduced in CLR (2010). In particular, we replace the model’s constant volatility assumption

with stochastic volatility driven by the model’s nominal and real level factors. In addition,

we use the dramatic changes in bond yields during the financial crisis to distinguish between

models. In our view, a good model should perform well i) prior to the crisis, ii) during the

crisis, and iii) during the post-crisis normalization. Our preferred AFNS-sv model works well

on all three accounts, in particular it delivers very reasonable decompositions of breakeven

inflation into expected inflation and inflation risk premiums. Furthermore, it is able to price

surprisingly accurately the value of TIPS deflation protection as observed in the TIPS mar-

ket, especially relative to the AFNS-cv model as per CLR (2011a). Based on this evidence

we argue that the refined model should be useful for judging the tail risk of deflation going

forward as well as for the study of bond investors’ inflation expectations.

In addition, the refined model provides an example where the Feller conditions are binding,

but lead to improved model performance along important dimensions as compared to models

where these restrictions are relaxed. This suggests that Feller conditions can be important and

useful even though they are rejected by standard in-sample statistical tests. This observation

also highlights how treacherous model selection can be in to multi-dimensional dynamic term
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structure models as the competing model without Feller conditions performed very well along

several measures normally relied upon for model selection.

Finally, and importantly, the Gaussian AFNS-cv model class is not “wrong”. It is good

at capturing first moments. Thus, it works well for estimating the market-implied expected

inflation and the inflation risk premiums. However, it is, by its nature, unable to capture

changes in the dynamics of second or higher order moments. This prevents it from measuring

accurately tail risks such as the risk of deflation or the price of the deflation protection

embedded in TIPS, which are important limitations in low-inflation environments like the

one currently experienced in the U.S.
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Appendix

A). Bond price formulas

In the AFNS s.v. model nominal zero-coupon bond prices are given by

PN(t, T ) = EQ
t

[

exp
(

−
∫ T

t

rNu du
)]

= exp
(

BN
1 (t, T )LNt +BN

2 (t, T )St+BN
3 (t, T )Ct+BN

4 (t, T )LRt +AN(t, T )
)

,

where BN
1 (t, T ), BN

2 (t, T ), BN
3 (t, T ), and BN

4 (t, T ) are the unique solutions to the following

system of ODEs
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where γ and δ (see Equations (??) and (??)) are given by

γ =


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1
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.

This structure implies that the factor loadings in the nominal zero-coupon bond price

function are given by the unique solution to the following set of ODEs

dBN
1 (t, T )

dt
= 1 + κQ

LN
BN

1 (t, T )− 1

2
σ211B

N
1 (t, T )2, BN

1 (T, T ) = B
N
1 ,

dBN
2 (t, T )

dt
= 1 + λBN

2 (t, T ), BN
2 (T, T ) = B

N
2 ,

dBN
3 (t, T )

dt
= −λBN

2 (t, T ) + λBN
3 (t, T ), BN

3 (T, T ) = B
N
3 ,

dBN
4 (t, T )

dt
= κQ

LR
BN

4 (t, T )− 1

2
σ244B

N
4 (t, T )2, BN
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N
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These four ODEs have the following unique solution16
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,

where

φN =

√
(κQ
LN

)2 + 2σ211.

Now, the AN (t, T )-function in the yield-adjustment term in the nominal zero-coupon bond

yield function is given by the solution to the following ODE

dAN (t, T )

dt
= −BN(t, T )′KQθQ − 1

2
σ22B

N
2 (t, T )2 − 1

2
σ23B

N
3 (t, T )2, AN (T, T ) = A

N
.

