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Abstract: I consider a real business cycle model in which agents have private informa-

tion about the stochastic realization of their value of leisure. For the case of logarithmic

preferences I provide an analytical characterization to the solution of the mechanism design

problem for this economy. Moreover, I show a striking irrelevance result: That the stationary

behavior of all aggregate variables are exactly the same in the private information economy

as in the full information case. I then use a new computational method to show that the

irrelevance result holds numerically for more general CRRA preferences.
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1 Introduction

At least since the seminal paper by Krusell et al. (1998) there has been a long literature

analyzing the effects of exogenous borrowing constraints on aggregate fluctuations. The

purpose of this paper is to take a more primitive approach by exploring the effects of restric-

tions to perfect risk sharing but when these restrictions arise from the presence of private

information. To this end the paper solves the mechanism design problem of a real business

*I thank Chris Phelan, Venky Venkateswaran and participants at various seminars and conferences for

useful comments. The views express here do not necessarily reflect the position of the Federal Reserve Bank

of Chicago or the Federal Reserve System. Address: Federal Reserve Bank of Chicago, Research Department,
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cycle (RBC) economy subject to private information and compares its aggregate fluctuations

with those of the same economy with full information. The paper is not only interested in

evaluating the effects of private information on aggregate fluctuations, but in characterizing

the behavior of the optimal contracts and in exploring their implications for the cyclical

behavior of consumption and employment inequality.

The model that I use is a simple RBC model with private information. Agents value

consumption and leisure and receive idiosyncratic shocks to their value of leisure. These

shocks, which are i.i.d. over time and across individuals, are assumed to be private informa-

tion. The production technology is standard. Output, which can be consumed or invested,

is produced with capital and labor using a Cobb-Douglas production function subject to an

aggregate productivity shock. The aggregate shock follows an AR(1) process.

Following the literature, a dynamic contract is given a recursive formulation in which its

state is given by a promised value to the agent. Given the current state, the contract specifies

current consumption, current hours worked and next-period promised values as a function of

the value of leisure reported by the agent. Since the model has a large number of agents and

the shocks to the value of leisure are idiosyncratic, the social planner needs to keep track

as a state variable the whole distribution of promised values across individuals. Given this

distribution, the aggregate stock of capital and the current level of aggregate productivity,

the social planner seeks to maximize the present discounted utility of agents subject to

incentive compatibility, promise keeping and aggregate resource feasibility constraints.

For the case in which the utility of consumption and leisure are logarithmic, the paper

provides a sharp analytical characterization of the solution to the mechanism design problem.

Consumption, hours worked and next-period promised values are decreasing functions of the

reported value of leisure. Moreover, the utility of consumption, utility of leisure and next-

period promised values are all linear, strictly increasing functions of the current promised

value. The slopes of these functions are all independent of the reported value of leisure, and

while the utilities of consumption and leisure have a common slope less than one, the slope

of next-period promised values is equal to one. Over the business cycle all of these functions

shift vertically while maintaining constant the differences between the high and low values

of leisure. In turn, the distribution of promised values shifts horizontally over the business

cycle while maintaining its shape. Since promised values increase during an expansion, this
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means that the dispersion of the distribution of consumption levels behaves procyclically

while the dispersion of the distribution of hours worked behaves countercyclically. In terms

of aggregate dynamics I get a strong irrelevance result: That the stationary business cycle

fluctuations of all macroeconomic variables (i.e. aggregate output, consumption, investment,

hours worked and capital) are exactly the same under private information as under full

information. That is, once the information frictions are dealt with in an optimal way they

have no implications for the stationary aggregate dynamics of the economy.

For preferences other than the log-log case, analytical results are no longer available

and the model must be analyzed numerically. The high dimensionality of the state space,

which includes the distribution of promised values across individuals, makes computations

difficult. However, an important contribution of the paper is to develop a strategy that

makes this problem tractable. In fact, the computational method described here is not only

applicable to the model in this paper but to a wide class of economies with heterogeneous

agents and aggregate uncertainty.2 The basic strategy is to parametrize individual decision

rules as spline approximations and to keep long histories of the spline coefficients as state

variables. Starting from the deterministic steady state distribution, the history of decision

rules implied by the spline coefficients is then used to obtain the current distribution of

individuals across individual states. This is done performing a large number of Monte Carlo

simulations. I then linearize the first order conditions with respect to the coefficients of

the spline approximations and solve the resulting linear rational expectations model using

standard methods.

Applying this computational method to the economy with logarithmic preferences recov-

ers all of the analytical results proved earlier. Since nothing in the computational method

takes advantage of the particular functional form of the utility function, this provides con-

siderable evidence about the accuracy of the method. Having established its accuracy the

method is then used to analyze more general preferences. However, for all the CRRA pref-

erences considered the same basic result is obtained: The stationary behavior of all macroe-

2The computational method should be applicable to any model in which agents have smooth decision

rules, are subject to idiosyncratic uncertainty, and in which the aggregate shocks are small and follow

autorregressive processes.
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conomic variables in an economy with private information are numerically indistinguishable

from the same economy with full information.

Dynamic optimal contracts under private information have been used to study a variety

of issues in macroeconomics. For example, they have been used to study optimal consump-

tion inequality (e.g. Atkeson and Lucas 1992, Green 1987, etc.), optimal unemployment

insurance (e.g. Hopenhayn and Nicolini 1997, Kocherlakota 2004, etc.), and taxation (e.g.

