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Abstract

This paper develops a tractable model for the computational and empirical analysis

of infinite-horizon oligopoly dynamics. It features aggregate demand uncertainty, sunk

entry costs, stochastic idiosyncratic technological progress, and irreversible exit. We

develop an algorithm for computing a symmetric Markov-perfect equilibrium quickly

by finding the fixed points to a finite sequence of low-dimensional contraction map-

pings. If at most two heterogenous firms serve the industry, the resuilt is the unique

“natural” equilibrium in which a high profitability firm never exits leaving behind a

low profitability competitor. With more than two firms, the algorithm always finds a

natural equilibrium. We present a simple rule for checking ex post whether the calcu-

lated equilibrium is unique, and we illustrate the model’s application by assessing how

price collusion impacts consumer and total surplus in a market for a new product that

requires costly development. The results confirm Fershtman and Pakes’ (2000) finding

that collusive pricing can increase consumer surplus by stimulating product develop-

ment. A distinguishing feature of our analysis is that we are able to assess the results’

robustness across hundreds of parameter values in only a few minutes on an off-the-shelf

laptop computer.
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1 Introduction

This paper supplies fast, effective, and simple computational methods for important special

cases of Ericson and Pakes’ (1995) model of dynamic oligopoly. These cases feature aggregate

uncertainty, sunk entry costs, and stochastic firm-specific technological progress; but they

exclude investment decisions other than entry and exit. This simplification facilitates a range

of equilibrium characterization, existence, and uniqueness results that are not available for the

more general framework. Moreover, it enables the development of algorithms that calculate

equilibria by finding the fixed points of a finite sequence of low-dimensional contraction

mappings. These results can be used to explore some key aspects of Ericson and Pakes’

model with very low computational cost. This is often useful in itself, and can serve as a first

stage of a richer analysis with a more complex specification.

Substantial methodological progress in the computation of Markov-perfect equilibria fol-

lowed Ericson and Pakes’ original presentation of their framework. Nevertheless, Doraszelski

and Pakes (2007) note that these methodological developments are only in their infancy

and applications remain rare. This paper contributes to this literature by developing rela-

tively rich analytical results and effective computational methods for a comparatively simple

model. It shares this approach with Abbring and Campbell’s (2010) analysis of last-in first-

out oligopoly dynamics. They consider a dynamic extension of Bresnahan and Reiss’ (1990)

static entry model that can naturally be applied to the empirical analysis of market level entry

and exit data (Abbring, Campbell, and Yang, 2010). Timing and expectational assumptions

simplify its equilibrium analysis: Otherwise homogeneous firms move sequentially, oldest

first; and older firms never exit expecting to leave a younger firm behind. The present paper

contributes more directly to the analysis of Ericson and Pakes’ framework and its poten-

tial applications, because it allows for idiosyncratic technological progress in a model with

simultaneously moving incumbent firms.

Our results leverage one key insight into the structure of payoffs in a symmetric Markov-

perfect equilibrium: If any firm chooses to exit with positive probability, then all identically

situated firms must have an expected continuation value of zero. This allows us to calcu-

late firms’ expected continuation values at some nodes of the game tree without knowing

everything about how the game will proceed thereafter. Our results demonstrate how to use

these initial calculations to recover all equilibrium payoffs and actions. For this task, it is

very helpful to know beforehand that adding an active firm to an industry weakly reduces

all other firms’ continuation values. We prove that this intuitive property must hold if at

most two firms can serve the industry at one time. For the more general oligopoly case, we

show that if a Markov-perfect equilibrium with such monotonicity exists, then it is essentially

unique. In this case, the algorithm we propose always computes it. If no such equilibrium
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exists, then our algorithm can be easily adapted to find all equilibria satisfying a desirable

property we call “one-shot renegotiation proofness”.

The remainder of this paper proceeds as follows. The next section presents the model’s

primitives. It also discusses the equilibrium concept used, natural Markov-perfect equilib-

rium. As in Cabral (1993), the restriction to “natural” equilibrium requires no firm with

high flow profits to exit leaving a lower-profitability rival in the market.

Section 3 covers the special case of a market that can support at most two active firms.

The proofs of equilibrium existence and uniqueness are constructive, and so they naturally

generate an algorithm for equilibrium computation. Its central steps find the fixed points of a

finite number of low-dimensional contraction mappings. We apply the results to a numerical

analysis of the effects of relaxing short-term price competition on welfare-enhancing product

development, earlier explored by Fershtman and Pakes (2000).

Section 4 begins with extending the algorithm from duopoly model to accommodate three

or more potentially heterogeneous firms. We then show that if a natural equilibrium in which

adding incumbent firms weakly lowers continuation values exists, then it is essentially unique

and the algorithm computes it. Next, we illustrate with an example that it is possible for

entry to increase an incumbent’s expected discounted payoff. This counterintuitive effect

of entry arises from the entry deterring effects of competition. Our analysis identifies two

sources of equilibrium multiplicity, both of which require entry to raise an incumbent’s equi-

librium payoff at some point. One arises from the failure of incumbent firms to coordinate on

survival when this is mutually beneficial. We propose to exclude such coordination failures

by requiring equilibria to be “one-shot renegotiation proof”. The other occurs when multiple

mixed strategies leave incumbents indifferent between exit and continuation.

2 The Model

In Ericson and Pakes (1995), a countable number of firms with heterogeneous productivity

levels serve a single industry. Entry requires the payment of a sunk cost, and exit allows

firms to avoid per-period fixed costs of production. Surviving incumbent firms choose in-

vestments that stochastically improve their technologies. Exogenous stochastic increases in

the knowledge stock outside the industry increase the quality of an outside good and, this

way, decrease all incumbent firms’ profits simultaneously. These outside knowledge shocks

are embodied in potential entrants to the industry, and therefore do not affect their profits.

Two main changes to Ericson and Pakes’ primitive assumptions facilitate our demonstra-

tion of Markov-perfect equilibrium uniqueness and our algorithm for its rapid computation.

First, we assume that productivity evolves exogenously, instead of allowing firms to make

costly investments in accelerating technological progress. Second, we replace the common
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Figure 1: The Sequence of Events and Actions within a Period

negative shocks to the incumbents’ profits by general aggregate demand shocks that equally

affect the profits of incumbent firms and potential entrants.

2.1 Primitive Assumptions

The model consists of a single oligopolistic market in discrete time t ∈ Z? ≡ {0, 1, . . .}. A

countable number of firms potentially serve the market. These are indexed by f ∈ Z? × N.

Below we refer to f as the firm’s name. At a given time t, some of the firms are active, and

the remaining producers are inactive. Each active firm f has an idiosyncratic productivity

type Kf
t that takes values in K ≡ {1, . . . , ǩ}. Stack the numbers of active firms with each

productivity level at time t into the ǩ× 1 vector Nt, the market structure. Initially, no firms

serve the market: N0 equals a vector of zeros. Subsequently; entry, stochastic productivity

improvement, and exit determine its evolution.
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Figure 1 illustrates the sequence of events and actions within a period t. It begins with

the inherited values of two state variables, Nt and a scalar index of demand Ct ∈ [ĉ, č], with

č < ∞. With these in place, the active participants receive their profits from serving the

market. For a type Kt firm facing the market structure Nt, these equal π(Nt, Ct, Kt).
1

We assume that a firm’s flow profit decreases with the number and productivity of its

competitors and increases with its own productivity. For this assumption’s formal statement,

we use ιk to denote a ǩ× 1 vector with a one in its kth position and zeros elsewhere, and set

ι0 ≡ 0. This allows us to denote a market structure with at least one type k firm with n+ ιk.

Assumption 1 (Monotone Producer Surplus). For all productivity types k ∈ K, demand

states c ∈ [ĉ, č], and market structures n ∈ Zǩ?:

1. π(ιk + n, c, k) ≤ π̌ <∞ for all c ∈ [ĉ, č]

2. π(ιk + n, c, k) ≤ π(ιk + n, d, k) for all c, d ∈ [ĉ, č] such that c < d.

3. π(ιk + n+ ιl, c, k) < π (ιk + n+ ιl−1, c, k) for all l ∈ K;

4. π(ιk + n, c, k)→ −κ(k) < 0 as the number of firms in n goes to infinity; and

5. π(ιk + ιl + n, c, k) ≤ π(ιk + ιl + n, c, l) for all k, l ∈ K such that k < l, with strict

inequality hold for some c ∈ [ĉ, č].

In item 4, κ(k) represents a type k firm’s per-period fixed cost. After production, firms

with names in {t}×N make entry decisions sequentially in the order of their names, starting

with (t, 1). These continue until a firm chooses to remain out of the industry. We denote the

number of entrants in period t with Jt, so the name of the first potential entrant choosing

to stay out of the market and thereby ending its entry stage is (t, Jt + 1). The cost of entry

is ϕ > 0. After paying this cost, the entrant immediately joins the set of active firms with

productivity type 1.2 A firm with an entry opportunity cannot delay its choice, so the payoff

to staying out of the industry is zero.

After the entry decisions, all active firms— including those that just entered the market—

decide simultaneously between survival and exit. Exit is irreversible but otherwise costless.

It allows firms to avoid future periods’ fixed production costs. Firms’ entry and exit decisions

maximize their expected profit streams discounted with a factor β < 1.

In the period’s final stage, Ct and the firms’ productivity types evolve. The demand index

evolves exogenously according to a nonnegative first-order Markov process bounded between

1We leave this undefined if the Kt’th element of Nt equals zero.
2Since entrants’ productivity types evolve before their first period of production, we can use the distri-

bution of Kf
t+1 given Kf

t = 1 to distribute new firms’ types nontrivially. That is, the assumption that all

entrants have Kf
t = 1 is not overly restrictive.
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ĉ and č. We denote the conditional distribution of Ct+1 with Q (c Ct) ≡ Pr (Ct+1 ≤ c Ct),

and the corresponding probability density function with q(· Ct). Each firm’s idiosyncratic

productivity type follows an independent Markov chain with a common (ǩ × ǩ) transition

matrix Π. Its typical element is Πk,k′ ≡ Pr
(
Kf
t+1 = k′ Kf

t = k
)

. Following Ericson and

Pakes (1995), we assume that the idiosyncratic productivity types never regress:

Assumption 2 (No Productivity Regress). Π is upper diagonal.

We further assume that Kf
t+1 (weakly) stochastically increases with Kf

t .

Assumption 3 (Monotone Productivity Dynamics). For all k′, k, l ∈ K such that k < l,

Pr
(
Kf
t+1 ≥ k′ Kf

t = k
)
≤ Pr

(
Kf
t+1 ≥ k′ Kf

t = l
)
.

This assumption gives high technology firms no worse advancement opportunities than low

technology firms have.

2.2 Markov-Perfect Equilibrium

A Markov-perfect equilibrium is a subgame-perfect equilibrium in strategies that are only

contingent on payoff-relevant variables. For a potential participant f = (t, j) contemplating

entry these are Ct and the market structure M f
t just after f ’s possible entry. The latter is

period t’s initial market structure Nt augmented with j type 1 entrants: M f
t ≡ Nt + jι1.

Denote the market structure after the period’s final entry with ME,t ≡ Nt + ι1Jt. If firm f

is contemplating survival in period t, the payoff-relevant variables are this market structure,

the current demand index (Ct), and its productivity type (Kf
t ).

A Markov strategy for firm f is a pair (afE, a
f
S) of functions

afE : Zǩ? × [ĉ, č] −→ [0, 1] and afS : Zǩ? × [ĉ, č]×K −→ [0, 1].

This strategy’s entry rule afE assigns a probability of becoming active given an entry oppor-

tunity to each possible value of (M f
t , Ct). Similarly, its exit rule afS assigns a probability of

being active in the next period given that the firm is currently active to each possible value

of its payoff-relevant state (ME,t, Ct, K
f
t ). Since calendar time is not payoff-relevant, we here-

after drop the t subscript from all variables. A symmetric equilibrium is an equilibrium in

which all firms follow the same strategy (aE, aS). In the remainder of the paper, we focus on

symmetric equilibria and drop the superscript f from the firms’ common strategy.

Throughout the paper, we will focus on equilibria in which a high productivity firm never

exits when a low productivity competitor survives. Such equilibria are natural, because a

high productivity firm earns strictly higher flow profit in each period than a low productivity

firm. Formally, we define a natural Markov-perfect equilibrium as follows:
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Definition 1. A natural Markov-perfect equilibrium is a symmetric Markov-perfect equilib-

rium in a strategy (aE, aS) such that for all k, l ∈ K such that k < l; mk ≥ 1, ml ≥ 1, and

aS(m, c, k) > 0 together imply that aS(m, c, l) = 1.

Cabral (1993) restricts attention to similar natural equilibria in a model with deterministic

productivity progression.

Firms’ expected discounted profits at each node of the game depend on that node’s

payoff-relevant state variables when they all use Markov strategies. The payoffs in two of

each period’s nodes are of particular interest, the post-entry value and the post-survival value.

The post-entry value vE(ME, C,K) equals the expected discounted profits of a type K firm

in a market with demand index C and market structure ME just after all entry decisions

have been sequentially realized. Since it gives the payoffs to a potential producer from

entering in each possible market structure that could arise from other players subsequent

entry decisions, it determines optimal entry choices. The post-survival value vS(MS, C,K)

equals the expected discounted profits of a type K firm facing demand index C and market

structure MS just after all survival decisions have been realized. It gives the payoffs to a

surviving firm in each possible market structure following firms’ simultaneous continuation

decisions, so it is central to the analysis of exit.

The value functions vE and vS satisfy

vE(mE, c, k) = aS(mE, c, k)E [vS(MS, c, k) ME = mE] (1)

and

vS(mS, c, k) = βE [π(N ′, C ′, K ′) + vE(M ′
E, C

′, K ′) MS = mS, C = c,K = k] . (2)

Here and throughout, we denote the variable corresponding to X in the next period with X ′.

The conditional expectation in (1) is computed given that the firm of interest continues, and

embodies the use of aS by all other active firms. In fact, the only nontrivial randomness it

embodies arises from firms’ possible use of mixed strategies. The conditional expectation in

(2) accounts for the use of aE by all potential participants with entry opportunities in the

next period as well as the exogenous evolutions of C and the firms’ productivity types.3

For (aE, aS) to form a symmetric Markov-perfect equilibrium, it is necessary and sufficient

that no firm can gain from a one-shot deviation from (aE, aS) (e.g. Fudenberg and Tirole,

1991, Theorem 4.2):

aE(m, c) ∈ arg max
a∈[0,1]

a {E [vE (ME, c, 1) M = m]− ϕ} and (3)

aS(mE, c, k) ∈ arg max
a∈[0,1]

a E [vS(MS, c, k) ME = mE] . (4)

3Section ?? of this paper’s online appendix presents the two conditional distributions underlying the

conditional expectations in (1) and (2) in detail.
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The conditional expectations in (3) and (4) are computed like those in (1) and (2). For

example, E [vE (ME, c, 1) M = m] is the payoff, gross of the entry cost ϕ, that a potential

participant in state (m, c) expects from entering if all firms with entry opportunities later in

the period use the entry rule aE and the value of ending up as a type 1 firm in a market with

structure mE and c consumers equals vE (mE, c, 1).

Together, conditions (1)–(4) are necessary and sufficient for a strategy (aE, aS) to form a

symmetric Markov-perfect equilibrium with payoffs vE and vS.

Before proceeding to examine the set of natural Markov-perfect equilibria, consider one

uninteresting source of equilibrium multiplicity. With an equilibrium in hand, change one

player’s action at a particular node of the game. If this change gives the same payoff to the

player in question and all other player’s equilibrium actions at that node remain optimal,

then this change forms a second equilibrium. In our model, this situation can arise when

the payoff to entry equals zero and when the payoff to survival as the only firm of your

type equals zero. To eliminate this difficulty, we require firms in such a situation to choose

inactivity.

Definition 2. A Markov strategy (aS, aE) with corresponding payoff vE defaults to inactivity

if

• aS(m−mk × ιk + ιk, c, k) = 0 if vS(m, c, k) = 0

• aE(m, c) = 0 if vE(m, c, 1) = ϕ,

for all k ∈ K and all c.

The remainder of the paper restricts attention to equilibria with strategies that default

to inactivity, unless otherwise mentioned.4

3 Duopoly

It is helpful to begin the model’s analysis with one additional restriction: At most two firms

can be active at once. Throughout this section, we represent duopoly market structures with

ιk + ιl with k, l ∈ K ∪ {0}. The following lemma arises from this simplification.

Lemma 1 (Monotone Payoffs in the Heterogenous-Duopoly Model). In a natural Markov-

perfect equilibrium, for all c ∈ [ĉ, č] and k ∈ K, vE(2ιk, c, k) ≤ vE(ιk, c, k) and vS(2ιk, c, k) ≤
vS(ιk, c, k).

Proof. See Appendix A.

4Note that we do not restrict the game’s strategy space to include only strategies that default to inactivity.
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Figure 2: Reduced-form Representation of the Duopoly Continuation Game

Survive Exit

Survive
vS(2, c)

vS(2, c)

vS(1, c)

0

Exit
0

vS(1, c)

0

0

Note: In each cell, the upper-left expression gives the row player’s payoff. Please see the text for further

details.

Lemma 1 states that a duopolist facing a rival of the same type always has a lower value

than it would have without the rival present. With its help, we develop the duopoly model’s

analysis in three stages. First, we examine the special case without heterogeneity, ǩ = 1.

This introduces the model’s most important moving parts without undue complication. We

then generalize this slightly in Section 3.2 by adding a second productivity type and walking

through the procedure for equilibrium calculation. Section Section 3.3 formalizes this pro-

cedure into an algorithm and then establishes equilibrium existence and uniqueness results.

Finally, Section 3.4 uses this algorithm for numerical analysis of the effects of technological

progress and demand uncertainty on industry dynamics. This illustration demonstrates that

the natural Markov-perfect equilibrium of this model can be easily computed.

3.1 One Productivity Type

When firms have identical productivity types by assumption, the restriction to a natural

equilibrium merely requires symmetry of players’ strategies. Here, we construct a symmetric

Markov-perfect equilibrium for this case in three steps. The type distribution is trivial, so

we write π(N,C, 1) as π(N,C) and make the analogous substitution for the value functions

throughout this example’s development.

Step 1: Calculation of vE(2, ·), vS(2, ·), and aE(2, ·) The equilibrium construction begins

with a characterization of the duopoly payoffs vE(2, ·) and vS(2, ·). In a Markov-perfect

equilibrium, the survival rule aS(2, c) satisfies (4): Given c, it is a Nash equilibrium of

the static simultaneous-move game with payoffs given by the expected continuation values.

Figure 2 gives the reduced-form representation of this game with the two pure strategies

“Survive” and “Exit”. The upper-left expression in each cell is the row player’s payoff. Both

firms receive the duopoly post-survival payoff vS(2, c) following joint survival. This payoff
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adds the discounted duopoly flow payoff π(2, C ′) to the the discounted duopoly post-entry

payoff vE(2, C ′). Consequently, it satisfies a special case of Equation (2):

vS(2, c) = βE [π(2, C ′) + vE(2, C ′) C = c] .

A firm that survives while its rival exits earns the monopoly post-survival value vS(1, c).

Suppose that vS(2, c) > 0. Lemma 1 guarantees that vS(1, C) > 0, so in this case

“Survive” is a dominant strategy. If instead vS(2, c) < 0, then a symmetric equilibrium

strategy must put positive probability on “Exit”. That pure strategy’s payoff always equals

zero. Since vE(2, c) equals the symmetric equilibrium payoff to this game, these facts together

yield the following special case of Equation (1):

vE(2, c) = max {0, vS(2, c)}

= max
{

0, βE [π(2, C ′) + vE(2, C ′) C = c]
}
.

(5)

The right-hand side defines a contraction mapping, so this necessary condition uniquely

determines vE(2, ·) and, using (2), vS(2, ·). This is the key technical insight that makes the

calculation of the model’s Markov-perfect industry dynamics simple. Although duopoly is not

an absorbing state for the industry, we can calculate the equilibrium duopoly payoffs without

knowledge of the firms’ payoffs in possible future market structures. This is because firms’

common post-entry value in a symmetric equilibrium equals zero unless joint continuation is

individually profitable.

With the duopoly post-entry value in hand, we can proceed to the problem of a potential

entrant facing a single incumbent. By Equation (3), this firm enters if vE(2, c) > ϕ and stays

out of the market if vE(2, c) ≤ ϕ. For all c,

aE(2, c) = I {vE(2, c) > ϕ} .

Note that strategy defaults to inactivity. When C has an atomless distribution, this strategy

almost surely prescribes the same action as any other entry strategy consistent with profit

maximization that does not default to inactivity. For this reason, our requirement that the

potential entrant default to inactivity has no substantial economic content.

Step 2: Calculation of vE(1, ·), vS(1, ·), aE(1, ·), and aS(1, ·) We proceed to consider the

monopoly payoffs, a potential entrant’s decision to enter an empty market, and an incumbent

monopolist’s survival decision. Because an incumbent monopolist choosing to survive will

earn vS(1, c), the post-entry value to a monopolist in (1) reduces to

vE(1, c) = max {0, vS(1, c)}

= max
{

0, βE
[
π(1, C ′) + aE(2, C ′)vE(2, C ′) + (1− aE(2, C ′)) vE(1, C ′)

∣∣∣ C = c
]}
.
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Given vE(2, ·) and aE(2, ·) from Step 1, the right-hand side defines a contraction mapping

that uniquely determines vE(1, ·) and, using Equation (2), vS(1, ·). It is not difficult to

demonstrate that the vE(1, c) and vS(1, c) so constructed always weakly exceed, respectively,

vE(2, c) and vS(2, c) from Step 1; so that the constructed value functions are consistent with

the requirements of Lemma 1.

Just as with a potential duopolist, we select the unique entry rule for a potential monop-

olist that defaults to inactivity. Since vE(2, c) ≤ vE(1, c), this is

aE(1, c) = I {vE(1, c) > ϕ} .

By (4), a monopolist chooses survival in demand states c such that vS(1, c) > 0 and exit

if vS(1, c) < 0. Our equilibrium construction uses the unique monopoly survival rule that

defaults to inactivity:

aS(1, c) = I {vS(1, c) > 0} .