This ODE has the following unique solution

AN (t, T ) = A
N
+

2κQ
LN
θQ
LN

σ2
11

ln

[
2φNe

1

2
(φN+κQ

LN
)(T−t)

2φN + (φN + κQ
LN

−B
N

1 σ
2
11)(e

φN (T−t) − 1)

]

+σ2
22

[ 1

2λ2
(T − t)− (1 + λB

N

2 )

λ3
[1− e−λ(T−t)] +

(1 + λB
N

2 )2

4λ3
[1 − e−2λ(T−t)]

]

+σ2
33

[ 1

2λ2
(T − t) +

1 + λB
N

2

λ2
(T − t)e−λ(T−t) − (1 + λB

N

2 )2

4λ
(T − t)2e−2λ(T−t)

− (1 + λB
N

2 )(3 + λB
N

2 + 2λB
N

3 )

4λ2
(T − t)e−2λ(T−t)

+
(2 + λB

N

2 + λB
N

3 )2 + (1 + λB
N

3 )2

8λ3
[1− e−2λ(T−t)]− 2 + λB

N

2 + λB
N

3

λ3
[1− e−λ(T−t)]

]

+
2κQ

LR
θQ
LR

σ2
44

ln

[
2κQ

LR
eκ

Q

LR
(T−t)

(2κQ
LR

−B
N

4 σ
2
44)e

κ
Q

LR
(T−t) +B

N

4 σ
2
44

]
.

In the AFNS s.v. model the real zero-coupon bond prices are given by

PR(t, T ) = EQ
t

[

exp
(

−
∫ T

t

rRu du
)]

= exp
(

BR
1 (t, T )LNt +BR

2 (t, T )St +BR
3 (t, T )Ct +BR

4 (t, T )LRt +AR(t, T )
)

,

16The calculations leading to this result are available upon request.
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where BR
1 (t, T ), B

R
2 (t, T ), B

R
3 (t, T ), and BR

4 (t, T ) are the unique solutions to the following

system of ODEs














dBR
1
(t,T )

dt

dBR
2
(t,T )

dt

dBR
3
(t,T )

dt

dBR
4
(t,T )

dt















=













0

αR

0

1













+













κQ
LN

0 0 0

0 λ 0 0

0 −λ λ 0

0 0 0 κQ
LR

























BR
1 (t, T )

BR
2 (t, T )

BR
3 (t, T )

BR
4 (t, T )













−1

2

4
∑

j=1

























σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44

























(BR
1 )2 BR

1 BR
2 BR

1 BR
3 BR

1 BR
4

BR
1 BR

2 (BR
2 )2 BR

2 BR
3 BR

2 BR
4

BR
1 BR

3 BR
2 BR

3 (BR
3 )2 BR

3 BR
4

BR
1 BR

4 BR
2 BR

4 BR
3 BR

4 (BR
4 )2

























σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44

























j,j

(δj)′.

This implies that the factor loadings in the real zero-coupon bond price function are given by

the unique solution to the following set of ODEs

dBR
1 (t, T )

dt
= κQ

LN
BR

1 (t, T )−
1

2
σ211B

R
1 (t, T )

2, BR
1 (T, T ) = B

R
1 ,

dBR
2 (t, T )

dt
= αR + λBR

2 (t, T ), BR
2 (T, T ) = B

R
2 ,

dBR
3 (t, T )

dt
= −λBR

2 (t, T ) + λBR
3 (t, T ), BR

3 (T, T ) = B
R
3 ,

dBR
4 (t, T )

dt
= 1 + κQ

LR
BR

4 (t, T )−
1

2
σ244B

R
4 (t, T )

2, BR
4 (T, T ) = B

R
4 .

These four ODEs have the following unique solution17

BR
1 (t, T ) =

2κQ
LN
B
R
1

(2κQ
LN

−B
R
1 σ

2
11)e

κ
Q

LN
(T−t)

+B
R
1 σ

2
11

,

BR
2 (t, T ) = e−λ(T−t)B

R
2 − αR

1− e−λ(T−t)

λ
,

BR
3 (t, T ) = λ(T − t)e−λ(T−t)B

R
2 +B

R
3 e

−λ(T−t) + αR
[
(T − t)e−λ(T−t) − 1− e−λ(T−t)

λ

]
,

BR
4 (t, T ) =

−2[eφ
R(T−t) − 1] +B

R
4 e

φR(T−t)(φR − κQ
LR

) +B
R
4 (φ

R + κQ
LR

)

2φR + (φR + κQ
LR

−B
R
4 σ

2
44)[e

φR(T−t) − 1]
,

where

φR =

√
(κQ
LR

)2 + 2σ244.

The AR(t, T )-function in the yield-adjustment term in the real zero-coupon bond yield func-

17The calculations leading to this result are available upon request.
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tion is given by the solution to the following ODE

dAR(t, T )

dt
= −BR(t, T )′KQθQ − 1

2
σ22B

R
2 (t, T )

2 − 1

2
σ23B

R
3 (t, T )

2, AR(T, T ) = A
R
,

which is

AR(t, T ) = A
R
+

2κQ
LN
θQ
LN

σ2
11

ln

[
2κQ

LN
eκ

Q

LN
(T−t)

(2κQ
LN

−B
R

1 σ
2
11)e

κ
Q

LN
(T−t) +B

R

1 σ
2
11

]

+σ2
22

[ (αR)2
2λ2

(T − t)− αR
(αR + λB

R

2 )

λ3
[1− e−λ(T−t)] +

(αR + λB
R

2 )
2

4λ3
[1− e−2λ(T−t)]

]

+σ2
33

[
(αR)2

2λ2
(T − t) + αR

αR + λB
R

2

λ2
(T − t)e−λ(T−t) − (αR + λB

R

2 )
2

4λ
(T − t)2e−2λ(T−t)

− (αR + λB
R

2 )(3α
R + λB

R

2 + 2λB
R

3 )

4λ2
(T − t)e−2λ(T−t)

+
(2αR + λB

R

2 + λB
R

3 )
2 + (αR + λB

R

3 )
2

8λ3
[1− e−2λ(T−t)]

−αR 2αR + λB
R

2 + λB
R

3

λ3
[1− e−λ(T−t)]

]

+
2κQ

LR
θQ
LR

σ2
44

ln

[
2φRe

1

2
(φR+κQ

LR
)(T−t)

2φR + (φR + κQ
LR

−B
R

4 σ
2
44)(e

φR(T−t) − 1)

]
.

B). Calculation of the NPV of the TIPS principal deflation protection

In general, we are interested in finding the NPV of terminal payoffs from TIPS contin-

gent on the cumulated inflation being below some critical value q, specifically the following

difference is of interest

EQt

[
e−

∫ T
t
rNs ds1

{
ΠT
Πt

≤1+q}

]
− EQt

[
e−

∫ T
t
rRs ds1

{
ΠT
Πt

≤1+q}

]
.

Thus, the states of the world of interest are characterized by

ΠT
Πt

≤ 1 + q ⇐⇒ Yt,T =

∫ T

t

(rNs − rRs )ds ≤ ln(1 + q).
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Since we are pricing, we need the dynamics of the state variables under the Q-measure




dLNt

dSt

dCt

dLRt

Y0,t




=




κQ
LN

0 0 0 0

0 λ −λ 0 0

0 0 λ 0 0

0 0 0 κQ
LR

0

−1 −(1− αR) 0 1 0










θQ
LN

0

0

θQ
LR

0




−




LNt

St

Ct

LRt

Y0,t







dt

+




σ11 0 0 0 0

0 σ22 0 0 0

0 0 σ33 0 0

0 0 0 σ44 0

0 0 0 0 0







√
LNt 0 0 0 0

0
√
1 0 0 0

0 0
√
1 0 0

0 0 0
√
LRt 0

0 0 0 0
√
1







dWLN ,Q
t

dW S,Q
t

dWC,Q
t

dWLR,Q
t

dW Y,Q
t




,

where Z0,t = (LNt , St, Ct, L
R
t , Y0,t) represents the augmented state vector.

Now, define the following two intermediate functions

ψ1(B, t, T ) = EQt

[
e−

∫ T
t
rRs dseB

′

Zt,T
]
,

and

ψ2(B, t, T ) = EQt

[
e−

∫ T
t
rNs dseB

′

Zt,T
]
.

In order to calculate ψ1(B, t, T ) and ψ2(B, t, T ), we summarize the Q-dynamics by the fol-

lowing matrices and vectors

KQ =




κQ
LN

0 0 0 0

0 λ −λ 0 0

0 0 λ 0 0

0 0 0 κQ
LR

0

−1 −(1− αR) 0 1 0




, θQ =




θQ
LN

0

0

θQ
LR

0




, Σ =




σ11 0 0 0 0

0 σ22 0 0 0

0 0 σ33 0 0

0 0 0 σ44 0

0 0 0 0 0




,

ρN =




1

1

0

0

0




, ρR =




0

αR

0

1

0




.