Step 3: Calculate aS(2, ·) The first two steps have determined the only possible post-

entry and post-survival values, as well as an entry rule and a monopoly survival rule that

are consistent with them. This last step completes the equilibrium strategy’s construction

by determining a duopoly survival rule that satisfies (4).

As we noted above in Step 1, equilibrium requires aS(2, c) = 1 if vS(2, c) > 0. All that

remains undetermined is the survival rule when vS(2, c) ≤ 0. If profit maximization would

require even a monopolist to exit (i.e. vS(1, c) ≤ 0), then both duopolists exit for sure and

aS(2, c) = 0. If instead vS(1, c) > 0, then the reduced-form continuation game above has

no pure strategy equilibrium. In its unique mixed-strategy equilibrium, each firm’s survival

probability leaves its rival indifferent between exiting (and getting a payoff of zero for sure)

and surviving. That is, in demand states c such that vS(2, c) ≤ 0 and vS(1, c) > 0, the

indifference condition

aS(2, c)vS(2, c) + (1− aS(2, c)) vS(1, c) = 0

uniquely determines aS(2, c).5

Illustration of the Constructed Equilibrium The entry and survival rules so calculated

form our equilibrium. Figure 3 plots the payoffs for a particular numerical example. In it

π(c, n) = c$(n)− κ with κ > 0 and $(2) < $(1). We also choose the stochastic process for

C so that its current value has no influence on the equilibrium probability of a firm entering

5The mixed-strategy so derived prescribes that both firms exit for sure if vS(1, c) = 0, as the required by

our restriction to strategies that default to inactivity.
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Figure 3: Equilibrium Payoffs in the Homogeneous Duopoly Example

ĉ c1 c1
c2 c2 č

ϕ

Expected Monopoly Payoff vE(1, c)

Expected Duopoly Payoff vE(2, c)

( A ) ( B ) ( C )

or exiting in any future period. Specifically, C ′ = c with probability 1 − λ and equals a

draw from a uniform distribution over [ĉ, č] with the complementary probability. This and

the affine specification of π(c, n) together guarantee that vE(1, c) and vE(2, c) are piecewise

linear in c.

The lower (continuous) function in grey gives the duopoly post-entry value, vE(2, c). By

construction, this is identical to the expected discounted profits of a duopolist facing a rival

that will never exit first. It equals zero for c ≤ c2. Thereafter it rises π(2)/(1− β(1− λ)) for

each extra consumer. For c > c2, entry into a market with one incumbent is optimal.

The monopoly post-entry value vE(1, c) equals zero for demand levels c ≤ c1, and it

increases π(1)/(1−β(1−λ)) with each extra consumer until reaching c2. . When c > c2, the

period’s entry stage always ends with two firms, so the equilibrium payoff to a firm that began

the period as a monopolist drops to the grey expected duopoly payoff. The disconnected line

segment above this gives the expected payoff to a firm that finds itself as a monopolist after
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the period’s entry stage is complete.6 Given this value function, the equilibrium strategy for

a potential entrant facing an empty market is aE(1, c) = I {vE(1, c) > ϕ} ≡ I {c > c1}, and

the analogous continuation rule for an incumbent monopolist is aS(1, c) = I {vE(1, c) > 0} =

I {vS(1, c) > 0} ≡ I {c > c1}.
Duopolists’ common continuation strategy corresponds to the unique Nash equilibrium

of the game in Figure 2. Exit is a dominant strategy when c ∈ A, and survival is dominant

when c ∈ C. When c ∈ B the firms mix over survival and exit.

3.2 Two Productivity Types

We now proceed to adapt the basic ideas presented above to the case with productivity

heterogeneity. In the interest of expositional clarity, we denote the higher productivity type

with the intuitiveH (instead of 2) and the lower type with L (instead of 1). We construct this

case’s unique natural Markov-perfect equilibrium in six steps. Just as before, these steps take

us through a finite partition of the state space. In each of the first five steps, we compute the

equilibrium payoffs in the states considered by finding the unique fixed point of a contraction

mapping. The results from the completed steps are used as inputs in the following steps.

Figure 4 illustrates this sequence of computations. The construction ends by specifying the

unique strategy that supports the equilibrium payoffs in the sixth step.7

Step 1: Calculation of vE(2ιH, ·,H) and vS(2ιH, ·,H) As depicted by the upper-left

panel in Figure 4, we start the equilibrium construction by considering a market populated

by two typeH firms. The analysis in this step is a carbon copy of the first step of the previous

example. The simultaneous-move survival game between two type H firms is analogous to

the one in Figure 2, and Lemma 1 guarantees that “Survive” is the dominant strategy if

joint continuation gives both firms positive payoffs. Therefore, finding the fixed point of a

contraction mapping analogous to that in (1) yields vE(2ιH, ·,H). The continuation payoff

vS(2ιH, ·,H) immediately follows.

Step 2: Calculation of vE(ιL+ιH, ·,L), vS(ιL+ιH, ·,L), aE(ιL+ιH, ·), and aS(ιL+ιH, ·,L).

A type L firm that chooses to survive advances to H with probability ΠLH and remains

unchanged with probability ΠLL ≡ 1 − ΠLH. In a natural MPE, the survival of the type L
firm guarantees survival of any type H rival, so the continuation value vE(ιL+ ιH, C,L) must

6This would require some potential entrant to deviate from the equilibrium strategy.
7The Atari 400 computer appearing in the illustration went on sale in November 1979 and had 8K of

RAM. It has more than enough computing power to calculate the unique equilibrium.
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Figure 4: Equilibrium Computation for a Duopoly with Two Productivity Types
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satisfy

vE(ιL + ιH, c,L) = max
{

0, vS(ιL + ιH, c,L)
}

=βmax
{

0,ΠLLE [π(ιL + ιH, C
′,L) + vE(ιL + ιH, C

′,L)|C = c]

+ ΠLHE [π(2ιH, C
′,H) + vE(2ιH, C

′,H)|C = c]
}
.

Since vE(2ιH, ·, ιH) is in hand from Step 1, this defines a contraction mapping in the desired

value function. With its fixed-point in hand, we can then easily compute vS(ιL+ ιH, ·,L) and

aE(ιL + ιH, c) = I{vE(ιL + ιH, c,L) > ϕ},
aS(ιL + ιH, c,L) = I{vS(ιL + ιH, c,L) > 0}.

Step 3: Calculation of vE(ιH, ·,H), vS(ιH, ·,H), aS(ιH, ·,H), vE(ιL + ιH, ·,H), vS(ιL +

ιH, ·,H), and aS(ιL+ιH, ·,H). A market with a monopolist incumbent with typeH attracts

an entrant next period if and only if aE(ιL+ ιH, C
′) = 1, so vE(ιH, ·,H) and vE(ιH+ ιL, ·,H)

13



together satisfy

vE(ιH, c,H) = max
{

0, vS(ιH, c,H)
}

=βmax
{

0,E[π(ιH, C
′,H) + aE(ιL + ιH, C

′)vE(ιL + ιH, C
′,H)

+ {1− aE(ιL + ιH, C
′)} vE(ιH, C

′,H)|C = c]
}
.

(6)

Step 2 determined aE(ιL+ιH, ·), so the only unknowns in (6) are the value functions. Since

a typeH duopolist facing a type L rival becomes a monopolist if and only if aS(ιL+ιH, ·,L) =

0, these value functions must also satisfy

vE(ιL + ιH, c, ιH)

= aS(ιL + ιH, c,L)vS(ιL + ιH, c, ιH) + {1− aS(ιL + ιH, c,L)} vE(ιH, c,H)

= aS(ιL + ιH, c,L)β
{

ΠLLE[π(ιH + ιL, C
′,H) + vE(ιL + ιH, C

′,H)|C = c]

+ ΠLHE[π(2ιH, C
′,H) + vE(2ιH, C

′,H)|C = c]
}

+ {1− aS(ιL + ιH, c,L)} vE(ιH, c,H).

(7)

We have vE(2ιH, ·,H) from Step 1 and aS(ιL + ιH, ·,L) from Step 2, so together, (6) and

(7) determine vE(ιH, ·,H) and vE(ιL + ιH, ·,H). Obtaining vS(ιH, ·,H) and vS(ιL + ιH, ·,H)

from these is straightforward. Since we seek a natural equilibrium, the survival strategies of

interest must satisfy

aS(ιH, c,H) = aS(ιL + ιH, c,H) = I{vS(ιH, c,H) > 0}.

Step 4: Calculation of vE(2ιL, ·,L), aE(2ιL, ·), and vS(2ιL, ·,L). Next, we consider a

duopoly market with two type L firms. If both firms choose survival, then their idiosyncratic

shocks could change the market structure to either of the duopoly structures considered in

Steps 1-3 or leave it unchanged. Lemma 1 guarantees that if the value of simultaneous

survival to either incumbent is positive, then joint continuation is the only Nash equilibrium

outcome of their survival game. Therefore, vE(2ιL, ·,L) satisfies

vE(2ιL, c,L) = max
{

0, vS(2ιL, c,L)
}

=βmax
{

0,Π2
LLE [π(2ιL, C

′,L) + vE(2ιL, C
′,L)|C = c]

+ ΠLLΠLHE [π(ιL + ιH, C
′,L) + vE(ιL + ιH, C

′,L)|C = c]

+ ΠLHΠLLE [π(ιL + ιH, C
′,H) + vE(ιL + ιH, C

′,H)|C = c]

+ Π2
LHE [π(2ιH, C

′,H) + vE(2ιH, C
′,H)|C = c]

}
.
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The only unknown on its righthand side is vE(2ιL, ·,L), so we can use this Bellman

equation to calculate it. With this in hand, we construct the rule for entry into a market

with one type L incumbent as

aE(2ιL, c) = I{vE(2ιL, c,L) > ϕ}.

Moreover, it is straightforward to determine vS(2ιL, ·,L).

Step 5: Calculation of vE(ιL, ·,L), vS(ιL, ·,L), aE(ιL, ·), and aS(ιL, ·,L). If a type L
monopolist chooses survival, then one of four market structures will prevail in the next period,

depending on the incumbent’s idiosyncratic shock and on the decision of a potential entrant:

vE(ιL, c,L) = max
{

0, vS(ιL, c,L)
}

= max
{

0,ΠLLE
[
π(ιL, C

′,L) + aE(2ιL, C
′)vE(2ιL, C

′,L)

+ {1− aE(2ιL, C
′)} vE(ιL, C

′,L)|C = c
]

+ ΠLHE
[
π(ιH, C

′,H) + aE(ιL + ιH, C
′)vE(ιL + ιH, C

′,H)

+ {1− aE(ιL + ιH, C
′)} vE(ιH, C

′,H)|C = c
]}
.

(8)

Given the quantities calculated in Steps 1–4, the righthand side of (8) defines a contraction

mapping with vE(ιL, ·,L) as its fixed point. With this, it is straightforward to compute

vS(ιL, ·,L), which gives the survival rule

aS(ιL, c,L) = I{vS(ιL, c,L) > 0}.

Since vE(2ιL, c,L) ≤ vE(ιL, c,L), the entry rule for a potential monopolist can be written

as

aE(ιL, c) = I {vE(ιL, c) > ϕ}

Step 6: Calculation of aS(2ιH, ·,H) and aS(2ιL, ·,L). Steps 1–5 have determined all

equilibrium continuation values, entry strategies, and survival strategies for firms facing no

identical rival. All that remains is to determine the exit strategies for duopolies of identical

firms. Their construction parallels that from the case with homogeneous firms: Unless either

survival or exit is a dominant strategy, both firms mix between the two pure actions to leave
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each other indifferent between them.

aS(2ιL, c,L) =


1 if vS(2ιL, c,L) > 0,

vS(ιL,c,L)
vS(ιL,c,L)−vS(2ιL,c,L)

if vS(2ιL, c,L) ≤ 0 and vS(ιL, c,L) > 0

0 otherwise.

aS(2ιH, c,H) =


1 if vS(2ιH, c,H) > 0,

vS(ιH,c,H)
vS(ιH,c,H)−vS(2ιH,c,H)

if vS(2ιH, c,H) ≤ 0 and vS(ιH, c,H) > 0

0 otherwise.

This concludes the equilibrium construction. Although adding productivity heterogeneity

increased the number of steps required, calculating the fixed point of a contraction mapping

on a low-dimensional function space remains the most computationally intensive required

task.

3.3 Equilibrium Existence, Uniqueness, and Computation

We next extend the six-step calculation of duopoly equilibrium with ǩ = 2 to allow for arbi-

trary ǩ.The resulting algorithm consists of two procedures, which we present as flow charts

in Procedures 1 and 2. The first computes all payoffs, survival strategies for duopolists facing

strictly higher productivity types, and strategy for a potential entrant facing an incumbent.

The second procedure calculates the survival strategies for duopoly incumbents with weakly

higher productivity types and the strategy for a potential entrant facing an empty market.

In Procedure 1’s flow chart, h indexes the productivity type for the weakly better firm,

and l for the weakly worse firm. In the course of its execution, h decreases from ǩ to 1. For

each level of h, l decreases from h to 1. For any pair of (h, l); the post-entry value wE to the

type l firm that faces a type h rival is computed as the fixed point of Th,l. This functional

operator is defined by the recursive condition for wE(ιl + ιh, ·, l). The type l firm has weakly

lower productivity type and rationally expects its rival to remain whenever it continues with

positive probability, so this firm’s payoffs only depend on future states in which both firms

survive. That is, evaluating Th,l only requires the continuation value being calculated and

on wE(ιi + ιj, ·, j) for all (i, j) 6= (h, l) such that i ≥ h, j ≥ l. Since Procedure 1 proceeds

in descending order of (h, l), these post-entry values are in hand for the computation of

wE(ιl + ιh, ·, l).
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Required Functional Operators

Th,l(f)(c) = max

{
0, βE

∑
i,j

ΠhiΠljπ(ιi + ιj , C
′, j) +

∑
(i,j)6=(h,l)

ΠhiΠljwE(ιi + ιj , C
′, j) + ΠhhΠllf(C ′) C = c

}

Th(f)(c, k) = max

{
0, βE

[
αS(ιh + ιk, c, k)

(∑
i,j

ΠhiΠkjπ(ιi + ιj , C
′, i) +

∑
j

ΠhhΠkjf(C ′, j) +
∑
i>h

∑
j

ΠhiΠkjwE(ιi + ιj , C
′, i)

)

+ {1− αS(ιh + ιk, c, k)}

(∑
i

Πhiπ(ιi, C
′, i) + Πhh

{
1− αE(ιh + ι1, C

′)
}
f(C ′, 0)

+
∑
i>h

Πhi

{
1− αE(ιi + ι1, C

′)
}
wE(ιi, C

′, i) + ΠhhαE(ιh + ι1, C
′)f(C ′, 1)

+
∑
i>h

ΠhiαE(ιi + ι1, C
′)wE(ιi + ι1, C

′, i)

)
C = c

]}
, αS(ιh + ι0, ·, 0) ≡ 0,Π00 ≡ 1

h ← ǩ

START

l ← h

h ←
h − 1

l ← l − 1

wE(ιh + ιl, ·, l)←
fixed point of Th,l

wS(ιh + ιl, ·, l)←
2nd term of Th,l(wE)

l < h?

l = 1?

h = 1?

Return wE, wS,

αE, and αS(ιh +

ιl, ·, l) for l < h.

STOP

{wE(ιh + ιk, ·, h); 0 ≤ k < h} ← fixed point of Th

{wS(ιh + ιk, ·, h); 0 ≤ k < h} ← 2nd term of Th(wE)

αE(ιh + ι1, ·)← I {wE(ιh + ι1, ·, 1) > ϕ}

αS(ιh + ιl, ·, l) ←
I {wE(ιh + ιl, ·, l) > 0}

Yes

No

Yes

YesNo

No

Procedure 1: Initial Equilibrium Calculations for the Heterogeneous Duopoly Model
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When l reaches 1, the next step is to compute simultaneously the monopoly payoff for a

type h firm and the duopoly payoff for a type h firm facing a type k (for all k < h) rival as the

fixed point of Th. Evaluating its right-hand side requires the value function being computed,

the entry rule of a potential entrant facing an incumbent with productivity type no less than

h ,the corresponding post-entry values for the incumbent, the survival strategies for rivals

with types k < h, and the corresponding post-survival values. Again, previous computations

using higher values of h, l determined these before this computation begins.

Procedure 2 complements Procedure 1 by determining the entry strategy for a potential

monopolist; and the survival strategy for a firm with weakly better productivity type. All but

one of these strategies are pure and refelct the values of entry and continuation as expcted.

The survival strategy is mixed when both firms have the same type, the payoff to joint

continuation is negative, and the payoff isolated continuation is positive. By construction,

the resulting probability of survival lies in (0, 1].

Algorithm 1 (Duopoly Equilibrium Calculation). Compute a candidate equilibrium strategy

(αS, αE) and payoffs wS and wE in two steps:

1. Use Procedure 1 to compute wE, wS, αS(ιh + ιl, c, l) and αE(ιh + ι1, c) for all h, l ∈
K, l < h and c ∈ [ĉ, č].

2. Use Procedure 2 to compute αE(ι1, c) for all c ∈ [ĉ, č] and to compute αS(ιh + ιl, c, h)

for all h ∈ K, l ∈ {0, . . . , h}, and c ∈ [ĉ, č];

We can use Lemma 1 to prove that the constructed equilibrium is unique among all

equilibria that default to inactivity.

Proposition 1 (Equilibrium in Heterogeneous Duopoly Model). There exists a unique nat-

ural Markov-perfect equilibrium. Algorithm 1 computes its payoffs and strategy. The equilib-

rium payoffs vS = wS and vE = wE. The equilibrium strategy (aS, aE) = (αS, αE).

Proof. See Appendix A.

3.4 Application

We apply our heterogenous-duopoly model to the welfare analysis of an R&D race game.

Consider a market for some new good. In period t, Ct consumers populate the market. All of

these consumers have the same utility function, which is quadratic in the quantity of the new

good consumed. Consequently, total demand for the new good at time t and price p equals

Ct(a − p)/b, for some parameters a, b > 0. A firm supplying q units of this good receives a

surplus Ctpq.
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START

Specify c ∈ [ĉ, č], h ∈ K, and l ∈ {0, 1, . . . , h}

Get wE and wS from Procedure 1

h > l ?
αS(ιh + ιl, c, h) ←

I {wS (ιh + ιl, c, h) > 0}

h = 1 ?

αE(ι1, c) ←
I {wE (ι1, c, 1) > ϕ}

wS(2ιh, c, h)
> 0?

αS(2ιh, c, h) ← 1

wS(ιh, c, h)
= 0?

αS(2ιh, c, h) ← 0

αS(2ιh, c, h)← wS(ιh, c, h)

wS(ιh, c, h)− wS(2ιh, c, h)
. (9)

STOP

Yes

No

Yes

Yes

No

Yes

No

No

Procedure 2: Calculation of Candidate Survival Rule for the Heterogeneous Duopoly Model
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Firms must invent the good before they can supply it to the market. This requires that

they enter the market, incurring an entry cost ϕ, and subsequently invest in R&D, at a fixed

cost κ(k). There are several milestone stages in the invention process, marked by 1, 2, . . . , ǩ.

New entrants start in stage 1 and, as long as they stay in the market and pay the fixed

cost κ(k) according to their current stage k, progress through the successive R& D stages

according to a Markov chain with transition matrix Π. Once a firm reaches the final stage

ǩ, it has invented the product and can start selling it in the market. The fixed cost κ(ǩ) still

needs to be paid to produce the good.8 An active firm may exit the market in any stage of

the R&D race to avoid paying future fixed costs.

We assume that at most two firms are active in the market at any give time. If only one

firm is active in stage ǩ, it sells the good at the monopoly price. If two firms are selling

the good, they set symmetric quantities to maximize qop+ λqrp, where qo and qr denote the

quantities set by the firm and its rival, respectively, and λ indexes the level of collusion. If

λ = 0, these two firms are Cournot competitors. At higher values of λ, they collude more.

If λ = 1, then they operate as if they are branches of a monopoly firm that split their joint

monopoly revenues evenly.

This game embodies Fershtman and Pakes’ (2000) key “semi-collusion” assumption that

firms may collude in setting quantities (or prices) but not when choosing R&D investment.

Unlike Fershtman and Pakes, we take the level of collusion as exogenously given and ignore the

intensive margin of the firms’ strategic R&D investments. This focus on the (entry and exit)

decisions to participate in the R&D race allow us to apply the heterogenous-duopoly model

to analyze industry dynamics and welfare under different levels of collusion. We find that the

model is sufficiently rich to replicate one of Fershtman and Pakes’ main findings: Consumers

may benefit from collusion, unlike in static models that take the industry structure as given.

Intuitively, the direct negative effect of collusion on consumer welfare through weakened

competition in the product market, well known from static models, is counteracted by a

positive effect on R&D participation that increases product availability and product market

competition.

To obtain this result, we first compute the model’s unique natural Markov-perfect equi-

librium for each value of λ between 0 and 1, with a 0.01 increment. Throughout, we specify

Q(·|C) to approximate a random walk in the logarithm of C with innovation variance 0.32,

reflected off of the state space’s upper and lower boundaries, ln ĉ = −1.5 and ln č = 1.5. Also,

we specify ǩ = 4, β = 0.95, κ(k) = 20 for all k, ϕ = 470, demand parameters a = 20 and

b = 2, and the Markov transition matrix Π for the R&D stages so that firms either progress

one stage or remain put: Πk,k = Πk,k+1 = 0.5 for all k < ǩ and Πǩ,ǩ = 1.

8Alternatively, we can let the fixed cost decline with k. This only requires a minor adjustment of the

model.
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Subsequently, for each value of λ, we use the equilibrium strategy to simulate the market’s

evolution over 100 periods, starting from a fixed c0 = 2.718, drawn from the demand process’s

ergodic distribution, and an empty market. We repeat the simulation 10,000 times, drawing

new demand and type transitions in each simulation, but using the same random draws across

the different values of λ. To analyze the impact of collusion on welfare, we compute, for each

level of collusion λ, the discounted sum FP (λ) of all firms’ revenues net of all firms’ fixed

costs and entry costs over the 100 periods, and the discounted sum CS(λ) of the consumer

surplus over the 100 periods, both averaged over the 10,000 simulation runs. We assume that

consumers have the same discount factor as firms. The total surplus TS(λ) ≡ FP (λ)+CS(λ).