This structure implies that γ and δ in the system of ODEs provided in Equations (??) and
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(??) are given by

γ =




0

1

1

0

1




and δ =




1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0




.

From Duffie, Pan, and Singleton (2000) it follows that

ψ1(B, t, T ) = exp(Bψ1(t, T )′Zt,t +Aψ1(t, T )),

where Bψ1(t, T ) and Aψ1(t, T ) are the solutions to the following system of ODEs

dBψ1(t, T )

dt
= ρR + (KQ)′Bψ1(t, T )− 1

2

5∑

j=1

(Σ′Bψ1(t, T )Bψ1(t, T )′Σ)j,j(δ
j)′, Bψ1(T, T ) = B,

dAψ1(t, T )

dt
= −Bψ1(t, T )′KQθQ − 1

2

5∑

j=1

(Σ′Bψ1(t, T )Bψ1(t, T )′Σ)j,jγ
j , Aψ1(T, T ) = 0.

This system of ODEs can be solved analytically and the solution is provided in the following

proposition.

Proposition 1:

Let the state variables be given by Zt,T = (LNt , St, Ct, L
R
t , Yt,T ), and let the real instanta-

neous risk-free rate be given by

rRt = (ρR)′Xt,

then

ψ1(B, t, T ) = exp(B1
ψ1(t, T )L

N
t +B

2
ψ1(t, T )St+B

3
ψ1(t, T )Ct+B

4
ψ1(t, T )L

R
t +B

5
ψ1(t, T )Yt,t+Aψ1(t, T ))

where18

18The calculations leading to this result are available upon request.
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B1
ψ1(t, T ) =

−2ρ1[e
φN
ψ1(T−t) − 1] +B

1
(φN
ψ1 − κQ

LN
)e
φN
ψ1(T−t)

+B
1
(φN
ψ1 + κQ

LN
)

2φN
ψ1 + (φN

ψ1 + κQ
LN

−B
1
σ2
11)[e

φN
ψ1

(T−t) − 1]
,

B2
ψ1(t, T ) = e−λ(T−t)B

2 − [αR − (1− αR)B
5
]
1− e−λ(T−t)

λ
,

B3
ψ1(t, T ) = e−λ(T−t)B

3
+ λ(T − t)e−λ(T−t)B

2
+ [αR − (1 − αR)B

5
]
{
(T − t)e−λ(T−t) − 1− e−λ(T−t)

λ

}
,

B4
ψ1(t, T ) =

−2ρ4[e
φR
ψ1(T−t) − 1] +B

4
(φR
ψ1 − κQ

LR
)e
φR
ψ1(T−t)

+B
4
(φR
ψ1 + κQ

LR
)

2φR
ψ1 + (φR

ψ1 + κQ
LR

−B
4
σ2
44)[e

φR
ψ1

(T−t) − 1]
,

B5
ψ1(t, T ) = B

5
,

and

Aψ1(t, T ) =
2κQ

LN
θQ
LN

σ2
11

ln
[ 2φNψ1e

1

2
(φN
ψ1

+κ
Q

LN
)(T−t)

2φN
ψ1 + (φN

ψ1 + κQ
LN

−B
1
σ2
11)[e

φN
ψ1

(T−t) − 1]

]

+σ2
22[α

R − (1− αR)B
5
+ λB

2
]2
1− e−2λ(T−t)

4λ3
+

σ2
2

2

[αR − (1− αR)B
5
]2

λ2
(T − t)

−σ2
22[α

R − (1− αR)B
5
+ λB

2
][αR − (1− αR)B

5
]
1− e−λ(T−t)

λ3

+σ2
33[α

R − (1− αR)B
5
+ λB

3
]2
1− e−2λ(T−t)

4λ3
+

σ2
33

2

[αR − (1− αR)B
5
]2

λ2
(T − t)

+
σ2
33

2
[αR − (1− αR)B

5
+ λB

2
]2
[

− 1

2λ
(T − t)2e−2λ(T−t) − 1

2λ2
(T − t)e−2λ(T−t) +

1− e−2λ(t−t)

4λ3

]

−σ2
33[α

R − (1− αR)B
5
+ λB

3
][αR − (1− αR)B

5
]
1− e−λ(T−t)

λ3

+σ2
33
[αR − (1− αR)B

5
+ λB

3
][αR − (1− αR)B

5
+ λB

2
]

λ

[

− 1

2λ
(T − t)e−2λ(T−t) +

1− e−2λ(T−t)

4λ2

]

−σ2
33
[αR − (1− αR)B

5
][αR − (1− αR)B

5
+ λB

2
]

λ

[

− 1

λ
(T − t)e−λ(T−t) +

1− e−λ(T−t)

λ2

]

+
2κQ

LR
θQ
LR

σ2
44

ln
[ 2φRψ1e

1

2
(φR
ψ1

+κ
Q

LR
)(T−t)

2φR
ψ1 + (φR

ψ1 + κQ
LR

−B
4
σ2
44)[e

φR
ψ1

(T−t) − 1]

]

,

with

φNψ1 =
√

(κQ
LN

)2 + 2ρ1σ211, ρ1 = −B5
, φRψ1 =

√
(κQ
LR

)2 + 2ρ4σ244, and ρ4 = 1 +B
5
.

Using a similar approach, it holds that

ψ2(B, t, T ) = exp(Bψ2(t, T )′Zt,t +Aψ2(t, T )),
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where Bψ2(t, T ) and Aψ2(t, T ) are the solutions to the following system of ODEs

dBψ2(t, T )

dt
= ρN + (KQ)′Bψ2(t, T )− 1

2

5∑

j=1

(Σ′Bψ2(t, T )Bψ2(t, T )′Σ)j,j(δ
j)′, Bψ2(T, T ) = B,

dAψ2(t, T )

dt
= −Bψ2(t, T )′KQθQ − 1

2

5∑

j=1

(Σ′Bψ2(t, T )Bψ2(t, T )′Σ)j,jγ
j , Aψ2(T, T ) = 0.

This system can also be solved analytically and the solution is provided in the following

proposition.

Proposition 2:

Let the state variables be given by Zt,T = (LNt , St, Ct, L
R
t , Yt,T ), and let the nominal in-

stantaneous risk-free rate be given by

rNt = (ρN )′Xt,

then

ψ2(B, t, T ) = exp(B1
ψ2(t, T )L

N
t +B

2
ψ2(t, T )St+B

3
ψ2(t, T )Ct+B

4
ψ2(t, T )L

R
t +B

5
ψ2(t, T )Yt,t+Aψ2(t, T )),

where19

B1
ψ2(t, T ) =

−2ρ1[e
φN
ψ2(T−t) − 1] +B

1
(φN
ψ2 − κQ

LN
)e
φN
ψ2(T−t)

+B
1
(φN
ψ1 + κQ

LN
)

2φN
ψ2 + (φN

ψ2 + κQ
LN

−B
1
σ2
11)[e

φN
ψ2

(T−t) − 1]
,

B2
ψ2(t, T ) = e−λ(T−t)B

2 − [1− (1− αR)B
5
]
1− e−λ(T−t)

λ
,

B3
ψ2(t, T ) = e−λ(T−t)B

3
+ λ(T − t)e−λ(T−t)B

2
+ [1− (1− αR)B

5
]
{
(T − t)e−λ(T−t) − 1− e−λ(T−t)

λ

}
,

B4
ψ2(t, T ) =

−2ρ4[e
φR
ψ2(T−t) − 1] +B

4
(φR
ψ2 − κQ

LR
)e
φR
ψ2(T−t)

+B
4
(φR
ψ2 + κQ

LR
)

2φR
ψ2 + (φR

ψ2 + κQ
LR

−B
4
σ2
44)[e

φR
ψ2

(T−t) − 1]
,

B5
ψ2(t, T ) = B

5
,

and

19The calculations leading to this result are available upon request.
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Aψ2(t, T ) =
2κQ

LN
θQ
LN

σ2
11

ln
[ 2φNψ2e

1

2
(φN
ψ2

+κ
Q

LN
)(T−t)

2φN
ψ2 + (φN

ψ2 + κQ
LN

−B
1
σ2
11)[e

φN
ψ2

(T−t) − 1]

]