Figure 5: Welfare Analysis for Various Levels of Collusion
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The upper-left and upper-middle panels of Figure 5 show CS(λ) and FP (λ) for each value

of λ, as a proportion of the competitive market’s total surplus TS(0). First, if λ increases

from 0, CS(λ) gradually increases and FP (λ) gradually decreases. Then, CS(λ) jumps up

and FP (λ) jumps down. At higher levels of collusion, increases in λ decrease the consumer

surplus and increase firms’ profits.

Clearly, for low values of λ, the positive effect of increasing collusion on R&D investment

dominates its direct weakening effect on product market competition. Figure 5’s bottom-left

panel sheds further light on this. It plots the number of active firms for each λ, averaged

over the 100 periods and all the simulation runs. We observe a gradual increase and then
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an upward jump in the number of firms, paralleling the increase and jump in the consumer

surplus. If λ is low; that is, with little or no collusion; no entrant facing a monopoly market

can recover the sunk cost of entry, even when demand is at its highest level. Therefore,

markets with little collusion are often monopoly markets. If λ increases, firms expect higher

payoffs from a duopoly product market, and are more willing to participate in the R&D race,

even if one firm is already in this race. The value of λ at which the number of firms and

welfare jump is the level of collusion above which two firms enter immediately, in the initial

demand state c0.

This increase in the number of firms improves the consumer surplus in two ways. First,

it improves product availability. Specifically, in this example, on average the first product

reaches the market faster with higher levels of collusion (see Figure 5’s bottom-middle panel).

Second, it mitigates the anticompetitive effects of collusion, by ensuring that consumers are

more often charged the (collusive) duopoly price, which, for all λ < 1, is lower than the

monopoly price. At low levels of λ, the consumer welfare enhancing effects dominate the

direct negative effects of increased collusion.

In contrast, as is clear from Figure 5’s bottom panels, at higher levels of collusion, the

market is often served by the maximum number of two firms. Consequently, further increases

in λ have only small effects on the number of firms serving the market and the speed at which

the good becomes available. Therefore, at higher levels of collusion, the direct effects of

collusion dominate, and the consumer surplus gradually falls if λ increases. Nevertheless, the

benefits from earlier consumption under full collusion (λ = 1) ensure that CS(1) > CS(0).

The variation of FP (λ) with λ mirrors the variation of CS(λ). If λ crosses the level at

which two firms immediately enter the market, instead of one, the total fixed cost incurred

is doubled, but the total revenue is not. Consequently, FP (λ) jumps down. For similar

reasons, FP (λ) falls gradually if λ increases at lower levels of collusion. In contrast, at

higher levels of collusion, the market is usually a duopoly and the market structure does not

change much with increases in λ. Consequently, the positive effects of such increases on the

collusive duopoly price dominate, and FP (λ) increases. Finally, FP (1) < FP (0), because

of scale savings: The monopoly price is usually charged at either collusive extreme, but two

firms, instead of one, often incur fixed costs under full collusion.

Figure 5’s upper-right panel plots the total surplus as a fraction of the competitive mar-

ket’s total surplus. At low levels of collusion, an increase in λ increases TS(λ). In particular,

the upward jump in the number of firms leads to an upward jump in the total surplus. At

these levels of collusion, the positive effects of increased product market competition and

earlier consumption on consumer welfare dominate its negative effects on firms through price

decreases and fixed cost increases. At higher levels of collusion, the total surplus falls with

increases in λ, because R&D activity is hardly affected and the negative welfare effects of

22



collusion familiar from static models dominate.

In this specific example, as in static models that take the market structure as given,

full collusion in the product markets lowers welfare below that in a competitive market:

TS(1) < TS(0). However, unlike in such static models, the competitive market is often

served by only one firm and monopolistic pricing is common under both levels of collusion.

Consequently, the result that full collusion lowers total welfare cannot be explained by the

usual negative welfare effects of collusive pricing. Instead, it is due to the waste of fixed

costs caused by excess entry of producers, which is not offset by the gains from earlier

consumption.9

It is worth stressing that these results are obtained at a very low computational cost.

For any particular value of λ, with 301 grid points for C and the parameter values of this

section’s experiment, we can solve the model within one second using Matlab on a PC.

Even with β = 0.995 (monthly data) and ǩ = 10, which implies a state space with over

33,000 points, we can solve the model in about 5–30 seconds on a PC.10 This feature of our

framework makes it a very useful complement to existing richer, but computationally more

forbidding, frameworks for the analysis of industry dynamics. For example, Fershtman and

Pakes’ framework allows for a more detailed study of collusion dynamics by modeling, among

other things, the intensive margin of R&D investment and endogenizing collusion. However,

their framework’s comparative richness comes at a substantial computational cost: It makes

the replication of their results across different parameter values very hard. In contrast, our

framework allows us to quickly examine the welfare implications of collusion for a wide range

of parameter values.

4 The General Model

We now turn to the general model, with arbitrary finite m̌ and ǩ. The central difficulty of

the equilibrium analysis is that the equilibrium payoff function does not necessarily satisfy a

monotonicity property analogous to the ones in Lemmas 1. In Section 4.1, we first analyze

a type of equilibrium in which the payoffs still retain the monotonicity property: Adding an

active firm into the industry weakly decreases other firms’ payoffs. We can straightforwardly

extend Algorithm 1 and use a sequence of contraction mappings to efficiently compute such an

equilibrium, if it does exist. This monotonicity property is the key to establish the essential

9Obviously, this result can be reversed if consumers are impatient and/or have much larger weight in the

total surplus than producers do.
10We use value function iteration to compute the fixed points of the contraction mappings, which simplifies

our code, but results in a (slow) linear convergence rate in β. To cope with this issue, one can turn to more

sophisticated approaches (see Judd, 1998, for a brief survey). For example, Ferris, Judd, and Schmedders’s

(2007) Newton-based method ensures global convergence with a quadratic convergence rate.
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uniqueness of this type of equilibrium. However, since the monotonicity property does not

always hold in the general model, this type of equilibrium may not exist. In Section 4.2,

we discuss a simple example in which the monotonicity of equilibrium payoffs is violated

and multiple equilibria emerge. In one class of those equilibria, if firms were allowed to

renegotiate, they could strictly improve their payoffs by playing another equilibrium. We

continue to focus on the type of equilibria that are renegotiation-proof and establish their

existence. An extension of our algorithm can compute all such equilibria, if C has a discrete

distribution.

4.1 Payoff-Monotone Equilibrium

We define an equilibrium to be payoff-monotone if the equilibrium payoffs satisfy conditions

analogous to the ones in Lemma 1.

Definition 3. A Markov-perfect equilibrium is payoff-monotone if its equilibrium payoff func-

tions satisfies vS(m, c, k) ≥ vS(m+ ιk, c, k) and vE(m, c, k) ≥ vE(m+ ιk, c, k) for all (m, c, k).

We showed in Section 3 that duopoly firms of the same type choose to continue if contin-

uation guarantees a positive payoff, because the heterogenous duopoly model’s equilibrium

payoffs satisfy Lemma 1. This property allows us to construct a sequence of contraction map-

pings in Algorithm 1 to compute the unique natural Markov-perfect equilibrium. Similarly, in

the general model, suppose that, for some parameter values, there exists a payoff-monotone

natural Markov-perfect equilibrium. Then, if continuation renders the payoff to all firms of

the same type positive, continuation is the dominant strategy for these firms. Following the

argument leading to condition (5) in Section 3.1, we can establish similar necessary conditions

on equilibrium payoffs. For instance, in the market with m̌ type ǩ firms, the payoff-monotone

equilibrium payoff vE(m̌ιǩ, c, ǩ) necessarily satisfies

vE(m̌ιǩ, c, ǩ) = max{0, βE[π(m̌ιǩ, c
′, ǩ) + vE(m̌ιǩ, c

′, ǩ)|C = c]}. (10)

The right hand side of (10) defines a Bellman operator that uniquely determines vE(m̌ιǩ, ·, ǩ).

Note that the heterogeneous duopoly model and the general model only differ in the

number of firms and share essentially the same dynamic specification. Therefore, Algorithm 1

can be naturally extended to solve for the payoff-monotone natural equilibrium, by computed

the fixed points of a sequence of contraction mappings. Similarly to Algorithm 1, we partition

the state space, order the parts, and compute the equilibrium in a corresponding sequence

of steps. Each step covers the computation on a single part of the state space. We order the

steps so that all results that are needed in later steps are passed on from earlier steps.

The partition and its order are defined using an oriental lexicographic order.
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Definition 4. Oriental lexicographical superiority (OLS) � is a relation over Rn. For any

pair of vectors x, y ∈ Rn, x � y if xn > yn, or (xn = yn and xn−1 > yn−1), or , . . . , or (xn =

yn and xn−1 = yn−1 and . . . and x1 > y1).

We use the phrase “oriental” because the vectors x, y are read from right to left when

being compared, as in Arabic and Hebrew. In the previous sections, we have implicitly used

an ordering based on OLS; the equilibrium payoff for an OLS market structure is always

computed before the payoffs in any state it is superior to. For example, in Section 3.1’s

one productivity type example, � is equivalent to > on R and the payoff to a duopolist

is computed first, followed by the payoff to a monopolist. In Section 3.2, the sequence of

market structures considered was {2ιH, ιH + ιL, ιH, 2ιL, ιL}. Thus, we partitioned the state

space into five parts and ordered them in decreasing OLS to compute the equilibrium payoffs

and strategy. Furthermore, this ordering extends to Algorithm 1 as well; the index pair (h, l)

in Procedure 1 is decreasing in OLS. This ordering ensures that equilibrium payoffs and

entry/survival rules necessary for computation in later steps are calculated in earlier steps.

We construct the algorithm for the general model following the same ordering. For any

(m̌, ǩ) pair, there are
(
m̌+ǩ
ǩ

)
− 1 = (m̌+ǩ)!

ǩ!m̌!
− 1 possible non-empty markets. First, we partition

the state space into (m̌+ǩ)!

ǩ!m̌!
−1 parts, with each step of the algorithm computing the payoff on

one of these parts. In step i, to see what the states in this part are, suppose the i-th ranked

market structure in the OLS sequence is mi. Let ki = min{k ∈ K;mi
k > 0} be the lowest

type of active firm in mi and let a set Mmi collect all the market structures that share the

same number of type-ki, ki + 1, . . . , ǩ firms as mi. The part of the state space considered in

this step is then {(m, c, ki);m ∈Mmi , c ∈ [ĉ, č]}. In other words, in the i-th step, we compute

a type-ki firm’s payoff in every market structure in Mmi for all c. Since this part of the state

space are constructed from mi, we say that it is indexed by mi, and hence name mi as the

indexing market structure.

The first step of the algorithm is indexed by the most superior market structure, m̌ιǩ.

Then, we proceed the algorithm and sequentially determine the payoffs and strategy for

market structures in the order of decreasing OLS.
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Algorithm 2 (Calculation of a Candidate Equilibrium for the General Model).

START

m̌← max{n ∈ N; π(ιǩ + (n− 1)ι1, č, ǩ) +
βπ(ιǩ, č, ǩ)

1− β
> 0}

αS(·)← 1, αE(·)← 0, wE(·)← 0

Order all elements from the set {m ∈ Zǩ; 1 ≤ |m| ≤
m̌} by �. Index the obtained sequence by m1,m2, . . ..

i ← (m̌+ǩ)!

ǩ!m̌!
− 1

ki ← min{k ∈ K;mi
k > 0}

Mmi ←

mi +
ki−1∑
k=1

ιkmk; |mi|+
ki−1∑
k=1

mk ≤ m̌


Hi
S ←

{
(m, c, k);m ∈Mmi , k = ki

}
For all H i

S ∈ Hi
S, compute wE(H i

S) as the fixed point of

(Tf)(H i
S) = max {0, βE [π(N ′, C ′, K ′) + g(H i′

S ) H i
S]} ,

and wS(H i
S) = βE [π(N ′, C ′, K ′) + g(H i′

S ) H i
S] , with

g(H i′
S ) =

 f(H i′
S ) if H i′

S ∈ Hi
S

wE(H i′
S ) if H i′

S ∈ Hi+1
S

⋃
. . .
⋃

H
(m̌+ǩ)!

ǩ!m̌!
−1

S

mi
ki = 1?

or ki = 1?
i ← i − 1

Compute survival/entry rule.

i = 1?

STOP

Yes

No

Yes

No
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In Algorithm 2, when computing the candidate post-entry payoff wE as the fixed point of

the Bellman equation, the expectation relies on the relevant parts of other firms strategy11.

Because of the algorithm’s OLS ordering, for the firms with lower productivity types than

the firm of interest and the potential entrants, these values have been computed in previous

steps. The survival rules for firms with productivity types at least as good as the firm of

interest are set to continuation. Also, the OLS ordering of the algorithm helps to ensure

that the current states that the firm of interest is facing only evolves to states that have

been covered in previous computation, providing that this firm continues. Hence, all relevant

values of future post-entry payoff have been computed in previous steps. Then, T is always

a contraction mapping with unique fixed point wE(HS).

Procedure 3 is devoted to computing the survival/entry strategy. In this procedure, when

firms are randomizing between survival and exit, the mixing probability is chosen to be one

of possible probabilities that solves the indifference condition (11). If it is not profitable to

unilaterally deviate from exit to survival given all other firms of the same type opt for exit,

the mixing probability can also be set to 0.

Note that Algorithm 2 does not require wE to be monotone as in Definition 3. After com-

puting wE with Algorithm 2, we can check whether it satisfies this monotonicity condition. If

it does, we can show that the candidate equilibrium strategy (αS, αE) is unique. We can also

verify that (αS, αE) forms a natural Markov-perfect equilibrium. Since the Bellman equa-

tion for wE defines the necessary condition for any payoff-monotone natural Markov-perfect

equilibrium payoff, if one such equilibrium exists, not only we are able to compute it using

Algorithm 2, but also we can prove its essential uniqueness.

Proposition 2 (Payoff-Monotone Equilibrium in the General Model). If there exists a payoff-

monotone natural Markov-perfect equilibrium, it is the unique such equilibrium and Algorithm

2 computes it. The post-entry equilibrium payoff function is wE and the equilibrium strategy

is (αS, αE).

Proof. See Appendix B.

4.2 Renegotiation-Proof Equilibrium

Proposition 2 implies that a payoff-monotone natural Markov-perfect equilibrium does not

exist if wE is not monotone as in Definition 3.

In Appendix C, we present a simple example in which equilibrium payoffs are not mono-

tone and there are multiple natural Markov-perfect equilibria. In this example, we consider

an industry with at most three active firms. We assume that firms can be type H or type

11Computing the market structure transition matrix conditional on firms’ strategy is conceptually straight-

forward, but practically involved. We describe the details in Section ?? of the online appendix.
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mi, ki

Specify c ∈ [ĉ, č] and m ∈ Mmi+jιki
,∀0 ≤ j ≤ m̌ − |mi|

mki = 1 ?
αS(m, c, ki) ←

I[wE(m, c, ki) > 0]

wE(m, c, ki)
> 0?

αS(m, c, ki) ← 1

Find all p’s ∈ [0, 1) satisfying,
mki−1∑
j=0

(1−p)mki−1−jpj
(
mki − 1

j

)
wS(m−(mki−1−j)ιki , c, ki) = 0. (11)

wS(mi, c, ki)
> 0?

αS(m, c, ki) ← 0

or one of the p’s

αS(m, c, ki) ←
one of the p’s

ki = 1 ?

αE(m, c) ← I{w(m +

jι1, c, 1) − ϕ >

0, ∀0 ≤ j ≤ m̌ − |m|}

CONTINUE

Yes

No

Yes

No

No Yes

No

Yes

Procedure 3: Calculation of Candidate Entry/Survival Rule for the General Model
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L. For two type H duopoly firms contemplating survival, we create a situation that if these

two firms jointly continue to next period, any type L potential entrant will never find it

profitable to enter this market. This way, the type H duopolists deter any future entry by

joint survival and enjoy a high duopoly surplus forever. Otherwise, if one of the firms exits,

then two type-L firms will enter the market and remain active onwards. The survived type-H
firm will only receive a low triopoly surplus thereafter. Connecting this example to the static

survival game depicted in Figure 2, we construct the payoff matrix such that, for some c,

the post-survival value satisfies vS(2ιH, c,H) > 0 > vS(ιH, c,H). Therefore, although “Sur-

vive, Survive” remains an equilibrium in this static game, “Exit, Exit” emerges as another

equilibrium. Also, there could be equilibria involving mixed strategies. Indeed, we show in

Appendix C that we do have three possible equilibrium actions at this particular point of the

game tree. Namely, to survive for sure, to exit for sure, and to survive with some probability.

We further demonstrate that when three firms are randomizing between survival and exit

because joint survival is not profitable, the mixing probability can be multiple.

We distinguish two sources of equilibrium multiplicity using this example. One comes

from the incumbents’ failure to jointly continue if this is profitable. If the two type-H
firms can coordinate on continuation, they can strictly improve their equilibrium payoffs.

Since these two firms repeatedly interact, it seems reasonable to assume that they are able

to “renegotiate” to joint continuation whenever this is profitable. Henceforth, we restrict

attention to equilibria with the desirable property that firms cannot improve their payoffs by

one-shot change of action. We call this property renegotiation-proofness.

Definition 5. A natural Markov-perfect equilibrium is (one-shot) renegotiation-proof if, for

any (m, c) pair, no one-shot agreement satisfying the following properties can be negotiated:

• all firms in the agreement change their survival actions once;

• the agreement is self-enforcing, so no firm in the agreement has incentive to unilaterally

change the agreed action;

• if one type k firm is in the agreement, all type k firms are; and

• the payoffs to all firms in the agreement are strictly improved.

In any equilibrium, a firm earns positive payoffs only when continuing for sure. Therefore,

if all firms of a certain type can strictly improve their payoff by changing their actions, it must

be the case that (i) the actions must be changed from exiting with non-negative probability to

surviving with probability one (ii) the actions of joint continuation must give all firms in the

agreement positive payoff. Therefore, this refinement has bite only when all incumbents of

certain type(s) could coordinate on sure joint continuation and earn positive payoffs, but will
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not unilaterally continue if others do not. Note that in the duopoly model, Lemma 1 ensures

that both incumbents of the same type continue for sure if joint continuation renders payoff

positive. Therefore, no further improvement is possible via renegotiation. Consequently, the

natural equilibrium in Section 3 is renegotiation-proof. Since the monotonicity in Definition

3 essentially functions in the same way as the monotonicity in Lemma1, the payoff-monotone

equilibrium in the general model is also renegotiation-proof.

Recall that in Algorithm 2, αS(m, c, k) is set to its initial value of one when computing

wE(m, c, k). This implies that all type-k firms are “forced” to jointly continue if positive

payoff is expected. Therefore, the Bellman equation for wE is a necessary condition on wE

for a renegotiation-proof natural Markov-perfect equilibrium. When verifying that (αS, αE)

forms a natural equilibrium, we also verify that it is a renegotiation-proof one. We can

further show that Algorithm 2 always delivers some (αS, αE) as its outcome, which proves

the existence of a renegotiation-proof natural Markov-perfect equilibrium.

Proposition 3 (Renegotiation-proof Equilibrium in the General Model). Algorithm 2 al-

ways computes some (αS, αE) and this strategy (αS, αE) forms a renegotiation-proof natural

Markov-perfect equilibrium. So, a renegotiation-proof natural Markov-perfect equilibrium al-

ways exists.

Proof. See Appendix B.

The renegotiation-proof property helps to eliminate the equilibria involving exit and mix-

ing actions when joint continuation is profitable. However, the other source of the multi-

plicity persists. As we have illustrated in the example in Appendix C, when joint survival

is not profitable and more than two firms are randomizing between survival and exit, there

can be multiple equilibrium mixing probabilities. The property of renegotiation-proofness is

silent on which probability to select. Therefore, each distinct equilibrium mixing probabil-

ity leads to a different equilibrium survival rule. Different combinations of the equilibrium

survival rules result in different renegotiation-proof natural Markov-perfect equilibria. Since

the Bellman equation for wE defines the necessary condition for renegotiation-proof natural

Markov-perfect equilibrium payoff, any such equilibrium should be an outcome of Algorithm

2, if the mixing probabilities that correspond to this equilibrium are used in the computation.

Recall that we do have proven in Proposition 2 that if a payoff-monotone equilibrium

exists, the mixing probability is always unique, and such equilibrium is the unique outcome

of Algorithm 2. This implies the following corollary to Proposition 2.

Corollary 1. If there exists a payoff-monotone natural Markov-perfect equilibrium, it is also

the unique renegotiation-proof natural Markov-perfect equilibrium.
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If there is no payoff-monotone equilibrium, the possible multiplicity of mixing probabilities

may challenge our equilibrium computation. After all, each step of Algorithm 2 requires the

unique input of payoffs and rules computed in the previous steps. (In Section 4.1, Algorithm

2 simply selects an arbitrary mixing probability to continue when the multiplicity arises.) In

Section ?? of the online appendix, we prove that the number of renegotiation-proof natural

Markov-perfect equilibria is finite if C is discrete. We also extend Algorithm 2 so that

it computes all renegotiation-proof natural Markov-perfect equilibria, by creating parallel

branches of Algorithm 2 every time the multiplicity arises, with each branch corresponding

to a distinct choice of mixing probability.
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Appendices

A Proofs for Section 3

Proof of Lemma 1. First, we verify a property of the post-entry payoff function.

Property 1. For a given k ∈ K, and for all x such that 0 ≤ x ≤ ǩ, if vE(ιk + ιx, ·, k) is

weakly decreasing in x, we say that vE satisfies Property 1 for k.

Intuitively, Property 1 requires that a type-k firm’s post-entry payoff is weakly decreasing

in its opponent’s type. A sufficient condition for Lemma 1 is that in any natural equilibrium,

vE satisfies Property 1 for all k ∈ K. In order to prove this sufficient condition, we also need

to verify vE satisfies three other interdependent properties for all k ∈ K.

Property 2. For a given k ∈ K, and for all x such that 0 ≤ x ≤ ǩ, if vE(ιk + ιx, ·, x) is

weakly increasing in x, we say that vE satisfies Property 2 for k.

Property 3. For a given k ∈ K, and for all x such that 1 ≤ x ≤ k − 1, if vE(ιk + ιx, ·, x) ≤
vE(ιk−1 + ιx, ·, x), we say that vE satisfies Property 3 for k.

Property 4. For a given k ∈ K, if vE(ιk, ·, k) ≥ vE(ιk−1, ·, k − 1), we say that vE satisfies

Property 4 for k12.

To prove the three properties for all k, we first show that given any equilibrium strategy

(aS, aE), vE is computed as the unique fixed point of a contraction mapping. Then, we prove

in turn that vE satisfies Property 2, 1, 3, and 4 for k = ǩ. Therefore, if we have a Banach

space in which all elements are functions that satisfy the properties for ǩ, the contraction

maps this space into itself. Next, we iterate on k = ǩ−1, . . . , 1. In each step, we start with a

Banach space in which all elements are functions that satisfy the properties for k + 1, . . . , ǩ.

We know from the previous steps that the contraction maps the space into itself. Then,

we construct a smaller Banach space by requiring all its elements to additionally satisfy the

properties for k. We further show that the contraction maps the smaller Banach space into

itself. This procedure gives us a sequence of shrinking spaces, with the smallest one contains

all functions that satisfy Properties 1-4 for all k. Because vE is the unique fixed point of the

contraction, it must be in the smallest space and satisfy these properties for all k. We leave

all the algebraic details to Section ?? of the online appendix.

After Property 1 is verified for all k, vE(2ιk, c, k) ≤ vE(ιk, c, k) for any k ∈ K follows

immediately. Using the definition in equation (2) and Property 1, we can prove vS(2ιk, c, k) ≤
vS(ιk, c, k) for any k ∈ K. The details are in the online appendix.

12For completeness, vE(ι0, ·, 0) ≡ 0.
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Proof of Proposition 1. We prove the proposition in two steps. First, we establish a lemma

verifying that the candidate equilibrium computed by Algorithm 1 is indeed a natural

Markov-perfect equilibrium. Then, we use Lemma 1 to prove that the constructed equi-

librium is essentially unique.

Lemma 2. The strategy (αS, αE) and payoff function wE constructed by Algorithm 1 form

a natural Markov-perfect equilibrium.

Proof. The proof for Lemma 2 has two parts. First, note that Algorithm 1 already embodies

the requirement in Definition 1, i.e., for k1 > k2, holding αS(ιk1 + ιk2 , c, k1) = 1 when

computing the payoff and strategy for k2 firm. We then need to verify that the candidate

equilibrium payoff function wE supports this heuristic, i.e., wE(ιk1 + ιk2 , c, k1) > 0 whenever

αS(ιk1 +ιk2 , c, k2) > 0. Second, we show that (αS, αE) forms a natural equilibrium by proving

that it is one-shot-deviation-proof.

Prove wE(ιk1 + ιk2 , ·, k1) ≥ wE(ιk1 + ιk2 , ·, k2). Given any (αS, αE), wE is computed as

the fixed points of the contraction mappings in Algorithm 1. This enables us to use the

same trick as in the proof for Lemma 1. We focus on a Banach space in which all elements

are functions that satisfy f(ιk1 + ιk2 , ·, k1) ≥ f(ιk1 + ιk2 , ·, k2). Then we prove that all the

contractions computing wE map the space into itself. The algebraic details are in the online

appendix, Section ??.

Verify one-shot deviation proofness. To verify one-shot deviation proofness for αS, we

need to show that for any k1, k2, c, 1 ≤ k1 ≤ ǩ and 0 ≤ k2 ≤ ǩ,

αS(ιk1 + ιk2 , c, k1) ∈ arg max
a∈[0,1]

aE[wS(M ′, c, k1)|M = ιk1 + ιk2 ] (12)

where

E[wS(M ′, c, k1)|M = ιk1+ιk2 ] =


aS(ιk1 + ιk2 , c, k2)wS(ιk1 + ιk2 , c, k1)

+(1− aS(ιk1 + ιk2 , c, k2))wS(ιk1 , c, k1) if k1 ≥ k2

wS(ιk1 + ιk2 , c, k1) if k1 < k2

(13)

and wS is defined analogously as vS by equation 2. To verify (12), consider the following

cases

1. For all c such that αS(ιk1 + ιk2 , c, k1) = 1, we know wE(ιk1 + ιk2 , c, k1) > 0. Then, we

show that E[wS(M ′, c, k1)|M = ιk1 + ιk2 ] > 0.

(a) If k1 ≤ k2, then wE(ιk1 + ιk2 , c, k1) is computed by Tk2,k1 and wE(ιk1 + ιk2 , c, k1) =

max {0, wS(ιk1 + ιk2 , c, k1)} > 0. Then, from (13), E[wS(M ′, c, k1)|M = ιk1+ιk2 ] =

wS(ιk1 + ιk2 , c, k1) > 0.
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(b) If k1 > k2, then wE(ιk1 + ιk2 , c, k1) is computed by Tk1 and wE(ιk1 + ιk2 , c, k1) =

max {0,E[wS(M ′, c, k1)|M = ιk1 + ιk2 ]} > 0, so E[wS(M ′, c, k1)|M = ιk1 +ιk2 ] > 0.

So, arg maxa∈[0,1] aE[wS(M ′, c, k1)|M = ιk1 + ιk2 ] = {1} 3 αS(ιk1 + ιk2 , c, k1) = 1.

2. For all c such that αS(ιk1 + ιk2 , c, k1) = 0, we know wE(ιk1 + ιk2 , c, k1) = 0. Then, we

show that E[wS(M ′, c, k1)|M = ιk1 + ιk2 ] = 0.

(a) If k1 < k2, then wE(ιk1 + ιk2 , c, k1) is computed by Tk2,k1 and wE(ιk1 + ιk2 , c, k1) =

max {0, wS(ιk1 + ιk2 , c, k1)} = 0. Then, from (13), E[wS(M ′, c, k1)|M = ιk1+ιk2 ] =

wS(ιk1 + ιk2 , c, k1) ≤ 0.

(b) If k1 ≥ k2, then in natural equilibrium it must be that αS(ιk1 + ιk2 , c, k2) = 0, and

hence (13) gives E[wS(M ′, c, k1)|M = ιk1 + ιk2 ] = wS(ιk1 , c, k1). Because wE(ιk1 +

ιk2 , c, k1) is computed by Tk1 and wE(ιk1 + ιk2 , c, k1) = max {0, wS(ιk1 , c, k1)} = 0,

E[wS(M ′, c, k1)|M = ιk1 + ιk2 ] ≤ 0.

So, arg maxa∈[0,1] aE[wS(M ′, c, k1)|M = ιk1 + ιk2 ] 3 αS(ιk1 + ιk2 , c, k1) = 0. Note that if

we require default to inactivity, arg maxa∈[0,1] aE[wS(M ′, c, k1)|M = ιk1 + ιk2 ] = {0}.

3. For all c such that αS(2ιk1 , c, k1) is determined by (9), then k1 = k2 and

E[wS(M ′, c, k1)|M = ιk1+ιk2 ] = αS(2ιk1 , c, k1)wS(2ιk1 , c, k1)+(1−αS(2ιk1 , c, k1))wS(ιk1 , c, k1) = 0.

The last equality is due to equation (9). So, arg maxa∈[0,1] aE[wS(M ′, c, k1)|M = ιk1 +

ιk2 ] = [0, 1] 3 αS(2ιk1 , c, k1).

To verify one-shot-deviation-proofness for αE, we need to show that for any k, c, 0 ≤ k ≤
ǩ,

αE(ιk + ι1, c) ∈ arg max
a∈[0,1]

a(E[wE(M ′, c, 1)|M = ιk + ι1]− ϕ) (14)

where

E[wE(M ′, c, 1)|M = ιk+ι1] =

{
wE(ιk + ι1, c, 1) if k > 0

(1− αE(2ι1, c))wE(ι1, c, 1) + αE(2ι1, c)wE(2ι1, c, 1) if k = 0

By construction, αE(ιk + ι1, c) satisfies (14) except for k = 0. Thus, at this moment, we

can assert that αE(ιk + ι1, c) is a natural Markov-perfect equilibrium strategy for all k > 0.

Since no operator T in Algorithm 1 depends on αE(ι1, c), this result is sufficient to ensure

that the fixed points, wE is the natural Markov-perfect equilibrium payoff corresponding to

(αS, αE). Lemma 1 then guarantees that wE also exhibits wE(2ι1, c, 1) ≤ wE(ι1, c, 1). Thus,
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1. when αE(2ι1, c) = 1, it must be the case that wE(ι1, c, 1) ≥ wE(2ι1, c, 1) > ϕ so

αE(ι1, c) = 1. The right-hand-side of (14) is

arg max
a∈[0,1]

a(E[wE(M ′, c, 1)|M = ιk+ι1]−ϕ) = arg max
a∈[0,1]

a(wE(2ι1, c, 1)−ϕ) = {1} 3 αE(ι1, c).

2. when αE(2ι1, c) = 0, E[wE(M ′, c, 1)|M = ιk + ι1] = wE(ι1, c, 1). So αE(ι1, c) =

I[wE(ι1, c, 1) > ϕ] satisfies (14).

So, we conclude that (αS, αE) forms a natural Markov-perfect equilibrium and wE, wS are

the associated payoffs.

With Lemma 2 in hand, we can prove the uniqueness of natural Markov-perfect equi-

librium following the order of Procedure 1, starting from k1
1 = ǩ. First, observe that in a

symmetric equilibrium, if vS(2ιǩ, c, ǩ) ≤ 0, then vE(2ιǩ, c, ǩ) = 0. Then, if vS(2ιǩ, c, ǩ) > 0,

Lemma 1 ensures that in any equilibrium, vS(ιǩ, c, ǩ) ≥ vE(2ιǩ, c, ǩ) > 0 for any n < m̌. This

means that continuation dominates any other action when vS(2ιǩ, c, ǩ) > 0. Therefore, any

equilibrium post-entry payoff must be a fixed point of Tǩ,ǩ in Algorithm 1, vE(2ιǩ, ·, ǩ) =

wE(2ιǩ + ιk, ·, k). Consequently, for any k < ǩ, wE(ιǩ + ιk, ·, k) is determined as the unique

natural Markov-perfect equilibrium payoff. Recall that in the proof for Lemma 2, the optimal

strategy sets for type-k firm are singletons. Therefore, αS(ιǩ + ιk, ·, k) and αE(ιǩ + ι1, ·) is the

unique natural Markov-perfect equilibrium strategy, which guarantees that wE(ιǩ + ιk, ·, ǩ) is

the unique post-entry equilibrium payoff. The uniqueness of wS(ιǩ + ιk, ·, ǩ) readily follows

and the uniqueness of aS(2ιǩ, ·, ǩ) is ensured by equation (9).

In the i-th steps in Procedure 1, suppose the pair of types considered is (h, l) = (k1, k2).

When k1 = k2, Lemma 1 and equilibrium symmetry again ensure that any equilibrium

post-entry payoff vE(2ιk1 , ·, k1) must be a fixed point of Tk1,k1 . Hence, vE(2ιk1 , ·, k1) =

wE(2ιk1 , ·, k1) is the unique natural Markov-perfect equilibrium payoff. Then, for any k2 < k1,

since Tk1,k2 does not depend on any strategy, wE(ιk1 + ιk2 , ·, k2) is determined as the unique

post-entry equilibrium payoff and αS(ιk1 + ιk2 , ·, k2), αE(ιk1 + ι1, ·) as the unique natural

Markov-perfect equilibrium strategy that is consistent with payoff-maximization. Because

Tk1 only depends on natural Markov-perfect equilibrium strategy that has been verified to be

unique, wE(ιk1 + ιk2 , ·, k1) is then uniquely determined as the post-entry equilibrium payoff.

The uniqueness of wS(ιk1 +ιk2 , ·, k1) and wS(ιk1 +ιk2 , ·, k2) are then straightforwardly verified.

Equation (9) ensures the uniqueness of aS(2ιk1 , ·, k1).

B Proofs for Section 4

To prove Propositions 3 and 2, we prove a useful lemma first.
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Lemma 3. Algorithm 2 always delivers some (αS, αE) as outcome. Furthermore, (αE, αS)

forms a natural Markov-perfect equilibrium, with payoffs wE and wS.

Proof. We follow four steps to prove this lemma. We first show that Algorithm 2 computes

wE, wS, αS, and αE for all (m, c, k). Second, we prove that Algorithm 2 always delivers some

well-defined (αS, αE) as outcome. This is a nontrivial step. Because we need to show that

wE as the fixed point of T always exist, and αS is well defined when Procedure 3 assigns p

from equation (11) to it.

After proving the first part of the lemma, we verify in the third step of the proof that αS

satisfies the requirement in Definition 1. Eventually, we prove that in each step of Algorithm

2, wE is constructed as an equilibrium post-entry value, and the corresponding wS gives the

equilibrium post-survival payoff. Along the way, we also show that (αS, αE) is an natural

equilibrium strategy.

First, note that the set of all indexing market structures is M ≡ {m ∈ Zǩ; 1 ≤ |m| ≤
m̌}, which is also the set of all payoff-relevant market structures. Consider any (m, k) pair

such that m ∈ M and mk > 0, wE(m, ·, k) and wS(m, ·, k) are computed in the step with

indexing market structure (0, . . . , 0,mk,mk+1, . . . ,mǩ). For any (m, k) pair such that m ∈M,

αS(m, ·, k) is computed in the step with indexing market structure (0, . . . , 0, 1,mk+1, . . . ,mǩ).

For any m such that m ∈ M and m1 > 0, αE(m, k) is computed in the step with indexing

market structure m. Therefore, wE, wS, αS, αE for all payoff-relevant (m, c, k) are computed

in Algorithm 2.

Second, because all αS, αE, wE, wS required to compute the fixed point of T in each

step have been either initialized or determined in previous steps, T is always a well-defined

contraction mapping with a unique fixed point. Then, wE is always uniquely determined,

as well as wS and αE. It remains to show that αS is also always well-defined, in particular

when it is determined from equation (11). Note that for any (m, c, k) such that k = k(m) ≡
min{j;mj > 0}, when computing wE(m, c, k) using T , we always use the initialized value

αS(m, c, k+) = 1 for all k+ ≥ k, which leads to the condition that

wE(m, c, k) = max{0, wS(m, c, k)}.

This implies that when wE(m, c, k) = 0, wS(m, c, k) ≤ 0. Recall that tn Procedure 3, when

determining p using equation (11) in step i, it is indeed the case that wE(m, c, ki) = 0 and

wS(m, c, ki) ≤ 0. Then, (i) if wS(mi, c, ki) = wS(m − (mki − 1)ιki , c, k
i) > 0, then the

right hand side of equation (11) changes continuously from wS(m − (mki − 1)ιki , c, k
i) > 0

to wS(m, c, k) ≤ 0 when p changes from 0 to 1. This means that there exists at least one

p ∈ [0, 1) to satisfy equation (11); (ii) if wS(mi, c, ki) ≤ 0, 0 can be assigned if no p is found

to satisfy equation (11). Therefore, we conclude that αS is always well-defined (although it

can take multiple values if multiple p solve equation (11)).
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Next, we show that αS satisfies the requirement in Definition 1 by proving wE(m, c, k1) ≥
wE(m, c, k2) for all m, c and k1 ≥ k2. To this end, for any computed wE, define a functional

space GN containing all functions gE : M × [ĉ, č] × K →
[
0,

βπ(ιǩ,č,ǩ)

1−β

]
such that gE ≤ wE,

and gE(m, c, k1) ≥ gE(m, c, k2) for all (m, c) and k1 = k2 + 1, with equality holds only when

gE(m, c, k1) = gE(m, c, k2) = 0. We aim to prove T : GN → GN .

Let gS denote the analogous post-exit value computed by equation (2) using gE. Under

Assumptions 1, for all gE ∈ GN , gS(m, c, k1) > gS(m, c, k2) for all m, c and k1 = k2 + 1.

Consider the following cases when (TgE)(m, c, k1) is being computed in Algorithm 2, noting

that by the OLS ordering of the algorithm, at this moment, αS(m, c, k1) remains at its initial

value 1 and αS(m, c, k2) has been determined in previous computation by Procedure 3.

1. If αS(m, c, k2) = 1, since both type-k1, k2 firms survive with probability one, they

expect same post-exit market structure, denoted by MS.

(TgE)(m, c, k1) = E
[
gS(MS, c, k

1) ME = m
]
> E

[
gS(MS, c, k

2) ME = m
]

= (TgE)(m, c, k2).

2. If 0 < αS(m, c, k2) < 1, then αS(m, c, k2) = p with p ∈ [0, 1) solving

mk2−1∑
j=0

pmk2−1−j(1− p)j
(
mk2 − 1

j

)
gS(m− jιk2 −

k2−1∑
i=1

miιi, c, k
2) = 0.

The right hand side is nothing but (TgE)(m, c, k2). Therefore, (TgE)(m, c, k2) = 0.

Since gS ∈ GN , we have

(TgE)(m, c, k1) = max

0,

mk2−1∑
j=0

pmk2−1−j(1− p)j
(
mk2 − 1

j

)
gS(m− jιk2 −

k2−1∑
i=1

miιi, c, k
1)

 > 0.

3. If αS(m, c, k2) = 0, then gE(m, c, k2) ≤ wE(m, c, k2) = 0 for gE ∈ GN . Since wE(m, c, k2) =

(T∞gE)(m, c, k2) and T is a monotone operator, 0 = wE(m, c, k2) ≥ (TgE)(m, c, k2) for

all gE ∈ GN . Thus, (TgE)(m, c, k1) ≥ 0 ≥ (TgE)(m, c, k2).

By point-wise comparison, we conclude that T : GN → GN , hence wE(m, c, k1) ≥
wE(m, c, k2) for all m, c and k1 = k2 + 1. The proof also verifies that (TgE)(m, c, k1) > 0

whenever αS(m, c, k2) > 0. Since T is a monotone operator, it means that wE(m, c, k1) =

(T∞gE)(m, c, k1) > 0. Given that in Algorithm 2 αS is set to be 1 if and only if wE(m, c, k1) >

0, αS(m, c, k1) = 1 whenever αS(m, c, k2) > 0. So αS satisfies the requirement in Definition

1.

Finally, we prove that (αS, αE) forms an Markov-perfect equilibrium. To this end, we first

show that wE constructed by Algorithm 2 is the post-entry payoff under strategy (αS, αE).

Then, we show that given wE as payoff, (αS, αE) satisfies one-shot deviation proofness.

37



We begin with showing that wE is the post-entry payoff under (αS, αE) in the first step

of Algorithm 2, where m1 = m̌ιǩ. In this step, H1
S = {(m1, c, ǩ)|c ∈ [ĉ, č]}. When computing

wE(H1
S), we use αS(H1

S) = 1 for all HS
1 , αE(·) = 0, and wE(·) = 0. According to equation

(1), if wE is the post-entry payoff under strategy (αS, αE), then it satisfies

wE(H1
S) = αS(H1

S)E
[
wS(MS, c, ǩ) ME = m1, C = c,K = ǩ

]
.

The construction of αS in Procedure 3 implies that αS(m1, c, ǩ) = 1 if and only if

wE(m1, c, ǩ) > 0, and αS(m1, c, ǩ) < 1 if and only if wE(m1, c, ǩ) = 0. Also, note that

E
[
wS(MS, c, ǩ) ME = m1, C = c,K = ǩ

]
= wS(m1, c, ǩ) if αS(m1, c, ǩ) = 1. Then, the

above condition for wE(H1
S) under the constructed αS is equivalent to

wE(H1
S) = max{0, I(wE(H1

S) > 0)wS(H1
S)} = max{0, wS(H1

S)}.

By setting αS(H1
S) = 1, the right hand side of T is identical to this condition. Therefore,

setting αS(H1
S) = 1 is computationally equivalent to using αS(H1

S) determined by Procedure

3, i.e., both give the same wE(H1
S). Also, under αE(·) = 0, no firm will further enter. This

means that wE(H1
S) computed as the fixed point of T is the post-entry payoff under strategy

(αS, αE).

Consequently, for all c, wS(m1, c, ǩ) computed by equation (2) using wE(m1, ·, ǩ) is the

post-survival payoff under strategy (αS, αE).

Then suppose that the 1, . . . , i−1-step of Algorithm 2 have computed the wE(m, c, k) and

wS(m, c, k) for all (m, k) ∈
⋃j=i−1
j=1 Mmj × {k(mj)} and all c as the payoffs under (αS, αE).

Then, Procedure 3 in the first i− 1-step computes the following part of (αS, αE) for all c,

• αS(m, c, k) for all (m, k) ∈ {(m, k); (m, k) ∈
⋃j=i−1
j=1 Mmj×{k(mj)},m−nιki 6= mi,∀n ∈

N}.

• αE(m, c) for all m ∈ {m;m ∈
⋃j=i−1
j=1 Mmj with k(mj) = 1}.

Recall that k(m) ≡ min{j;mj > 0}. Now, in the i-th step of the algorithm, H i
S ∈

{(m, c, k);m ∈ Mmi , c ∈ [ĉ, č] , k = ki}. To make sure that wE(H i
S) and wS(H i

S) take their

values under (αS, αE), we need to use in the construction of T the strategy αS(m, ·, k) for

all m ∈ Mmi and k such that mk > 0, αE(n′ + jι1, ·) for all j ∈ N and all possible n′, and

wE(H i,′
S ) for (m′, k′) such that m′ /∈ Mmi and k′ 6= ki, conditional on type-ki firms having

positive payoff.

We check if the required values are in place.

1. From the argument for step-1 computation, the initialized value αS(m, c, ki) = 1 leads

to the same condition for wE(m, c, ki) as the αS(m, c, ki) computed by Procedure 3.