+σ2
22[1− (1− αR)B

5
+ λB

2
]2
1− e−2λ(T−t)

4λ3
+

σ2
22

2

[1− (1− αR)B
5
]2

λ2
(T − t)

−σ2
22[1− (1− αR)B

5
+ λB

2
][1− (1− αR)B

5
]
1− e−λ(T−t)

λ3

+σ2
33[1− (1− αR)B

5
+ λB

3
]2
1− e−2λ(T−t)

4λ3
+

σ2
33

2

[1− (1− αR)B
5
]2

λ2
(T − t)

+
σ2
33

2
[1− (1− αR)B

5
+ λB

2
]2
[

− 1

2λ
(T − t)2e−2λ(T−t) − 1

2λ2
(T − t)e−2λ(T−t) +

1− e−2λ(t−t)

4λ3

]

−σ2
33[1− (1− αR)B

5
+ λB

3
][1− (1− αR)B

5
]
1− e−λ(T−t)

λ3

+σ2
33
[1− (1− αR)B

5
+ λB

3
][1− (1− αR)B

5
+ λB

2
]

λ

[

− 1

2λ
(T − t)e−2λ(T−t) +

1− e−2λ(T−t)

4λ2

]

−σ2
33
[1− (1− αR)B

5
][1− (1− αR)B

5
+ λB

2
]

λ

[

− 1

λ
(T − t)e−λ(T−t) +

1− e−λ(T−t)

λ2

]

+
2κQ

LR
θQ
LR

σ2
44

ln
[ 2φRψ2e

1

2
(φR
ψ2

+κ
Q

LR
)(T−t)

2φR
ψ2 + (φR

ψ2 + κQ
LR

−B
4
σ2
44)[e

φR
ψ2

(T−t) − 1]

]

,

with

φNψ2 =

√
(κQ
LN

)2 + 2ρ1σ
2
11, ρ1 = 1−B

5
, φRψ2 =

√
(κQ
LR

)2 + 2ρ4σ
2
44, and ρ4 = B

5
.

With these results at our disposal, we can turn our attention to the pricing of the deflation

protection in the TIPS contract. From Duffie, Pan, and Singleton (2000) it follows that

EQt

[
e−

∫ T
t
rRs dseB

′

Zt,T1{b′Zt,T≤z}

]
=

ψ1(B, t, T )

2

− 1

π

∫ ∞

0

Im{e−ivzψ1(B + ivb, t, T )}
v

dv

and

EQt

[
e−

∫ T
t
rNs dseB

′

Zt,T1{b′Zt,T≤z}

]
=

ψ2(B, t, T )

2

− 1

π

∫ ∞

0

Im{e−ivzψ2(B + ivb, t, T )}
v

dv.

Since we interested in the condition

Yt,T =

∫ T

t

(rNs − rRs )ds ≤ ln(1 + q),
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the expectations above should be evaluated at

b =




0

0

0

0

1




and z = ln(1 + q).

Furthermore, we have zero boundary values at maturity so

B =




0

0

0

0

0




.

A similar approach can be used to calculate the NPV of the TIPS deflation protection

within the AFNS c.v. model (see CLR 2011b for details).

The functions Im{e−ivzψ1(B+ivb,t,T )}
v

and Im{e−ivzψ2(B+ivb,t,T )}
v

that need to be integrated

in order to calculate the NPV of the TIPS deflation protection have already converged to zero

for values of v above 500, so we approximate the infinite integral in the pricing formulas by

capping v at 1000 to err on the side of conservatism and use a step size of ∆v = 0.01 in the

numerical approximation, which is sufficient since the functions are clearly smooth.

5.1 Deflation Probabilities Within the AFNS-sv Model

CLR (2011a) use the AFNS-cv model to generate deflation probabilities at various horizons

appropriate for macroeconomic and monetary policy purposes. Similarly, the AFNS-sv model

can be used to calculate deflation probabilities, although additional steps are necessary as

described more fully in CLR (2011b). The change in the market-implied price index for the

period from t until t+ τ is given by

Πt+τ
Πt

= e
∫ t+τ
t

(rNs −rRs )ds.