So, although αS(m, c, ki) has not been obtained, we can set it to 1.
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2. For any (m, k+) such that m ∈ Mmi and k+ > ki, as we have shown, αS(m, c, k+) = 1

conditional wE(m, c, ki) > 0, which is the same as the initialized value. For any (m, k−)

such that m ∈Mmi and k− < ki, note that m 6= mi because mi
k− = 0. By the definition

of Mmi , for all m ∈ Mmi\{mi}, m � mi (so there is some j < i-step such that its

indexing market structure mj = m) and m− bιik 6= mi,∀b ∈ N. Therefore, αS(m, c, k−)

for all k− < ki have been computed.

3. Since according to αS, all firms with type equal or better than ki survive, which,

together with non-regressive type evolution, implies that n′ � mi and n′ + bι1 � mi

for all n′ and all b ∈ N. Therefore, for |n′ + bι1| ≤ m̌, there is some j < i-th step with

indexing market structure mj = n′ + bι1. So, these αE(n′ + bι1)’s values have been

computed in the j-th step by Procedure 3. For any n′ such that |n′ + ι1| > m̌, we use

the initialized value αE(n′ + ι1) = 0.

4. Based on the above argument, for any (m′, k′) following the transition governed by

(αS, αE), m′ � mi and k′ ≥ ki. Ifm′ /∈Mmi and k′ 6= ki, definem′(k′) = (0, . . . , 0,m′k′ , . . . ,m
′
ǩ
),

the market structure which has exactly the same number of type-k′ or better firms as

m′ does, but no type-k′−1 or worse firm. Then, m′(k′) � mi, which means that there is

some j < i-th step such that its indexing market structure mj = (0, . . . , 0,m′k′ , . . . ,m
′
ǩ
).

Since m′ ∈Mmj , wE(m′, ·, k′) is then computed in the j-th step. So, all necessary wE’s

values have been computed.

Since all the required values of wE, αS, αE have been obtained in earlier steps, wE(H i
S) is

computed as the payoff under (αS, αE), so as wS(H i
S).

Then, we verify that (αS, αE) is an equilibrium strategy corresponding to wE, wS. To this

end, we show that αS(m, c, k) satisfies (4) for all (m, c, k), if all other firms follow αS as well.

For any (m, c, k), consider the following cases

1. If wE(m, c, k) > 0, the algorithm sets αS(m, c, k) = 1. The right-hand-side of (4) is

arg max
a∈[0,1]

awE(m, c, k) = {1} 3 αS(m, c, k).

2. If wE(m, c, k) = 0, then the algorithm sets αS ∈ [0, 1). Since any αS computed by

Algorithm 2 satisfies the requirement in Definition 1, it is implied that αS(m, c, k−) = 0

for all k− < k. Hence, wE(m, c, k) = wE(m −
∑k−1

i=1 miιi, c, k) = max{0, wS(m −∑k−1
i=1 miιi, c, k)} and wS(m−

∑k−1
i=1 miιi, c, k) ≤ 0. We look at three subcases,

(a) If wS(m− (mk − 1)ιk −
∑k−1

i=1 miιi, c, k) > 0, the algorithm sets αS(m, c, k) = p ∈
[0, 1) to satisfy

mk−1∑
j=0

pmk−1−j(1− p)j
(
mk − 1

j

)
wS(m− jιk −

k−1∑
i=1

miιi, c, k) = 0,
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The right-hand-side of (4)

arg max
a∈[0,1]

a

mk−1∑
j=0

pmk−1−j(1−p)j
(
mk − 1

j

)
wS(m−jιk−

k−1∑
i=1

miιi, c, k) = [0, 1] 3 αS(m, c, k).

(b) If wS(m−(mk−1)ιk−
∑k−1

i=1 miιi, c, k) > 0 and αS(m, c, k) ∈ [0, 1) solves the same

polynomial as above, same result holds for αS(m, c, k).

(c) If wS(m− (mk − 1)ιk −
∑k−1

i=1 miιi, c, k) ≤ 0 and αS(m, c, k) = 0. All other type-k

firms will exit from the market, so the right-hand-side of (4) is

arg max
a∈[0,1]

awS(m− (mk − 1)ιk −
k−1∑
i=1

miιi, c, k) = {0} 3 αS(m, c, k).

For any (m, c, k) such that mk = 1, consider the following cases

1. If wE(m, c, k) > 0, then the algorithm sets αS(m, c, k) = 1. The right-hand-side of (4)

is arg maxa∈[0,1] awS(m, c, k) = {1} 3 αS(m, c, k).

2. If wE(m, c, k) = 0, then αS can not be 1. From the same argument as above, wE(m, c, k) =

wE(m−
∑k−1

i=1 miιi, c, k) = max{0, wS(m−
∑k−1

i=1 miιi, c, k)}. So wS(m−
∑k−1

i=1 miιi, c, k) ≤
0 and the right-hand-side of (4) is arg maxa∈[0,1] awS(m −

∑k−1
i=1 miιi, c, k) = {0} 3

αS(m, c, k).

Therefore, αS satisfies (4). To show that αE satisfies (3), first note that αE(m, c) is

determined in the step with indexing market structure m, while wE(m+bι1, c, 1) is computed

in step with indexing market structure m+ bι1, which is (weakly) lexicographically superior

than m. Therefore, wE(m + bι1, c, 1) has been determined as a post-entry payoff under αS.

Then, if all potential entrants are using αE, according to (1), post-entry payoff is wE(m +

Jι1, c, 1) where J is the largest possible number such that wE(m+Jι1, c, 1)−ϕ > 0. Therefore,

αE satisfies (3). So, (αS, αE) is the equilibrium strategy.

This completes the proof for Lemma 3.

With Lemma 3 in hand, we proceed to prove Propositions 2 and 3.

Proof for Proposition 2. To prove this proposition, we again establish a lemma first.

Lemma 4. If vE is the post-entry payoff in a payoff-monotone natural Markov-perfect equilib-

rium, it necessarily satisfies that vE(m, c, k) > 0 if and only if E[vS(MS, c, k)|ME = m] > 0,

or

vE(m, c, k) = max{0,E[vS(MS, c, k)|ME = m]},

where the expectation is computed given all equilibrium values aS(m, c, k−) for all k− < k, a

tentative rule aS(m, c, k) = 1, and aS(m, c, k+) = 1 for all k+ > k.
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Proof. In any symmetric equilibrium, vE(m, c, k) > 0 only if all firms with type k survive.

In any natural equilibrium, this also implies that all firms with type k+ survive as well.

Therefore, the “only if” part is true.

The “if” part is true because (i) if E[vS(MS, c, k)|ME = m] > 0 and aS(m, c, k − 1) > 0,

then it must be the case that in natural equilibrium vE(m, c, k − 1) > 0. Also, according to

Definition 1, aS(m, c, k) = 1 and aS(m, c, k+) = 1. Then, vE(m, c, k) ≥ vE(m, c, k − 1) > 0;

(ii) if E[vS(MS, c, k)|ME = m] > 0 and aS(m, c, k − 1) < 0, then in a natural equilibrium

aS(m, c, k−) = 0 for all k− < k, and E[vS(MS, c, k)|ME = m] = vS(m−
∑k−1

i=1 miιi, c, k) > 0.

Recall that we have shown in the proof for Proposition 1 that in the duopoly model, Lemma 1

ensures that vE(2ιk, c, k) > 0 if and only if vS(2ιk, c, k) > 0. Applying an analogous reasoning,

we know that in a payoff-monotone equilibrium, vE(m, c, k) > 0 if vS(m−
∑k−1

i=1 miιi, c, k) >

0.

Lemma 4 gives a necessary condition for the post-entry payoff in a payoff-monotone

natural Markov-perfect equilibrium. For vE(m1, c, ǩ), where m1 = m̌ιǩ is the indexing market

structure in the first step of Algorithm 2, this condition can be written as

vE(m1, c, ǩ) = max{0, vS(m1, c, ǩ)}.

In the first step of Algorithm 2, wE(m1, c, ǩ) is uniquely computed by the contraction mapping

generated by the above condition. Thus, it is the only payoff function satisfying the necessary

condition for a payoff-monotone equilibrium. Providing that such equilibrium exists, its

post-entry payoff vE(m1, c, ǩ) has a unique value wE(m1, c, ǩ) for all c. Also, vS(m1, c, ǩ) =

wS(m1, c, ǩ) for all c.

In any succeeding step i of Algorithm 2, with αS either properly initialized or computed

in the previous steps as its equilibrium value (this is shown in Lemma 3), wE(m, c, ki) is

computed as the unique payoff under (αS, αE) that satisfies such necessary condition for all

c and all m ∈Mmi .

Moreover, the (αS, αE) constructed in Procedure 3 is also the unique equilibrium strategy

given that the wE, wS computed in previous steps are unique equilibrium payoffs vE, vS. αE’s

uniqueness trivially follows its construction. The uniqueness of αS is due to the monotonicity

of (the previously computed part of) wS: When using (11) to compute the mixing probability

p, because wS(m− (mki − 1)ιki , c, k
i) ≥ wS(m− (mki − 2)ιki , c, k

i) ≥ . . . ≥ wS(m, c, ki), the

right hand side (11) changes continuously and monotonically from wS(m−(mki−1)ιki , c, k
i) >

0 to wS(m, c, ki) ≤ 0 when p changes from 0 to 1. Therefore, there is only one p ∈ [0, 1) that

satisfies (11). So, αS is single valued.

Therefore, if there exists a payoff-monotone equilibrium, (αS, αE) forms the unique equi-

librium and wE and wS are the unique equilibrium payoffs. The equilibrium is subsequently

unique.
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Proof for Proposition 3. First, note that from the definition of a renegotiation-proof natural

Markov-perfect equilibrium, all firms with a same type survive for sure if and only if joint

continuation gives them positive post-survival payoff. This implies that (i) any such equi-

librium’s post-entry equilibrium payoff must satisfy the condition in Lemma 4; (ii) if any

natural Markov-perfect equilibrium’s post-entry payoff satisfies the condition in Lemma 4,

such equilibrium is renegotiation-proof.

Since we have shown in Lemma 3 that Algorithm 2 always gives some (αS, αE) to form a

natural Markov-perfect equilibrium. We have also shown in the proof for Proposition 2 that

wE satisfies the necessary condition in Lemma 4. Therefore, (αS, αE) forms a renegotiation-

proof natural Markov-perfect equilibrium.

C An Example of Multiple Equilibria

We construct a three-firm two-type example where the equilibrium payoff is not weakly

decreasing in the number of same-type competitors (m̌ = 3 (by setting π(n, c, k) < 0 for any

(n, c, k) if n has more than 3 firms) and ǩ = 2).

Consider the following sequence of ct: c1 = 1, c2 = 1e−6, ct = 5, for all t ≥ 3. The number

of consumers drops to nearly zero in the second period but is boosted to a high level in the

third period, and stays high afterwards. We set β = 0.5, κ(L) = κ(H) = 4, ϕ = 1, and

ΠLH = ΠLL = 0.5. We specify π as π(n, c, k) = cπ(n, k)−κ. Some parts of the per-consumer

producer surplus π are summarized in the following table:

π(·,L)/π(·,H) 1ιH 2ιH 3ιH

+0ιL /102 /100 /1

+1ιL 99/101 0.89/1.24

+2ιL 1.23/1.25

One feature of this surplus structure is that a duopoly market promises much higher per

consumer surplus than a triopoly market does. The duopoly-triopoly surplus difference over-

whelmingly dominates the L,H-type difference in surplus. Since from period 3 onwards, the

model is essentially an infinitely repeated game, we can use backward induction to compute

the equilibrium payoffs13. Unlike the results stated in Lemma 1, vS is not always monotonic

in the number of firms,

vS(ιH, c1,H) = −1.1821, vS(2ιH, c1,H) = 246, vS(3ιH, c1,H) = −1.5

Not surprisingly, the low triopoly surplus implies a low payoff if continuing as one of three

type-H firms. What is counter-intuitive is that the payoff to continuing as a duopolist is

13We provide the details of such computation in an online appendix.
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better than the payoff to continuing as a monopolist under c1. This is because in period 2,

under a low c2, a duopoly firm and a monopoly firm make similar flow profit and similar

large losses. However, duopoly firms can, by jointly remaining active, preempt any further

entrants and enjoy a high duopoly profit after demand increases to a high level in period 3.

The future duopoly payoff compensates the loss in period 2, and make vS(2ιH, c1,H) positive.

In contrast, a monopoly market attracts two entrants for sure in period 2, which results in a

triopoly market from period 3 onwards. Because demand increases to a high level in period

3, none of these firms will exit and, given the per consumer surplus structure, they will all

earn a substantially lower payoff than duopoly firms, which can not compensate the loss in

period 2. Consequently, vS(ιH, c1,H) is negative.

Given the computed non-monotone equilibrium payoff, (aS, aE) with aS(2ιH, c1,H) = 1 is

still an natural equilibrium. However, if one duopoly firm chooses to exit with probability 1,

the rival firm receives -1.1821 if continuing alone and hence will choose to exit with probability

1 as well. Similarly, if one firm chooses to survive with probability −1.1821
−1.1821−246

= 4.782e−3, the

other firm is indifferent between exiting and survival. Therefore, two other natural equilibria

with aS(2ιH, c1,H) = 0 and aS(2ιH, c1,H) = 4.782e−3 exist.

Note that when both firms choose aS(2ιH, c1,H) = 0 or aS(2ιH, c1,H) = 4.782e−3, they

receive zero payoffs. By ”renegotiating” on jointly choosing aS(2ιH, c1,H) = 1, they can

strictly improve their equilibrium payoffs. Henceforth, we only restrict attention to equilibria

in which there is no room for this type of one-shot joint improvement.

Unfortunately, this type of equilibria may not be unique. Since joint continuation and

continuing as monopolist both render payoffs negative, in a one-shot renegotiation-proof

equilibrium, a triopoly firm either chooses aS(3ιH, c1,H) = 0 or set aS(2ιH, c1,H) = p, where

p solves

p2v̄(3ιH, c1,H) +

(
2

1

)
p(1− p)v̄(2ιH, c1,H) + (1− p)2v̄(ιH, c1,H) = 0.

This quadratic equation has two roots, p1 = 0.0024 and p2 = 0.997, both between 0 and

1. Hence, there are three one-shot renegotiation-proof equilibria with aS(3ιH, c1,H) equal to

0, p1 and p2, respectively.
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I Details of Proofs

I.1 Details for the Proof of Lemma 1

Proof. We prove that, in any natural Markov-Perfect Equilibrium, vE satisfies the following

properties for all k.

Property 1. For a given k ∈ K, and for all x such that 0 ≤ x ≤ ǩ, if vE(ιk + ιx, ·, k) is

weakly decreasing in x, we say that vE satisfies Property 1 for k.

Property 2. For a given k ∈ K, and for all x such that 0 ≤ x ≤ ǩ, if vE(ιk + ιx, ·, x) is

weakly increasing in x, we say that vE satisfies Property 2 for k.

Property 3. For a given k ∈ K, and for all x such that 1 ≤ x ≤ k − 1, if vE(ιk + ιx, ·, x) ≤
vE(ιk−1 + ιx, ·, x), we say that vE satisfies Property 3 for k.

Property 4. For a given k ∈ K, if vE(ιk, ·, k) ≥ vE(ιk−1, ·, k − 1), we say that vE satisfies

Property 4 for k.

First, we prove these properties for k = ǩ. Then, for any k < ǩ, suppose that those

properties hold good for k + 1, k + 2, . . . , ǩ, we prove that they also hold for k. In this way,

we prove that these properties hold for all k ∈ K. Eventually, we proof Lemma 1 using

Property 1.

Now suppose (aS, aE) forms a natural equilibrium with equilibrium payoff vS, vE. Define

F to be the space of all functions

fE :

(n1, . . . , nǩ) :
ǩ∑
i=1

ni ≤ 2

× [ĉ, č]×K→
[
0,
βπ(ιǩ, č, ǩ)

1− β

]
,

and T a : F → F with

For any k1, k2 ∈ {0, 1, . . . , ǩ}, if k1 ≥ k2,

(T afE)(ιk1 + ιk2 , c, k
1) = max

{
0, aS(ιk1 + ιk2 , c, k

2)
ǩ∑

i=k1

ǩ∑
j=k2

Πk1,iΠk2,j f̃E(ιi + ιj, c, i)

+(1− aS(ιk1 + ιk2 , c, k
2))

ǩ∑
i=k1

Πk1,if̃E(ιi, c, i)

}
= max

{
0, aS(ιk1 + ιk2 , c, k

2)E[E[f̃E(ιK1′ + ιK2′ , c,K1′)|K2 = k2]|K1 = k1]

+(1− aS(ιk1 + ιk2 , c, k
2))E[f̃E(ιK1′ , c,K1′)|K1 = k1]

}
. (1)
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If k1 < k2,

(T afE)(ιk1 + ιk2 , c, k
1) = max

0,
ǩ∑

i=k1

ǩ∑
j=k2

Πk1,iΠk2,j f̃E(ιi + ιj, c, i)


= max

{
0,E[E[f̃E(ιK1′ + ιK2′ , c,K1′)|K2 = k2]|K1 = k1]

}
.(2)

With f̃E(ιk1 + ιk2 , c, k
1) denoting the post-type-transition payoff associate with post-entry

payoff fE when current demand is c, the firm of interest has progressed to type-k1, and its

rival has progressed to type-k2.

f̃E(ιk1 + ιk2 , c, k
1) ≡ βE[π(ιk1 + ιk2 , C

′, k1) + aE(ιk1 + ιk2 + ι1, C
′)fE(ιk1 + ιk2 + ι1, C

′, i)

+ [1− aE(ιk1 + ιk2 + ι1, C
′)] fE(ιk1 + ιk2 , C

′, i)|C = c]

where, for definiteness, aE(ιk1 + ιk2 + ι1, c) ≡ 0 if k1, k2 > 0.

The space F is a Banach space (complete with the supremum norm). T a satisfies Black-

well’s sufficient properties for a contraction mapping. The equilibrium payoff vE is the unique

fixed point of T a. We prove that vE satisfies Properties 1–4 for all k by showing that the

fixed point of T a lies in the space in which all functions satisfy these properties. To this end,

we gradually narrow down the space that this fixed point is in, to eventually reach the space

of all functions that satisfy Properties 1–4 for all k.

First, denote a subspace of F in which any functions fE satisfy fE ≥ vE as F0. Because

F0 is also a non-empty Banach space and vE ∈ F0, T a : F0 → F0. We henceforth focus on

F0.

Before proceeding to verify the properties, we introduce a Lemma which we will use re-

peatedly. Recall that firm types’ evolution has the first-order stochastic dominance property,

as stated in Assumption 3. The following Lemma exploits this property

Lemma 1. X, Y are random variables with densities F and G respectively. If X first-order

stochastically dominates Y , then E[h(X)] ≥ E[h(Y )] for all weakly increasing function h.

Prove Property 2 for k = ǩ. We take two steps to prove Property 2 for k = ǩ.

(i). Consider F1
ǩ
, a subspace of F0 in which any function fE satisfies (T afE)(2ιǩ, ·, ǩ) =

vE(2ιǩ, ·, ǩ) and fE(2ιǩ, ·, ǩ) ≤ fE(ιǩ + ιx, ·, ǩ) for 0 ≤ x ≤ ǩ. This is also a complete

metric space. Since at least the function f ∗E which satisfies f ∗E(2ιǩ, ·, ǩ) = vE(2ιǩ, ·, ǩ)

and f ∗E(2ιǩ, ·, ǩ) = f ∗E(ιǩ + ιx, ·, ǩ) for 0 ≤ x ≤ ǩ is in F1
ǩ
, this subspace is nonempty.
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We aim to prove that T a : F1
ǩ
→ F1

ǩ
. Since vE is the unique fixed point of T a, this

result ensures that vE ∈ F1
ǩ

and thus vE(2ιǩ, ·, ǩ) ≤ vE(ιǩ, ·, ǩ).

In a symmetric equilibrium, any rival’s exit implies that both firms expect non-positive

payoffs from continuing. Therefore, firms earn positive expected payoffs only when

both firms continue with probability 1. So

vE(2ιǩ, c, ǩ) ≤ max{0, βE[π(2ιǩ, C
′, ǩ)+vE(2ιǩ, C

′, ǩ)|C = c]} = max{0, f̃E(2ιǩ, c, ǩ)}.

Note that for all fE ∈ F1
ǩ
, we have for any (aS, aE), f̃E(ιǩ + ιx, ·, ǩ) ≥ f̃E(2ιǩ, ·, ǩ) for

0 ≤ x ≤ ǩ. Therefore, E[f̃E(ιǩ + ιX′ , ·, ǩ)|X = x] ≥ f̃E(2ιǩ, ·, ǩ), and f̃E(ιǩ, ·, ǩ) ≥
f̃E(2ιǩ, ·, ǩ). Then, for any 0 ≤ x ≤ ǩ, we have

(T afE)(ιǩ + ιx, c, ǩ)

= max
{

0, aS(ιǩ + ιx, c, x)E[f̃E(ιǩ + ιX′ , c, ǩ)|X = x] + (1− aS(ιǩ + ιx, c, x))f̃E(ιǩ, c, ǩ)
}

≥ max{0, f̃E(2ιǩ, c, ǩ)}
≥ vE(2ιǩ, c, ǩ)

= (T afE)(2ιǩ, c, ǩ)

Therefore, T a : F1
ǩ
→ F1

ǩ
and vE(2ιǩ, ·, ǩ) ≤ vE(ιǩ + ιx, ·, ǩ) for 0 ≤ x ≤ ǩ. This further

ensures that vS(2ιǩ, ·, ǩ) ≤ vS(ιǩ, ·, ǩ) for any aS, aE. Then, an analogous argument to

the one on the simultaneous-move survival game in Section ?? leads to

vE(2ιǩ, c, ǩ) = max
{

0, βE
[
π(2ιǩ, C

′, ǩ) + vE
(
2ιǩ, C

′, ǩ
)
C = c

]}
. (3)

The right-hand-side of (3) defines a contraction mapping with a unique fixed point

vE(2ιǩ, ·, ǩ). So

(T afE)(2ιǩ, c, ǩ) = max{0, f̃E(2ιǩ, c, ǩ)}.

(ii). We move on to a subspace of F1
ǩ
, which we denote by F2

ǩ
. In this subspace, any function

fE satisfies that fE(ιǩ + ιx, ·, x) is weakly increasing in x for 0 ≤ x ≤ ǩ. We will further

show that T a : F2
ǩ
→ F2

ǩ
. Note that for fE ∈ F2

ǩ
, f̃E(ιǩ + ιx, ·, x) is weakly increasing

in x as well. For any k1, k2 such that 1 ≤ k1 ≤ k2 ≤ ǩ, we use K1′ , K2′ to denote

the random variables for the types succeeding K1 = k1, K2 = k2 respectively. K2′

stochastically dominates K1′ . So, according to Lemma 1, f̃E shares the monotonicity
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property as fE in F2
ǩ
, E[f̃E(ιǩ + ιK1′ , ·, K1′)|K1 = k1] ≤ E[f̃E(ιǩ + ιK2′ , ·, K2′)|K2 = k2].

Therefore,

(T afE)(ιǩ + ιk1 , c, k
1) = max

{
0,E[f̃E(ιǩ + ιK1′ , c,K1′)|K1 = k1]

}
≤ max

{
0,E[f̃E(ιǩ + ιK2′ , c,K2′)|K2 = k2]

}
= (T afE)(ιǩ + ιk2 , c, k

2)

This result guarantees that T a : F2
ǩ
→ F2

ǩ
. Therefore, vE(ιǩ + ιx, ·, x) is weakly increas-

ing in x and Property 2 is satisfied for k = ǩ. Because in natural equilibrium,

vS(ιǩ + ιx, c, x) = βE [π(ιǩ + ιX′ , C ′, X ′) + vE(ιǩ + ιX′ , C ′, X ′) C = c,X = x] .

together with Assumption 1, it is also true that vS(ιǩ + ιx, ·, x) is weakly increasing in

x, and so is the survival rule aS(ιǩ + ιx, ·, x).

Prove Property 1 for k = ǩ. Next, we focus on a subspace of F2
ǩ
, denoted by F3

ǩ
. In this

subspace any function fE must satisfy that fE(ιǩ + ιx, ·, ǩ) is weakly decreasing in x for any

0 ≤ x ≤ ǩ. Note that for fE ∈ F3
ǩ
, f̃E(ιǩ+ιx, ·, ǩ) is weakly decreasing in x as well. Therefore,

for any 0 ≤ k1 ≤ k2 ≤ ǩ, E[f̃E(ιǩ + ιK2′ , ·, ǩ)|K2 = k2] ≤ E[f̃E(ιǩ + ιK1′ , ·, ǩ)|K1 = k1]. Then,

using the monotonicity of survival rule that we derived above,

(T afE)(ιǩ + ιk2 , c, ǩ)

= max
{

0, aS(ιǩ + ιk2 , c, k
2)E[f̃E(ιǩ + ιK2′ , c, ǩ)|K2 = k2] + (1− aS(ιǩ + ιk2 , c, k

2))f̃E(ιǩ, c, ǩ)
}

≤ max
{

0, aS(ιǩ + ιk1 , c, k
1)E[f̃E(ιǩ + ιK2′ , c, ǩ)|K2 = k2] + (1− aS(ιǩ + ιk1 , c, k

1))f̃E(ιǩ, c, ǩ)
}

≤ max
{

0, aS(ιǩ + ιk1 , c, k
1)E[f̃E(ιǩ + ιK1′ , c, ǩ)|K1 = k1] + (1− aS(ιǩ + ιk1 , c, k

1))f̃E(ιǩ, c, ǩ)
}

= (T afE)(ιǩ + ιk1 , c, ǩ)

Therefore, T a : F3
ǩ
→ F3

ǩ
and vE(ιǩ + ιx, ·, ǩ) is weakly decreasing in x, so Property 1 is

satisfied for k = ǩ.

Prove Property 3 for k = ǩ. Before proving this property, we need to prove Properties 2

and 1 for k = ǩ − 1. We skip the details because later we will demonstrate how to do so for

any k. Now suppose that we have verified these two properties for k = ǩ−1, then vE ∈ F3
ǩ−1

where F3
ǩ−1

is defined analogously to F3
ǩ
. Hence, for 0 ≤ x ≤ ǩ, vE(ιǩ−1 + ιx, ·, ǩ − 1) is

weakly decreasing in x and vE(ιǩ−1 + ιx, ·, x) is weakly increasing in x. Then, denote the
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subspace of F3
ǩ−1

in which any fE functions such that fE(ιǩ + ιx, ·, x) ≤ fE(ιǩ−1 + ιx, ·, x) for

all x such that 0 ≤ x ≤ ǩ − 1 by F4
ǩ−1

.

Then, f̃E(ιǩ + ιx, ·, x) ≤ f̃E(ιǩ−1 + ιx, ·, x) holds for fE ∈ F4
ǩ−1

, by Lemma 1, we have

(T afE)(ιǩ + ιx, c, x) = max
{

0,E[f̃E(ιǩ + ιX′ , c,X ′)|X = x]
}

≤ max
{

0,E[E[f̃E(ιK′ + ιX′ , c,X ′)|X = x]|K = ǩ − 1]
}

= (T afE)(ιǩ−1 + ιx, c, x)

Therefore, T a : F4
ǩ−1
→ F4

ǩ−1
and vE(ιǩ + ιx, ·, x) ≤ vE(ιǩ−1 + ιx, ·, x) for all x such that

0 ≤ x ≤ ǩ − 1. In particular, this result ensures that aE(ιǩ + ι1, ·) ≤ aE(ιǩ−1 + ι1, ·).

Prove Property 4 for k = ǩ. Define a subspace of F4
ǩ−1

in which any function fE satisfies

fE(ιǩ−1, ·, ǩ − 1) ≤ fE(ιǩ, ·, ǩ), as F5
ǩ−1

. Because aE(ιǩ + ι1, ·) ≤ aE(ιǩ−1 + ι1, ·), we have

f̃E(ιǩ−1, ·, ǩ − 1) ≤ f̃E(ιǩ, ·, ǩ) and then (T afE)(ιǩ−1, ·, ǩ − 1) ≤ (T afE)(ιǩ, ·, ǩ). Therefore,

T a : F5
ǩ−1
→ F5

ǩ−1
and hence vE(ιǩ, ·, ǩ) ≥ vE(ιǩ−1, ·, ǩ − 1).

Now suppose that for any k ≤ ǩ, we have established the following results

Result 1. vE satisfies Property 1 for k+ 1, k+ 2, . . . , ǩ. That is, vE(ιk+1 + ιx, ·, x), vE(ιk+2 +

ιx, ·, x), . . . , vE(ιǩ + ιx, ·, x) are all weakly increasing in x, 0 ≤ x ≤ ǩ.

Result 2. vE satisfies Property 2 for k+1, k+2, . . . , ǩ. That is, vE(ιx+ ιk+1, ·, k+1), vE(ιx+

ιk+2, ·, k + 2), . . . , vE(ιx + ιǩ, ·, ǩ) are all weakly decreasing in x, 0 ≤ x ≤ ǩ.

Result 3. vE satisfies Property 3 for k + 1, k + 2, . . . , ǩ. That is, vE(ιk+1 + ιx, ·, x) ≥
vE(ιk+2 + ιx, ·, x) ≥ . . . ≥ vE(ιǩ + ιx, ·, x) for all 1 ≤ x ≤ k.

Result 4. vE satisfies Property 4 for k + 1, k + 2, . . . , ǩ. That is, vE(ιk+1, ·, k + 1) ≤
vE(ιk+2, ·, k + 2) ≤ . . . ≤ vE(ιǩ, ·, ǩ).

We then need to prove that vE satisfies Properties 1-4 for k.

Prove Property 2 for k. We follow three steps to achieve this end.

(i). First, consider F1
k , the subspace of F5

k+1 in which any function f satisfies that (T afE)(2ιk, ·, k) =

vE(2ιk, ·, k), fE(ιx + ιk, ·, k) is weakly decreasing in x, k ≤ x ≤ ǩ, and fE(2ιk, ·, k) ≤
fE(ιk + ιx, ·, k), for all 0 ≤ x ≤ k. Note that at least a function f ∗E with f ∗E(2ιk, ·, k) =

vE(2ιk, ·, k) = f ∗E(ιk + ιx, ·, k) for all x is in F1
k , so F1

k is nonempty. For any fE ∈ F1
k ,

f̃E shares the properties with fE and hence also has the properties stated in Results
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1–4. To prove that (T afE)(ιx + ιk, ·, k) is weakly decreasing in x, k ≤ x ≤ ǩ, consider

the following cases for any k1, k2 such that k ≤ k1 < k2 ≤ ǩ.

(a) If k < k1 < k2, according to Lemma 1, E[E[f̃E(ιK1′ +ιK′ , ·, K ′)|K = k]|K1 = k1] ≥
E[E[f̃E(ιK2′ + ιK′ , ·, K ′)|K = k]|K2 = k2]. Thus, from equation (2), (T afE)(ιk2 +

ιk, c, k) ≤ (T afE)(ιk1 + ιk, c, k).

(b) If k = k1 < k2, first observe that

(T afE)(ιk2 + ιk, c, k) = max
{

0,E[E[f̃E(ιK2′ + ιK′ , c,K ′)|K = k]|K2 = k2]
}

≤ max
{

0,E[E[f̃E(ιK1′ + ιK′ , c,K ′)|K = k]|K1 = k]
}

Then, because (i) for all fE ∈ F1
k , f̃E(2ιk, ·, k) ≤ f̃E(ιk, ·, k) and f̃E(2ιk, ·, k) ≤

f̃E(ιk + ι1, ·, k), and (ii) Result 2, we obtain that E[f̃E(ιk + ιK′ , ·, K ′)|K = k] ≤
E[f̃E(ιK′ , ·, K ′)|K = k], and further E[E[f̃E(ιK1′ + ιK′ , ·, K ′)|K = k]|K1 = k] ≤
E[f̃E(ιK′ , ·, K ′)|K = k]. Then,

(T afE)(ιk2 + ιk, c, k) ≤ max{0, aS(2ιk, c, k)E[E[f̃E(ιK1′ + ιK′ , c,K ′)|K = k]|K1 = k1 = k]

+(1− aS(2ιk, c, k))E[f̃E(ιK′ , c,K ′)|K = k]}
= (T afE)(ιk1 + ιk, c, k)

To prove that (T afE)(2ιk, ·, k) ≤ (T afE)(ιk + ιx, ·, k), for all 0 ≤ x ≤ k, note that,

(T afE)(2ιk, c, k) = vE(2ιk, c, k)

≤ max {0, vS(2ιk, c, k)}
≤ max

{
0,E[E[f̃E(ιK1′ + ιK′ , c,K ′)|K = k]|K1 = k]

}
≤ max{0, aS(ιk + ιx, c, x)E[E[f̃E(ιX′ + ιK′ , c,K ′)|K = k]|X = x]

+(1− aS(ιk + ιx, c, x))E[f̃E(ιK′ , c,K ′)|K = k]}
= (T afE)(ιk + ιx, c, k)

The first inequality is due to equilibrium symmetric; for two type-k firm, either firm’s

equilibrium payoff is bounded by payoff from joint continuation. The second inequality

is because fE ∈ F0 so fE ≥ vE. These results show that T a : F1
k → F1

k . An familiar

argument on the simultaneous-move survival game leads to

vE(2ιk, c, k) = max {0, vS(2ιk, c, k)} . (4)
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The right-hand-side of (4) defines a contraction mapping with a unique fixed point

v(2ιk, ·, k),

(T afE)(2ιk, c, k) = max
{

0,E[E[f̃E(ιK1′ + ιK′ , c,K ′)|K = k]|K1 = k]
}
.

(ii). We move on to a subspace of F1
k , which we denote by F2

k . Any function fE in this

subspace satisfy that fE(ιk+ιx, ·, x) is weakly increasing with x. Note that for fE ∈ F2
k ,

f̃E(ιk + ιx, ·, x) is weakly increasing in x as well. Combine it with Result 1, and then

we have that f̃E(ιd + ιx, ·, x) is weakly increasing in x for all d such that k ≤ d ≤ ǩ.

Therefore, E[f̃E(ιK′ + ιx, ·, x)|K = k] is weakly increasing in x. For any k1, k2 such that

1 ≤ k1 ≤ k2 ≤ ǩ, according to Lemma 1,

[E[f̃E(ιK′ + ιK1′ , ·, K1′)|K = k]|K1 = k1] ≤ [E[f̃E(ιK′ + ιK2′ , ·, K2′)|K = k]|K2 = k2].

(5)

We then consider the following cases.

(a) For k1 ≤ k2 ≤ k, from equation (2), we can observe that equation (5) leads to

(T afE)(ιk + ιk1 , c, k
1) ≤ (T afE)(ιǩ + ιk2 , c, k

2).

(b) For k < k1 ≤ k2 ≤ ǩ, from Result 3, we have aS(ιk + ιk1 , ·, k) ≥ aS(ιk + ιk2 , ·, k).

Also, from Result 2 and Lemma 1,

[E[f̃E(ιK′ + ιKi′ , ·, Ki′)|K = k]|Ki = ki] ≤ E[f̃E(ιKi′ , ·, Ki′)|Ki = ki], i = 1, 2.

From Result 4 and Lemma 1,

E[f̃E(ιK2′ , ·, K2′)|K2 = k2] ≤ E[f̃E(ιK1′ , ·, K1′)|K1 = k1].

Using equation (1), we can show (T afE)(ιk + ιk1 , c, k
1) ≤ (T afE)(ιk + ιk2 , c, k

2) by

exploiting the inequalities.

(c) For k1 ≤ k ≤ k2 ≤ ǩ, similarly we can show (T afE)(ιk + ιk1 , c, k
1) ≤ (T afE)(ιk +

ιk2 , c, k
2) with the above results.

This result guarantees that T a : F2
k → F3

k . Therefore, any equilibrium payoff must

satisfy that vE(ιk + ιx, ·, x) is weakly increasing in x for all 1 ≤ x ≤ ǩ, which leads to

the same monotonicity for vS and the equilibrium survival rule.
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Prove Property 1 for k. Next, we focus on a subspace of F3
k , denoted by F3

k . In this

subspace, any function fE satisfies that fE(ιx + ιk, ·, k) is weakly decreasing in x, 0 ≤ x ≤ k.

Note that for fE ∈ F3
k , f̃E(ιx + ιk, ·, k) is also weakly decreasing in x, 0 ≤ x ≤ k. Combine it

with Result 2, and then we have that f̃E(ιx+ ιd, ·, d) is weakly decreasing in x, 0 ≤ x ≤ ǩ and

for all d such that k ≤ d ≤ ǩ. Therefore, E[f̃E(ιK′ + ιx, ·, K ′)|K = k] is weakly decreasing in

x. For any k1, k2 such that 0 ≤ k1 ≤ k2 ≤ ǩ, Lemma 1 implies that

[E[f̃E(ιK′ + ιK1′ , ·, K ′)|K = k]|K1 = k1] ≥ [E[f̃E(ιK′ + ιK2′ , ·, K ′)|K = k]|K2 = k2].

Also, we have aS(ιk+ιk1 , ·, k1) ≤ aS(ιk+ιk2 , ·, k2). Therefore, it must be true that (T afE)(ιk+

ιk2 , c, k) ≤ (T afE)(ιk + ιk1 , c, k). So T a : F3
k → F3

k and the equilibrium payoff vE(ιx + ιk, ·, k)

is weakly decreasing in x, 0 ≤ x ≤ ǩ.

Prove Property 3 for k. Next, we further look into a subspace of F3
k , denoted by F4

k , in

which any function fE satisfies that fE(ιk + ιx, ·, x) ≤ fE(ιk+1 + ιx, ·, x) for all x < k. Note

that Result 2 and Property 1 ensure that fE(ιk + ιx, ·, x) ≤ fE(ιk+1 + ιx, ·, x) for all x ≥ k,

so for any fE ∈ F3
k , f̃E(ιk+1 + ιx, ·, x) ≤ f̃E(ιk + ιx, ·, x) for all x. Combine it with Result

3, and then we have E[f̃E(ιk1 + ιX′ , ·, X ′)|X = x] is weakly decreasing in k1 for k ≤ k1 ≤ ǩ.

According to Lemma 1,

E[E[f̃E(ιK1′ + ιX′ , ·, X ′)|X = x]|K1 = k1] ≤ E[E[f̃E(ιK′ + ιX′ , ·, X ′)|X = x]|K = k].

Then using equation (2) we can show that (T afE)(ιk1 + ιx, c, x) ≤ (T afE)(ιk+ ιx, c, x) for any

x < k. Therefore, T a : F4
k → F4

k and vE(ιk1 + ιx, c, x) ≤ vE(ιk + ιx, c, x) for all x and all k1

such that k ≤ k1 ≤ ǩ. In particular, this result ensures that aE(ιk+1 + ι1, ·) ≤ aE(ιk + ι1, ·).

Prove Property 4 for k. Finally, define a subspace of F4
k , in which any function fE

satisfies fE(ιk, ·, k) ≤ fE(ιk+1, ·, k + 1), as F5
k . Because aE(ιk+1 + ι1, ·) ≤ aE(ιk + ι1, ·), we

have f̃E(ιk, ·, k) ≤ f̃E(ιk+1, ·, k + 1) as well. Combine it with Result 4, and then we have

that f̃E(ιk1 , ·, k1) is weakly increasing in k1 for k ≤ k1 ≤ ǩ. Using Lemma 1, we have

(T afE)(ιk, c, k) ≤ (T afE)(ιk+1, c, k + 1) so T a : F5
k → F5

k and Property 4 is verified for k.

This completes the verification for the sufficient properties for any arbitrary k. Since

(aS, aE) is also arbitrarily chosen, any natural equilibrium payoff function vE must satisfy

Properties 1, 2, and 4. Then we can prove Lemma 1.
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Prove Lemma 1. For any strategy (aS, aE), as a special case of Property 1, vE(2ιk, c, k) ≤
vE(ιk, c, k) for any k ≤ ǩ. To prove vS(2ιk, c, k) ≤ vS(ιk, c, k), note that

vS(2ιk, c, k) = E[E[ṽaE(ιK′ + ιK1′ , c,K ′)|K = k]|K1 = k]

vS(ιk, c, k) = E[ṽaE(ιK′ , c,K ′)|K = k],

where ṽaE is defined analogously as f̃S. For any k1, k2 ≥ k, Property 1 ensures that vE(ιk1 +

ιk2 , c, k
1) ≤ vE(ιk1 + ι1, c, k

1) ≤ vE(ιk1 , c, k
1), and ṽaE(ιk1 + ιk2 , c, k

1) ≤ ṽaE(ιk1 + ι1, c, k
1) ≤

ṽaE(ιk1 , c, k
1). Therefore E[E[vS(ιK′ + ιK1′ , c,K ′)|K = k]|K1 = k] ≤ E[vS(ιK′ , c,K ′)|K].

I.2 Details for the Proof of Proposition 1

Proof. We provide here the details to prove wE(ιk1 + ιk2 , ·, k1) ≥ wE(ιk1 + ιk2 , ·, k2). Define

F to be the space of all functions

fE :

(n1, . . . , nǩ) :
ǩ∑
i=1

ni ≤ 2

× [ĉ, č]×K→
[
0,
βπ(ιǩ, č, ǩ)

1− β

]
,

and Tα : F → F with

(TαfE)(ιk1 + ιk2 , c, k
1) =

{
(Tk1,k2f)(C), f(C) ≡ g(ιk1 + ιk2 , c, k

2) if k1 ≤ k2

(Tk1f)(C, k2), f(C, k2) ≡ g(ιk1 + ιk2 , c, k
2) if k1 > k2

}
.

Thus, Tα is exactly assembled by Tk1,k2 and Tk1 in Algorithm 1, and wE computed by

Algorithm 1 is the unique fixed point of Tα. Now consider a subspace of F , which we

denote as FN . In this space, any function fE satisfies that fE ≤ wE, fE(ιk1 + ιk2 , ·, k1) ≥
fE(ιk1 + ιk2 , ·, k2) for all k1 > k2.

We aim to prove Tα : FN → FN . For all fE ∈ FN , f̃E ∈ FN as well. Consider the

following cases

(i). If Algorithm 1 computes αS(ιk1 + ιk2 , c, k
2) = 1, then Algorithm 1 also prescribes

αS(ιk1 + ιk2 , c, k
1) = 1. Substitute these survival rules into Equation (1) and use

Lemma 1 again, we obtain that (TαfE)(ιk1 + ιk2 , c, k
1) ≥ (TαfE)(ιk1 + ιk2 , c, k

2).

(ii). If Algorithm 1 computes αS(ιk1 + ιk2 , c, k
2) = 0, then it must be the case that wE(ιk1 +

ιk2 , c, k
2) = 0. For any fE ∈ F , fE(ιk1 + ιk2 , c, k

2) ≤ wE(ιk1 + ιk2 , c, k
2) = 0.

Since wE(ιk1 + ιk2 , c, k
2) = (Tα∞fE)(ιk1 + ιk2 , c, k

2) and Tα is a monotone operator,

(TαfE)(ιk1 + ιk2 , c, k
2) ≤ wE(ιk1 + ιk2 , c, k

2) = 0. Thus, (TαfE)(ιk1 + ιk2 , c, k
1) ≥ 0 ≥

(TαfE)(ιk1 + ιk2 , c, k
2).
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By point-wise comparison, we conclude that Tα : FN → FN hence wE(ιk1 + ιk2 , ·, k1) ≥
wE(ιk1 + ιk2 , ·, k2) for all k1 > k2. This means that whenever wE(ιk1 + ιk2 , ·, k2) > 0, wE(ιk1 +

ιk2 , c, k
1) > 0 as well.

II Computational Techniques

II.1 Computing A Firm’s Beliefs about Next Period’s State

The computation of the expectation in (1) requires the distribution of MS conditional on ME,

given that the firm of interest survives and that all other firms use the common strategy aS.