We want to calculate the probability of the event that the change in the price index is below

a certain critical level q. By implication, we are interested in the states of the world where

Πt+τ
Πt

≤ 1 + q,
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or, equivalently, ∫ t+τ

t

(rNs − rRs )ds ≤ ln(1 + q).

Since the nominal and real instantaneous short rates are given by

rNt = LNt + St,

rRt = LRt + αRSt,

we are interested in the distributional properties of the following process

Y0,t =

∫ t

0
(rNs −rRs )ds =

∫ t

0
(LNs +Ss−LRs −αRSs)ds ⇒ dY0,t = (LNt +(1−αR)St−LRt )dt.

In general, the P -dynamics of the state variables Xt are given by

dXt = KP (θP −Xt)dt+ΣD(Xt)dW
P
t .

Adding the Yt-process to this system, leaves us with a five-factor SDE of the following form20



















dLNt

dSt

dCt

dLRt

dY0,t



















=



















κP11 0 0 κP14 0

κP21 κP22 κP23 κP24 0

κP31 κP32 κP33 κP34 0

κP41 0 0 κP44 0

0 0 0 0 0





































θP1

θP2

θP3

θP4

0



















dt−



















κP11 0 0 κP14 0

κP21 κP22 κP23 κP24 0

κP31 κP32 κP33 κP34 0

κP41 0 0 κP44 0

−1 −(1− αR) 0 1 0





































LNt

St

Ct

LRt

Y0,t



















dt

+



















σ11 0 0 0 0

0 σ22 0 0 0

0 0 σ33 0 0

0 0 0 σ44 0

0 0 0 0 0





































√

LNt 0 0 0 0

0
√
1 0 0 0

0 0
√
1 0 0

0 0 0
√

LRt 0

0 0 0 0 0





































dWLN ,P
t

dW S,P
t

dWC,P
t

dWLR,P
t

dW Y,P
t



















,

where Z0,t = (LNt , St, Ct, L
R
t , Y0,t) represents the augmented state vector.

This is a system of non-Gaussian state variables. As a consequence, we cannot use the

approach detailed in CLR (2011b). Instead, we use the Fourier transform analysis described

in full generality for affine models in Duffie, Pan, and Singleton (DPS, 2000). DPS provide a

formula for calculating contingent expectations of the form

GB,b(y;Zt,t, t, T ) = EP
[
e−

∫ T
t
ρ′
ψ
Zs,T dseB

′

Zt,T1{bZt,T≤y}

∣∣∣Ft
]
.

20The shown case is for the model with the Feller conditions imposed.
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If we define

ψ(B;Zt,t, t, T ) = EP
[
e−

∫ T
t
ρ′
ψ
Zs,T dseB

′

Zt,T
]
= eBψ(t,T )

′Zt,t+Aψ(t,T ),

where Bψ(t, T ) and Aψ(t, T ) are solutions to the corresponding system of ODEs outlined in

Equations (??) and (??), then DPS show that

GB,b(y;Zt,t, t, T ) =
ψ(B;Zt,t, t, T )

2
− 1

π

∫ ∞

0

Im[e−ivyψ(B + ivb;Zt,t, t, T )]

v
dv.

Here, we are interested in the cumulative probability function of Yt,T conditional on Zt,t, that

is, we are interested in the function EP [1{Yt,T≤y}|Ft]. From the result above it follows that

we get the desired probability function if we fix

B = 0, b =




0

0

0

0

1




, ρψ = 0, and y = ln(1 + q).

5.1.1 The Priced Probability of Deflation

The actual probability of deflation calculated above is determined by the estimated mean-

reversion matrixKP under the P -measure. Thus, it reflects the actual time series dynamics of

the state variables. The priced probability of deflation, on the other hand, reflects the implicit

probability of deflation needed to match the observed bond prices. Due to risk premia that

reflect bond investor risk aversion, this measure can be different from the actual deflation

probability.

To calculate the priced probability of deflation, we replace the P -dynamics above with

the Q-dynamics. Thus, the system of SDEs becomes



















dLNt

dSt

dCt

dLRt
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


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
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
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dt

+


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
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
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0 σ22 0 0 0

0 0 σ33 0 0

0 0 0 σ44 0
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
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
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
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1 0 0
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






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
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,
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while everything else remains the same.
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