Denote the density (with respect to the appropriate dominating measure) of this distribution

with pmS
(·|ME = mE). Decompose mS =

∑
im

i
S ≡

∑
imS,iιi and mE =

∑
imE,iιi, with

mS,i the number of firms who have type-i in the current period and continue to next period,

and mE,i the number of firms who are active when the current period’s continuation decisions

are made. Then, because M i
S,. . . , M ǩ

S are independent conditional on ME and given that the

firm of interest survives, pmS
(·|ME = mE) is the convolution of the corresponding conditional

densities pmi
S

(·|ME = mE) of mi
S; i = 1, . . . , ǩ. Denote m̃i ≡ mE,i − I(i = k) and m̃S,i ≡

mS,i−I(i = k). Note that m̃i is the number of type-i firms active when continuation decisions

are made in the current period, excluding the firm of interest; and m̃S,i is the number of

firms who have type-i in the current period and continue to next period, excluding the firm

of interest. Then, for mS,i such that 0 ≤ mS,i ≤ mE,i, we have that

pmi
S

(·|ME = mE) =

(
m̃i

m̃S,i

)
aS(mE, c, i)

m̃S,i(1− aS(mE, c, i))
m̃i−m̃S,i

Computing the expectation in (2) requires the distribution of (N ′,M ′, C ′, K ′) conditional

on MS, C,K, given that all potential entrants use the common strategy aE. Denote the

density of this distribution with p (·|MS, C,K). Conditional on (N ′, C ′), M ′ is independent

of (K ′,MS, C,K); conditional on (K ′,MS, K), N ′ is independent of C ′; conditional on C, C ′ is

independent of (K ′,MS, C,K); and conditional onK, K ′ is independent ofHS. Consequently,

p (n′,m′, c′, k′|MS = mS, C = c,K = k) =pM (m′|N ′ = n′, C ′ = c′)× pN (n′|K ′ = k′,MS = mS, K = k)

× q(c′|C = c)× Πk′k.

Here, pM (·|N ′, C ′) is the density of next period’s post-entry market structure M ′, conditional

on next period’s pre-entry market structure N ′ and demand state C ′. And, pN (·|K ′,MS, K)
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is the density of next period’s pre-entry market structure N ′ conditional on MS, given that

the firm of interest survives with productivity type K ′.

First, note that

pM (m′|N ′ = n′, C ′ = c′) =


1− aE (m′ + ι1, c

′) if M ′ = n′;

(1− aE(m′ + (m′1 − n′1 + 1)ι1, c
′)) if m′1 > n′1

×
∏m′

1−n′
1

j=1 aE(n′ + jι1, c
′) and m′2 = n′2, . . . ,m

′
ǩ

= n′
ǩ
;

0 otherwise.

Next, consider pN (·|K ′,MS, K). Decompose n′ =
∑

i n
i, with ni the contribution to next

period’s pre-entry market structure by the mS,i firms who are of type-i in the previous period

and choose to continue. Then, because N1,. . . , N ǩ are independent conditional on MS and

given that the firm of interest survives with productivity type K ′, pN (·|K ′,MS, K) is the

convolution of the corresponding conditional densities pN i (·|K ′,MS, K) of N i; i = 1, . . . , ǩ.

Denote ñi(k, k′) ≡ ni − I(i = k)ιk′ . This is the contribution of the mS,i firms excluding

the firm of interest, to next period’s pre-entry market structure. Then, for mS such that

m̃S,i ≥ 0, we have that

pN i

(
nk|K ′ = k′,MS = mS, K = k

)
=

ǩ∏
i′=i

(∑ǩ
m=i′ ñ

i
m(k, k′)

Ñ i
i′(k, k

′)

)
Π
ñi
i′ (k,k

′)

i′i

if Ñ i
m = 0 for all m < i, ñim ≥ 0 for all m ≥ i, and

∑
i′ ñ

i
i′ ≤ m̃i; and zero otherwise.

II.2 Constructing the Type Transition Matrices in Matlab

II.2.1 The Problem

Given any finite m̌ and ǩ and a ǩ × ǩ transition matrix Π, or the triple (ǩ, m̌,Π), we need

to compute all the transition matrices for 1, 2, . . . , m̌-firm market structures, conditioning

on all realized exits and one surviving firm’s type transition. Since any single firm’s type

transition is characterized by Π, the non-trivial part of this problem is computing all the

transition matrices for 1, 2, . . . , m̌− 1-firm market structures. W.L.O.G., we discuss how to

construct m̌ such matrices for the triple (ǩ, m̌ + 1,Π). For every ordering of all possible

market structures with m firms, m ∈ {1, . . . , m̌}, there is a representation of transition

matrix corresponding to that ordering. We henceforth focus on the transition matrices for

OL-ordered market structures. For any m, we denote the transition matrix as Πm.
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II.2.2 The Dimensionality

For the triple (ǩ, m̌ + 1,Π), we know that if there are m surviving firms, the OL-ordered

sequence of all possible market structures has (m+ǩ−1)!

m!(ǩ−1)!
elements. Therefore, Πm’s dimension

is (m+ǩ−1)!

m!(ǩ−1)!
× (m+ǩ−1)!

m!(ǩ−1)!
.

II.2.3 Recursive Construction of Πm

We recursively construct Πm using Πm−1 and Π1, for all 2 ≤ i ≤ m̌. Note that Π1 = Π.

To describe the construction, we very often use examples. We use Italic to distinguish the

discussion on general case and the discussion on an example.

The link between an element in Πm and the elements in Πm−1 and Π1 is explained below.

(i). The (a, b) element in Πm corresponds to a transition probability from an initial m-firm

market which has index a in the m-firm OL sequence to a destined m-firm market with

index b.

(ii). Suppose that i is the index for the highest type in the initial market a. Taking out one

type-i firm from the a leaves an initial m− 1-firm market structure. Suppose that this

market structure has index c in the m− 1-firm OL sequence.

(iii). Next, suppose that the type-i firm transits to one of the possible types j in the destined

market b. This transition has probability Πi,j.
1

(iv). Excluding this type-j firm from the destined market leaves a destinedm−1-firm market.

Suppose that this market has index d in the m− 1-firm OL sequence.

(v). The transition between the initial and the destined m−1-firm markets is characterized

by Πm−1
c,d .

(vi). The transition from the initial m-firm market to the destined one then has the proba-

bility

Πm
a,b =

∑
j:bj>0

Πi,jΠ
m−1
c,d .

1Note that we also consider the impossible regression in the types here and throughout this notes. So, we

consider all j’s including those are lower than i. In such cases, Πi,j = 0.
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Example Suppose that ǩ = 3, m̌ = 2. In slightly abused notations, we denote the types as

L,M,H. Π2 is a 6 × 6 matrix. Now, take its (2, 3) element as an example to demonstrate

the above procedure.

(i). This (2, 3) element corresponds to the transition from the market HM to HL.

(ii). Taking out the firm with the highest type H from the initial market HM leaves an

initial 1-firm market M , which has index 2 in the 1-firm OL sequence.

(iii). Suppose that the H firm transits to H in the destined market. This transition has

probability Π1,1.

(iv). Excluding the H firm from the destined market leaves a destined 1-firm market L, which

has index 3 in the 1-firm OL sequence.

(v). The transition between the initial and the destined 1-firm market M and L is charac-

terized by Π1
2,3.

(vi). Note that H can also transit to L (with 0 probability), the transition from the initial

market HM to the destined HL then has the probability

Π2
2,3 = Π1,1Π1

2,3 + Π1,3Π1
2,1.

In short-hand notations, we rewrite the equation Πm
ab =

∑
j:bj>0 ΠijΠ

m−1
cd using indices

only: (a, b) :=
∑

j:bj>0(i, j) × (c, d), with the understanding that (a, b) always indexes the

element in Πm, (i, j) in Π, and (c, d) in Πm−1. We connect these indices to the objects that

they index.

(i). i indexes the highest type in the market a. Therefore, for each given a, i is unique.

This implies that in each row of Πm, all entries share the same i.

(ii). All j’s indicate all possible types in market b. Therefore, in each column of Πm, all

entries share the same j’s. For any (a, b) entry, there are at most ǩ possible values of

j.

(iii). c indexes the m − 1 market structure resulted by subtracting a type-i firm from the

market a. Therefore, for each (a, b), c is unique and in each row of Πm, all entries share

the same c.
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(iv). All d’s index all possible m− 1 market structures resulted by subtracting a type-j firm

from the market b. Therefore, in each column of Πm, all entries share the same d’s. For

any (a, b) entry, there are at most ǩ possible values of d.

Henceforth, we call i the first index, all j’s the second indices, c the third, and d’s the

fourth. One may have already developed some intuition that there are regularity patterns

in these indices, which can be used to vectorize the calculation of Πm. Next, we make the

regularity pattern visible to intellectual eyes by an example.

Example As an example, we write Π2 for ǩ = 3, m̌ = 2 using the indices representation.

Again, bear in mind that the first two indices index the element in Π while the last two index

the element in Π1.
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)

+
(1
,3

)
×

(2
,1

)
+

(1
,3

)
×

(2
,2

)
(1
,3

)
×

(2
,3

)

H
L

(1
,1

)
×

(3
,1

)
(1
,1

)
×

(3
,2

)
(1
,1

)
×

(3
,3

)

+
(1
,2

)
×

(3
,1

)
(1
,2

)
×

(3
,2

)
(1
,2

)
×

(3
,3

)

+
(1
,3

)
×

(3
,1

)
+

(1
,3

)
×

(3
,2

)
(1
,3

)
×

(3
,3

)

M
M

(2
,1

)
×

(2
,1

)
(2
,1

)
×

(2
,2

)
(2
,1

)
×

(2
,3

)

+
(2
,2

)
×

(2
,1

)
(2
,2

)
×

(2
,2

)
(2
,2

)
×

(2
,3

)

+
(2
,3

)
×

(2
,1

)
+

(2
,3

)
×

(2
,2

)
(2
,3

)
×

(2
,3

)

M
L

(2
,1

)
×

(3
,1

)
(2
,1

)
×

(3
,2

)
(2
,1

)
×

(3
,3

)

+
(2
,2

)
×

(3
,1

)
(2
,2

)
×

(3
,2

)
(2
,2

)
×

(3
,3

)

+
(2
,3

)
×

(3
,1

)
+

(2
,3

)
×

(3
,2

)
(2
,3

)
×

(3
,3

)

L
L

(3
,1

)
×

(3
,1

)
(3
,1

)
×

(3
,2

)
(3
,1

)
×

(3
,3

)

+
(3
,2

)
×

(3
,1

)
(3
,2

)
×

(3
,2

)
(3
,2

)
×

(3
,3

)

+
(3
,3

)
×

(3
,1

)
+

(3
,3

)
×

(3
,2

)
(3
,3

)
×

(3
,3

)
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To illustrate the regularity in the above matrix, the first trick is to introduce an auxiliary

”impossible destined market structure”, which possesses index (m+ǩ−1)!

m!(ǩ−1)!
+1 in the OL sequence

of m-firm market structures. Its impossibility means that no m-firm market structure can

transit to it. For instance, when m = 1, this market structure has index 4. To accommodate

such impossible destined market structure, we can expand Π1 by a fourth column of zeros, so

Π1
i,4 = 0, i = 1, 2, 3.

Then, we can rewrite the above matrix as
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H
H

H
M

H
L

M
M

M
L

L
L

H
H

(1
,1

)
×

(1
,1

)
(1
,1

)
×

(1
,2

)
(1
,1

)
×

(1
,3

)
(1
,1

)
×

(1
,4

)
(1
,1

)
×

(1
,4

)
(1
,1

)
×

(1
,4

)

+
(1
,2

)
×

(1
,4

)
+

(1
,2

)
×

(1
,1

)
+

(1
,2

)
×

(1
,4

)
+

(1
,2

)
×

(1
,2

)
+

(1
,2

)
×

(1
,3

)
+

(1
,2

)
×

(1
,4

)

+
(1
,3

)
×

(1
,4

)
+

(1
,3

)
×

(1
,4

)
+

(1
,3

)
×

(1
,1

)
+

(1
,3

)
×

(1
,4

)
+

(1
,3

)
×

(1
,2

)
+

(1
,3

)
×

(1
,3

)

H
M

(1
,1

)
×

(2
,1

)
(1
,1

)
×

(2
,2

)
(1
,1

)
×

(2
,3

)
(1
,1

)
×

(2
,4

)
(1
,1

)
×

(2
,4

)
(1
,1

)
×

(2
,4

)

+
(1
,2

)
×

(2
,4

)
+

(1
,2

)
×

(2
,1

)
+

(1
,2

)
×

(2
,4

)
+

(1
,2

)
×

(2
,2

)
+

(1
,2

)
×

(2
,3

)
+

(1
,2

)
×

(2
,4

)

+
(1
,3

)
×

(2
,4

)
+

(1
,3

)
×

(2
,4

)
+

(1
,3

)
×

(2
,1

)
+

(1
,3

)
×

(2
,4

)
+

(1
,3

)
×

(2
,2

)
+

(1
,3

)
×

(2
,3

)

H
L

(1
,1

)
×

(3
,1

)
(1
,1

)
×

(3
,2

)
(1
,1

)
×

(3
,3

)
(1
,1

)
×

(3
,4

)
(1
,1

)
×

(3
,4

)
(1
,1

)
×

(3
,4

)

+
(1
,2

)
×

(3
,4

)
+

(1
,2

)
×

(3
,1

)
+

(1
,2

)
×

(3
,4

)
+

(1
,2

)
×

(3
,2

)
+

(1
,2

)
×

(3
,3

)
+

(1
,2

)
×

(3
,4

)

+
(1
,3

)
×

(3
,4

)
+

(1
,3

)
×

(3
,4

)
+

(1
,3

)
×

(3
,1

)
+

(1
,3

)
×

(3
,4

)
+

(1
,3

)
×

(3
,2

)
+

(1
,3

)
×

(3
,3

)

M
M

(2
,1

)
×

(2
,1

)
(2
,1

)
×

(2
,2

)
(2
,1

)
×

(2
,3

)
(2
,1

)
×

(2
,4

)
(2
,1

)
×

(2
,4

)
(2
,1

)
×

(2
,4

)

+
(2
,2

)
×

(2
,4

)
+

(2
,2

)
×

(2
,1

)
+

(2
,2

)
×

(2
,4

)
+

(2
,2

)
×

(2
,2

)
+

(2
,2

)
×

(2
,3

)
+

(2
,2

)
×

(2
,4

)

+
(2
,3

)
×

(3
,4

)
+

(2
,3

)
×

(3
,4

)
+

(2
,3

)
×

(2
,1

)
+

(2
,3

)
×

(3
,4

)
+

(2
,3

)
×

(2
,2

)
+

(2
,3

)
×

(2
,3

)

M
L

(2
,1

)
×

(3
,1

)
(2
,1

)
×

(3
,2

)
(2
,1

)
×

(3
,3

)
(2
,1

)
×

(3
,4

)
(2
,1

)
×

(3
,4

)
(2
,1

)
×

(3
,4

)

+
(2
,2

)
×

(3
,4

)
+

(2
,2

)
×

(3
,1

)
+

(2
,2

)
×

(3
,4

)
+

(2
,2

)
×

(3
,2

)
+

(2
,2

)
×

(3
,3

)
+

(2
,2

)
×

(3
,4

)

+
(2
,3

)
×

(3
,4

)
+

(2
,3

)
×

(3
,4

)
+

(2
,3

)
×

(3
,1

)
+

(2
,3

)
×

(3
,4

)
+

(2
,3

)
×

(3
,2

)
+

(2
,3

)
×

(3
,3

)

L
L

(3
,1

)
×

(3
,1

)
(3
,1

)
×

(3
,2

)
(3
,1

)
×

(3
,3

)
(3
,1

)
×

(3
,4

)
(3
,1

)
×

(3
,4

)
(3
,1

)
×

(3
,4

)

+
(3
,2

)
×

(3
,4

)
+

(3
,2

)
×

(3
,1

)
+

(3
,2

)
×

(3
,4

)
+

(3
,2

)
×

(3
,2

)
+

(3
,2

)
×

(3
,3

)
+

(3
,2

)
×

(3
,4

)

+
(3
,3

)
×

(3
,4

)
+

(3
,3

)
×

(3
,4

)
+

(3
,3

)
×

(3
,1

)
+

(3
,3

)
×

(3
,4

)
+

(3
,3

)
×

(3
,2

)
+

(3
,3

)
×

(3
,3

)

17



The second trick towards detecting the regularity is to partition the matrix into ǩ row-

blocks. In each row-block, all rows correspond to initial market structures that share the

same highest type. In the above matrix, row 1-3 correspond to initial market structures

whose highest type is H, row 4-5 M , and row 6 L. Because of OL, the index of the row-block

is also the index for the highest type. So, in the above matrix, the first block connects to type

1, the second block to type 2, and the third block to type 3.

The first row-block of any Πm matrix contains all initial market structures that has one

type-ǩ firm and m−1 other firms with any type. There are (m−1+ǩ−1)!

(m−1)!(ǩ−1)!
such market structures.

So the length of the first block is just (m−1+ǩ−1)!

(m−1)!(ǩ−1)!
. The second block contains all initial market

structures that has one type-ǩ−1 firm and m−1 other firms with type no better than ǩ−1.

There are (m−1+ǩ−2)!

(m−1)!(ǩ−2)!
such market structures. So is the length of the second block. In total,

there are ǩ such blocks. The t-th block has the length (m−1+ǩ−t)!
(m−1)!(ǩ−t)! .

Now each entry of the matrix has four columns of indices. All columns have the same

length ǩ (3 in this example). Next, we present the regularity on these columns.

(i). Recall that the first index represents the highest type in the initial market structure.

Also recall that in each row-block, all initial market structures share the same highest

type. Therefore, the column of first indices in each entry has a single value, which is

simply the index of the row-block that this entry is in. Therefore, it remains unchanged

for every row in a same block.

(ii). Recall that the second indices represent all the possible types in the destined market

structure. After the introduction of the impossible market structure, the column of the

second indices in each entry is simply (1, . . . , ǩ).

(iii). Recall that the third index represents the m−1 market structure resulted by subtracting

a highest type firm from the initial market structure. Therefore, the column of the third

indices has a single value and remains unchanged for every entry in a same row. In each

row, this value equals the index of the m− 1 market structure resulted by subtracting

a highest type from the initial market structure. In the current example, in row 1,

the 1-firm market structure resulted by subtracting H from HH is H, which has index

number 1 in 1-firm OL sequence. So, in the first row, the third index is 1. In row 2,

the 1-firm market structure resulted by subtracting H from HM is M . So, in the first

row, the third index is 2. Observing the following facts

(a) Within each block, this index increases by 1 each row.
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(b) The last row in each block corresponds to the most inferior market structure in

the OL sense. Hence, this index in the last row of each block must equal to the

length of the OL sequence of the m − 1-firm market structures. In the current

example, the length is 3, which is the value of the third index in row 3, 5, 6.

(c) The t-th block has the length (m−1+ǩ−t)!
(m−1)!(ǩ−t)! .

We can conclude that in the t-th row-block, the third index grows from (m−1+ǩ−1)!

(m−1)!(ǩ−1)!
−

(m−1+ǩ−t)!
(m−1)!(ǩ−t)! + 1 to (m−1+ǩ−1)!

(m−1)!(ǩ−1)!
row by row.

(iv). Recall that the fourth indices represents the m − 1 market structure resulted by sub-

tracting a highest type firm from the destined market structure. Therefore, the column

of the fourth indices remains unchanged for every entry in a same column. The regu-

larity pattern of this column is more subtle than any of the above columns. We further

explore it. We write down this column in the above example

HH HM HL MM ML LL

1 2 3 4 4 4

4 1 4 2 3 4

4 4 1 4 2 3
This matrix of the fourth indices can be engineered from the following 0-1 matrix.

HH HM HL MM ML LL

1 1 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 1

We can transform the 1’s in each row of the above matrix into the ordinals of 1’s (the

first 1 stays 1, the second 1 is transformed to 2, the third to 3) and the 0’s into 4 to go

back to the matrix of the fourth indices. This transformation is unique and can always

be done for any matrix of the fourth indices. Hence we focus on constructing the later

matrix, which we simply call the indexing matrix.

Since the fourth indices are related to the destined market structures, we construct the

indexing matrix by exploring Πm from its column dimension. Now, we introduce the

third trick. We partition the Πm matrix into ǩ column-blocks. Analogously to the row-

blocks, in each column-block, all columns correspond to destined market structures

that share the same highest type. In the example matrix, column 1-3 correspond to

destined market structures whose highest type is H, column 4-5 M , and column 6 L.

Again, the index of the column-block is also the index for the highest type. So, in the
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above matrix, the first block connects to type 1, the second block to type 2, and the third

block to type 3. Observing the following facts

(a) The indexing matrix for m = 1 is a ǩ × ǩ identity matrix.

(b) The indexing matrix has ǩ rows. Its (e, f) element indicates if the destined market

structure f has a type-e firm. If it does, then the (e, f) element of the indexing

matrix is 1. Otherwise it is 0. In the above example, the (1, 1) element of the

indexing matrix is 1, because the market structure HH contains a type-H firm.

The (2, 1) element is 0, because the market structure HH does not contain a type-

M firm.

(c) The indexing matrix can also be partitioned into ǩ column-blocks.

(d) In its t-th column-block, since the highest type in the destined market structure

is t, the first t− 1 rows of the indexing matrix in this block are all 0’s and the t-th

row is full of 1’s. In the above example, the first row is full of 1’s in block 1 and

full of 0’s in block 2.

(e) In its t-th column-block, since the m − 1-firm market structures resulted by

subtracting the highest type firm from the destined market structure are the
(m−1+ǩ−1)!

(m−1)!(ǩ−1)!
− (m−1+ǩ−t)!

(m−1)!(ǩ−t)! + 1 to (m−1+ǩ−1)!

(m−1)!(ǩ−1)!
destined market structures in Πm−1,

from the t+ 1-th row onward, the indexing matrix is identical to the (m−1+ǩ−1)!

(m−1)!(ǩ−1)!
−

(m−1+ǩ−t)!
(m−1)!(ǩ−t)! + 1 to (m−1+ǩ−1)!

(m−1)!(ǩ−1)!
columns of the indexing matrix corresponding to

m − 1. In column-block 1 in the above example, the 1-firm market structures are

H,M , and L, which are the 1,2, and 3 destined market structures of Π1. Hence,

from the second row onwards in block 1, the indexing matrix is identical to the

1,2, and 3 columns of the indexing matrix for m = 1, which is a 3 × 3 identity

matrix. In column-block 2 in the above example, the 1-firm market structures are

M and L, which are the 2, and 3 destined market structures of Π1. Hence, the

third row in block 2 of the indexing matrix is identical to the third row and the 2

and 3 columns of the indexing matrix for m = 1.

With all the regularity patterns pointed out as above, we create a Matlab function to

generate all the transition matrices.
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II.2.4 The typetransition.m Function

The matlab function typetransition.m takes the triple (ǩ, m̌,Π) as input, and produces a
(m̌+ǩ−1)!

m̌!(ǩ−1)!
× ( (m̌+ǩ−1)!

m̌!(ǩ−1)!
+ 1)× m̌ array, in which each page contains a transition matrix and the

page number m indicates the number of firms. On each page, the first (m+ǩ−1)!

m!(ǩ−1)!
rows and the

first (m+ǩ−1)!

m!(ǩ−1)!
columns form the transition matrix for the m-firm market.

This function has several layers of loops. The most outside loop runs from m = 2 to

m = m̌. Within this loop, for each given m, the indexing matrix is first created and than

transformed to the matrix of the fourth indices. Then, we use the above mentioned regularity

patterns to construct the other three columns of indices and compute the transition matrix

Πm row-by-row.

Last, a few words on the computational speed. When ǩ = m̌ = 7, the transition matrix

is computed within 3 seconds. When ǩ = m̌ = 8, around 60 seconds. When ǩ = m̌ = 9, a

normal PC runs out of memory.

II.3 Computing All Renegotiation-proof Natural Markov-Perfect

Equilibria

In this appendix, we first show that when C is discrete, we can compute all renegotiation-

proof natural Markov-perfect equilibria. Then, we discuss how to modify Algorithm 2 to

compute all such equilibria.

We have seen in Section ?? that the multiplicity of renegotiation-proof equilibria comes

from the multiple mixing probabilities that can solve (11). Therefore, to compute any single

equilibrium using Algorithm 2, we always need to select the probability corresponding to this

equilibrium. To this end, we introduce a flexible selection mechanism which enables us to do

so.

A selection rule of such mechanism is summarized by Γ : Zǩ? × [ĉ, č] × K → {1, . . . , m̌}.
It works as follows. Suppose that a renegotiation-proof Markov-perfect equilibrium exists,

and aS(m, c, k), as a mixing probability, can take σ(m, c, k) values. Sort all these possible

values in a (weakly) descending sequence. Then, we use Γ to uniquely pin down aS(m, c, k)

by setting aS(m, c, k) = min{σ(m, c, k),Γ(m, c, k)}-th possible value in this sequence. To

give an example of Γ, if for any (m, c, k), Γ(m, c, k) = 1. Then, we always pick the first

one in the sequence or the largest probability as the survival rule. With a pre-specified Γ,

we can modify Procedure 3 to include this mechanism and compute a renegotiation-proof

Markov-perfect equilibrium.
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mi, ki

Specify c ∈ [ĉ, č] and m ∈ mmi+jιki
,∀0 ≤ j ≤ m̌ − |mi|

mki = 1 ?
αS(m, c, ki) =

I[w(m, c, ki) > 0]

wE(m, c, ki)
> 0?

αS(m, c, ki) = 1

Find all p’s ∈ [0, 1) satisfying,
mki−1∑
j=0

(1−p)mki−1−jpj
(
mki − 1

j

)
wS(m− (mki−1− j)ιki , c, ki) = 0.

wS(mi, c, ki)
> 0?

Sort p’s and 0 in

a decreasing array

Sort p’s in a de-

creasing array

σ(m, c, ki)← Length of the array, αS(m, c, k(m))←
the min{σ(m, c, ki),Γ(m, c, ki)}-th element of this array

ki = 1 ?

αE(m, c) = I[w(m +

jι1, c, 1) − ϕ >

0,∀0 ≤ j ≤ m̌ − |m|]

CONTINUE

Yes

No

Yes

No

No Yes

No

Yes

Procedure 3: Calculation of Candidate Entry/Survival Rule for the General Model, Non-

Monotone Payoffs
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Because the number of possible mixing probabilities is bounded by the number of roots

of the polynomial in equation (11), which is in turn bounded by the polynomial’s order. In

the general model, the highest order of any polynomial in equation (11) is m̌. Thus, from the

definition of Γ, it is clear that if C is a discrete variable, the number of distinct Γ mappings is

finite. Therefore, we can compute all renegotiation-proof natural Markov-perfect equilibria

for the general model by implementing Algorithm 2 repeatedly for all possible Γ’s. Although

this procedure can be completely parallelized, it is still computationally cumbersome for large

m̌, ǩ and large number of possible realizations of C.

Practically, we can reduce the computational burden by avoiding running the algorithm

for ”redundant” Γ’s. For some (m, c, k) ∈ S such that σ(m, c, k) < m̌, suppose that under

a selection rule Γ, Γ(m, c, k) = σ(m, c, k). Then any Γ̃ with Γ̃(m, c, k) > σ(m, c, k) and

Γ(n, d, g) = Γ̃(n, d, g), for all (n, d, g) 6= (m, c, k) selects the same Markov-perfect equilibrium

as Γ. Therefore, all such Γ̃ (there are m̌ − σ(m, c, k) of them) are redundant, provided

that we have run the algorithm for Γ. This suggests that to find all the renegotiation-proof

natural equilibria in a computationally efficient way, we should run the algorithm with no

pre-specified Γ but ”branch” the algorithm once multiplicity arises. To be more specific,

after starting the algorithm, once we reach a (m, c, k) such that σ(m, c, k) > 1, we create

σ(m, c, k) branches with αS(m, c, k) set differently. Different branches then can be computed

in parallel. The same branching exercise is done for each parallel session when a new state

with multiple choices emerges.

III Computational Details

III.1 Pencil-and-Paper Computation behind Figure 3

One can compute the example graphed in Figure 3 using numerical method, such as value

function iteration. Alternatively, this example can be computed exactly using only pencil

and paper. This appendix contains the details. Begin with characterizing a duopolist’s payoff

function which satisfies

vE(2, c) =

{
0 if Cc ≤ c2,

β
(1−λ)( c

2
π(2)−κ)+λṽ(2)

1−β(1−λ)
if c > c2,
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where

c2 ≡


ĉ if vE(2, ĉ) > 0,

č if vE(2, č) < 0,

max{c|vE(2, c) = 0} otherwise,

and

ṽ(2) =
1

2

(
ĉ+ č

2

)
π(2)− κ+

∫ č

c2

vE(2, c)

(č− ĉ)
dC.

We want to calculate the continuation and entry thresholds. If ĉπ(2)/2 > κ, firms always

earn positive payoff no matter which C is drawn, then vE(2, ĉ) > 0 and we settle with the

corner solution c2 = ĉ. If ĉπ(2)/2 < κ, we can normalize [ĉ, č] to [0, 1] with the transformations

C ′ ≡ C − ĉ
č− ĉ

,

π′(2) ≡ π(2) (č− ĉ) ,

κ′ ≡ κ− ĉ

2
π(2).

We then proceed by first considering two corner solutions.

If vE(2, 0) > 0, no duopolist will ever exit the market and they expect to earn average

profit from perpetual operation if demand state switches. So ṽ(2) in this case is

ṽ(2) =
1

1− β

(
π′(2)

4
− κ′

)
.

Then vE(2, 0) > 0 is

vE(2, 0) =
β(1− λ)

1− β(1− λ)

(
0× π′(2)

4
− κ′

)
+

βλ

(1− β(1− λ)) (1− β)

(
π′(2)

4
− κ′

)
> 0

Simplify the above expression we produce the necessary and sufficient condition for the

corner solution c2 = 0 as

γ − γβ + γλβ − λ < 0,

with γ ≡ 4κ′

π′(2)
.

If vE(2, 1) < 0, it is not possible for both duopolist to always choose continuation, so

vE(2, 1) =
β(1− λ)

1− β(1− λ)

(
π′(2)

2
− κ′

)
+

βλ

1− β(1− λ)

(
π′(2)

4
− κ′

)
< 0.

24



Simplify this expression we obtain the necessary and sufficient condition for the corner

solution c2 = 1 as

γ > 2− λ.

Now we proceed to calculate the interior solution.

Substituting the lower branch of vE(2, c) into the expression for ṽ(2) produces

ṽ(2) =
π′(2)

4
− κ+

∫ 1

c′2

vE(2, C)dC

=
π′(2)

4
− κ′ + β(1− λ)

1− β(1− λ)

(
π′(2)

4
(1− (c′2)2)− κ′(1− c′2)

)
+

βλṽ(2)

1− β(1− λ)
(1− c′2).(6)

In addition c′2 by definition must satisfy

(1− λ)

(
c′2
2
π′(2)− κ

)
+ λṽ(2) = 0,

so

ṽ(2) =

(
κ′ − c′2

2
π′(2)

)
1− λ
λ

. (7)

Combine (6) and (7) and then rearrange to obtain(
β(1− λ)

1− β(1− λ)

π′(2)

4

)
(c′2)2 +

(
π′(2)

2

1− λ
λ
− β(1− λ)

1− β(1− λ)

π′(2)

2

)
c′2

+

(
π′(2)

4
− κ′ + β(1− λ)

1− β(1− λ)

π′(2)

4
− 1− λ

λ
κ′
)

= 0.

(8)

(8) is a quadratic equation in c′2 of the form ax2 + bx+ c = 0 with

a =
β(1− λ)

1− β(1− λ)

π′(2)

2
,

b =
π′(2)

2

1− λ
λ
− β(1− λ)

1− β(1− λ)

π′(2)

4
,

c =
π′(2)

4
− κ′ + β(1− λ)

1− β(1− λ)

π′(2)

4
− 1− λ

λ
κ′.

Use x1,2 = −b±
√
b2−4ac

2a
to calculate the roots for (8) as

c′12 =
1

λβ

(
β − 1 +

√
(1− λ− β + γλβ)(1− β(1− λ))

1− λ

)
, and (9)

c′22 =
1

λβ

(
β − 1−

√
(1− λ− β + γλβ)(1− β(1− λ))

1− λ

)
(10)
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Because β < 1, c′22 /∈ [0, 1]. The analysis above tell us that the necessary condition for

an interior solution to exit is 2 − λ > γ > λ
1−β(1−λ)

. We use this to check that c′12 is in the

admissible set (0, 1).

Apparently c′12 is increasing in γ. Substitute γ = λ
1−β(1−λ)

into (9) to calculate the lower

bound for c′12 as

c′12 =
1

λβ

(
β − 1 +

√
(1− β)2

)
= 0.

Substitute γ = 2− λ into (9) to calculate the upper bound for c′12 as

c′12 =
1

λβ

(
β − 1 +

√
(1− β(1− λ))2

)
= 1.

Therefore, when 2−λ > γ > λ
1−β(1−λ)

, the interior solution for c′2 is given by (9). Finally,

we restore c2 by using c2 = c′2(č− ĉ) + ĉ.

Before we turn to the analysis for a monopolist, we calculate c2 which is defined as

c2 ≡


ĉ if vE(2, ĉ) > ϕ,

č if vE(2, č) < ϕ,

max{c|vE(2, c)− ϕ = 0} otherwise,

After obtaining c2, using (7), we can calculate ṽ(2). Then by setting vE(2, c2) = ϕ, we

calculate c2 as

c2 =
2

π(2)

(
ϕ(1− β(1− λ))− λβṽ(2)

β(1− λ)
+ κ

)
. (11)

With this in hand, we can define a monopolist’s payoff

vE(1, c) =

{
0 if c ≤ c1,

β (1−λ)(cπ(1)−κ)+λṽ(1)
1−β(1−λ)

if c > c1,

where

c1 ≡


ĉ if vE(1, ĉ) > 0,

č if vE(1, č) < 0,

max{c|vE(1, c) = 0} otherwise,

and

ṽ(1) =

(
ĉ+ č

2

)
π(1)− κ+

∫ č

c2

vE(2, C)

(č− ĉ)
dC +

∫ c2

c1

vE(1, C)

(č− ĉ)
dC.
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If ĉπ(1) > κ, firm always earns positive payoff no matter which C is drawn, then vE(1, ĉ) >

0 and we settle with the corner solution c1 = ĉ. If ĉπ(1) < κ, we can normalize [ĉ, č] to [0, 1]

with the transformations

C ′ ≡ C − ĉ
č− ĉ

,

π′(1) ≡ π(1) (č− ĉ) ,
κ′ ≡ κ− ĉπ(1).

Because∫ 1

c′2

vE(2, C ′)dC ′

is readily computable by using the definition of vE(2, C). We hereafter denote its value by ν.

Similarly to the duopolist case, we then proceed by first considering two corner solutions.

If vE(1, 0) > 0, no monopolist will exit the market and we can calculate ṽ(1) in this case

as

ṽ(1) =
1

2
π′(1)− κ′ + ν +

(c′2)2

2

β(1− λ)

1− β(1− λ)
π′(1)− β(1− λ)c′2

1− β(1− λ)
κ′ +

βλc′2
1− β(1− λ)

ṽ(1).

This gives

ṽ(1) =
(π′(1)/2− κ′ + ν) (1− β(1− λ)) + β(1− λ) ((c′2)2π′(1)/2− c′2κ′)

1− β + λβ(1− c′2)
.

Then vE(1, 0) > 0 is

vE(1, 0) =
β(1− λ)

1− β(1− λ)
(−κ′) +

βλ

(1− β(1− λ))

× (π′(1)/2− κ′ + ν) (1− β(1− λ)) + β(1− λ) ((c′2)2π′(1)/2− c′2κ′)
1− β + λβ(1− c′2)

.

Simplify the above expression we produce the necessary and sufficient condition for the

corner solution c1 = 0 as

γ′ <
(c′2)2(1− λ)β

(1− β(1− λ))
+ 1,

with γ′ ≡ 2
π′(1)

(
κ′

λ
− ν
)
.

If vE(1, 1) < 0, a monopolist will never remain in the market and entry will never happen,

so

vE(1, 1) =
β(1− λ)

1− β(1− λ)
(π′(1)− κ′) +

βλ

1− β(1− λ)

(
π′(1)

2
− κ′

)
< 0.
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Simplify this expression we obtain the necessary and sufficient condition for the corner

solution c1 = 1 as

2− λ
2

π′(1) < κ′.

Because ν = 0 in this case, we can add λν to the the right hand side without changing

the result. Divide both sides by π′(1)λ/2

γ′ >
2− λ
λ

.

Now we proceed to calculate the interior solution.

Substituting the lower branch of vE(1, c) into the expression for ṽ(1) produces

ṽ(1) =
π′(1)

2
− κ′ + ν +

∫ c′2

c′1

vE(1, C)dC

=
π′(1)

2
− κ′ + ν +

β(1− λ)

1− β(1− λ)

(
π′(1)

2
((c′2)2 − (c′1)2)− κ′(c′2 − c′1)

)
+
βλṽ(1)(c′2 − c′1)

1− β(1− λ)
. (12)

In addition c′1 by definition must satisfy

(1− λ) (c′1π
′(1)− κ′) + λṽ(1) = 0,

so

ṽ(1) = (κ′ − c′1π′(1))
1− λ
λ

. (13)

Combine (12) and (13) and then rearrange to obtain(
β(1− λ)

1− β(1− λ)

π′(1)

2

)
(c′1)2 +

(
π′(1)

1− λ
λ
− β(1− λ)c′2

1− β(1− λ)
π′(1)

)
c′1

+

(
π′(1)

2
− κ′ + ν +

β(1− λ)(c′2)2

1− β(1− λ)

π′(1)

2
− 1− λ

λ
κ′
)

= 0.

(14)

(14) is a quadratic equation in c′1 of the form ax2 + bx+ c = 0. Use x1,2 = −b±
√
b2−4ac

2a
to

calculate the roots for (14) as

c′11 = (c′2 − 1) +
β − 1

λβ
+

√
(ξ2 − 2ηξc′2 − η) + ηγ′

η2
, and (15)

c′21 = (c′2 − 1) +
β − 1

λβ
+

√
(ξ2 − 2ηξc′2 − η) + ηγ′

η2
(16)
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with

ξ = 1−λ
λ
,

η = β(1−λ)
1−β(1−λ)

.

Because β < 1 and c′2 < 1, c′21 /∈ [0, 1]. The analysis above tell us that the necessary

condition for an interior solution to exit is 2−λ
λ
> γ′ >

(c′2)2(1−λ)

(1−β(1−λ))λ
+ 1. We use this to check

that c′11 is in the admissible set (0, 1).

Apparently c′11 is increasing in γ′. Substitute γ′ =
(c′2)2(1−λ)

(1−β(1−λ))λ
+ 1 to calculate the lower

bound for c′11 .

c′11 = c′2 − 1 +
β − 1

λβ
+

√
ξ2 − 2ηξc′2 − η + η + η2(c′2)2

η2
= 0.

which can be simplified to

c′11 = c′2 −
ξ

η
+

√
(ξ − ηc′2)2

η2
= 0.

Substitute γ = 2−λ
λ

into (15) to calculate the upper bound for c′11 .

c′11 = (c′2 − 1) +
1

λβ
(β − 1) +

√
(1− β(1− λ)− 2λβc′2 + 2λβ)(1− β(1− λ))

λ2β2
.

Remember when monopolist exit the market for sure, no duopolist will choose to survive.

So c′2 = 1 and above equation simplifies to

c′11 =
1

λβ
(β − 1) +

√
(1− β(1− λ))2

λ2β2
= 1.

Therefore, when 2−λ
λ

> γ′ >
(c′2)2(1−λ)

(1−β(1−λ))λ
+ 1, the interior solution for c′1 is given by (15).

Finally, we restore c1 by using c1 = c′1(č− ĉ) + ĉ.

Last thing is to calculate c1, which is defined as

c1 ≡


ĉ if vE(1, ĉ) > ϕ,

č if vE(1, č) < ϕ,

max{c|vE(1, c)− ϕ = 0} otherwise,

After obtaining c1, using (13), we can calculate ṽ(1). Then by setting vE(1, c1) = ϕ, we

calculate c1 as

c1 =
1

π(1)

(
ϕ(1− β(1− λ))− λβṽ(1)

β(1− λ)
+ κ

)
. (17)

Because firms’ payoffs are linear functions in C, knowing c1, c1, c2, c2 is sufficient for

determining the payoffs for duopolist and monopolist. The calculation is completed.
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III.2 Computing the Example of Multiple Equilibria in Section 4.2

Note that this model is deterministic. We compute some important equilibrium payoffs which

account for equilibrium multiplicity as below

(i). Since c3πH(3ιH) > κ, if three type-H firms are active in the second period, they can

always recover fixed cost and make positive profit by remaining active from the third

period onwards. Moreover, if less type-H firms are active in the second period, they

receive higher profit from the third period onward. Therefore, for t ≥ 2, aS(3ιH, ct,H)

is a dominant strategy and

vE(3ιH, ct,H) =
β(c3πH(3ιH)− κ)

1− β
= 1.

(ii). Since c3πL(2ιH + ιL) > κ, c3πH(ιH + 2ιL) > κ and c3πL(ιH + 2ιL) > κ, for the same

reason, for t ≥ 2,

vE(2ιH + ιL, ct,L) = vS(2ιH + ιL, ct,L)

=
β(1− ΠLH)

1− β(1− ΠLH)
(c3πL(2ιH + ιL)− κ)

+

(
β

1− β
− β(1− ΠLH)

1− β(1− ΠLH)

)
(c3πH(3ιH)− κ)

= 0.8167

vE(2ιH + ιL, ct,H) = vS(2ιH + ιL, ct,H)

=
β(1− ΠLH)

1− β(1− ΠLH)
(c3πH(2ιH + ιL)− κ)

+

(
β

1− β
− β(1− ΠLH)

1− β(1− ΠLH)

)
(c3πH(3ιH)− κ)

= 1.4

vE(ιH + 2ιL, ct,L) = vS(ιH + 2ιL, ct,L)

=
1

1− β(1− ΠLH)2
((1− ΠLH)2(c3πL(ιH + 2ιL))

+(1− ΠLH)ΠLH(c3πH(2ιH + ιL) + vE(2ιH + ιL, ct+1,H))

+(1− ΠLH)ΠLH(c3πL(2ιH + ιL) + vE(2ιH + ιL, ct+1,L))

+Π2
LH(c3πH(3ιH) + vE(3ιH, ct+1,L))− κ)

= 1.2881

(iii). Since vE(2ιH + ιL, c2,L) < ϕ and vE(ιH + 2ιL, c2,L) > ϕ, we have that aE(2ιH +

ιL, c2,L) = 0 and aE(ιH + 2ιL, c2,L) = 1. This means that in the second period, two
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type-L firms will enter a market occupied by a type-H monopoly, while no firm will

enter a market occupied by two type-H duopoly. Since demand stays constant from

the third period on, the market structures at the end of the second period will never

be changed. Therefore, for t ≥ 2,

vE(2ιH, ct,H) = vS(2ιH, ct,H)

=
β(c3πH(2ιH)− κ)

1− β
= 496

vE(ιH + 2ιL, ct,H) = vS(ιH + 2ιL, ct,H)

=
1

1− β(1− ΠLH)2
((1− ΠLH)2(c3πH(ιH + 2ιL))

+2(1− ΠLH)ΠLH(c3πH(2ιH + ιL) + vE(2ιH + ιL, ct+1,H))

+Π2
LH(c3πH(3ιH) + vE(3ιH, ct+1,L))− κ)

= 1.6357

(iv). For a type-H monopolist who is active in the first period, the payoff to continuation is

vS(ιH, c1,H) = β ((c2πH(ιH)− κ) + vE(ιH + 2ιL, c2,H)) = −1.1821.

For a type-H duopolist who is active in the first period together with another type-H

rival, the payoff to continuation, given the rival also continues, is

vS(2ιH, c1,H) = β ((c2πH(2ιH)− κ) + vE(2ιH, c2,H)) = 246.

For a type-H triopolist who is active in the first period together with another two

type-H rivals, the payoff to continuation, given the rivals also continue, is

vS(3ιH, c1,H) = β ((c2πH(3ιH)− κ) + vE(3ιH, c2,H)) = −1.5.
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