Golosov et al. 2007, Farhi and Werning 2012, etc.). However, any interactions with aggre-

gate fluctuations have been mostly neglected. A notable exception is Phelan (1994) who

considered a model in which agents take hidden actions that, together with the realization

of a public i.i.d. aggregate shock and an unobservable i.i.d. idiosyncratic shock, determine

their observed output levels. Assuming that actions are taken prior to the realization of

the aggregate shock, that agents have CARA preferences and that agents have a constant

probability of dying, he was able to characterize the model analytically. He found two im-

portant results: that the cross-sectional distribution of consumption levels depends on the

entire history of aggregate shocks and that there is a well defined long-run distribution over

cross-sectional consumption distributions.

My model differs from Phelan (1994), not only because it has hidden types (adverse selec-

tion) instead of hidden actions (moral hazard), but because it has a neoclassical production

function with persistent aggregate shocks. Besides these differences, an apparent similarity

is that even in my model with logarithmic preferences the cross-sectional distributions of

consumption and leisure depends on the entire history of aggregate shocks. However, this

is only due to the presence of capital. Without it I would get that these cross-sectional

distributions only depend on the current realization of aggregate productivity.

In fact the lack of memory in the case of no capital and logarithmic preferences has already

been shown by DaCosta and Luz (2013) in a related setting. In that paper Da Costa and

Luz consider a finite horizon version of Phelan’s economy in which actions are taken after the

realization of aggregate productivity, agents have CRRA preferences, and agents live as long

as the economy. Contrary to Phelan (1994), their cross-sectional distribution of consumption

becomes degenerate as the time horizon of the economy becomes large. Interestingly, Da

Costa and Luz find that when log preferences are used that the cross-sectional distribution

of consumption does not depend on the entire history of aggregate shocks but on the current

4



realization. However, when the elasticity of intertemporal substitution is different than one,

the cross-sectional distribution of consumption has memory of the past history. A major

contribution of this paper over DaCosta and Luz (2013) for the case of logarithmic preferences

is that, aside from analyzing an economy with capital and persistent aggregate shocks, I

provide a tight analytical characterization of the optimal contracts and an equivalence result

with the full information economy. For preferences different from the logarithmic case, I am

able to compute solutions for infinite horizon economies instead of two-periods cases.

The equivalence with the full information economy in terms of aggregate variables is

related to a result in Farhi and Werning (2012). In that paper Fahri and Werning also

consider a Mirlees economy similar to the one in this paper except that it has no aggregate

productivity shocks, idiosyncratic shocks are persistent and the social planner is only allowed

to optimize with respect to the consumption allocations (labor allocations are taken to be

beyond his control). Starting from the steady state of a Bewley economy they perform

the dynamic public finance experiment of evaluating the welfare gains of moving to an

optimal consumption plan. They show that when preferences are logarithmic, along the

transitionary dynamics of the model all aggregate variables behave exactly the same as in

the full information case. Interestingly, I obtain a similar equivalence result when optimizing

with respect to labor as well as consumption and when the economy is subject to aggregate

productivity shocks. However, contrary to Farhi and Werning (2012), my equivalence result

only holds for the long-run stationary equilibrium of the model. The transitionary dynamics

from an arbitrary initial capital and distribution of promised values will generally differ from

the full information case.

The paper is organized as follows. Section 2 describes the economy. Section 3 describes

the mechanism design problem. Section 4 characterizes the optimal allocations. Section 5

provides the irrelevance result for the log-log case. Section 6 describes the computational

method for solving the mechanism design problem with aggregate fluctuations. Section 7

presents the numerical results. Finally, Section 8 concludes the paper.
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2 The economy

The economy is populated by a unit measure of agents subject to stochastic lifetimes. When-

ever an agent dies he is immediately replaced by a newborn, leaving the aggregate population

level constant. The preferences of an individual born at date T are given by

ET

{
∞∑
t=T

βt−Tσt−T [ln ct + st ln (1− ht)]

}
, (1)

where ct is consumption, ht is hours worked, st is the idiosyncratic value of leisure, σ is the

survival probability, and 0 < β < 1 is the discount factor.3 The idiosyncratic value of leisure

st takes two possible values: sL and sH , with sL < sH . Realizations of st are i.i.d. across time

and across individuals and are distributed according to a distribution function ψ = (ψL, ψH).

A key assumption maintained throughout the paper is that st is private information of the

individual.

Output, which can be consumed or invested, is produced with the following production

function:

Yt = eztKγ
t−1H

1−γ
t

where Yt is output, zt is aggregate productivity, Kt−1 is capital and Ht is hours worked. The

aggregate productivity level zt follows a standard AR(1) process given by:

zt+1 = ρzt + εt+1,

where 0 < ρ < 1 and εt+1 is normally distributed with mean zero and standard deviation σε.

Capital is accumulated using a standard linear technology given by

Kt = (1− δ)Kt−1 + It,

where It is gross investment and 0 < δ < 1.

3 Mechanism Design

In this section I provide a recursive formulation to the problem of a social planner that

seeks to maximize utility subject to incentive compatibility, promise keeping and resource

3Later on, preferences will be generalized to be of the CRRA type.
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feasibility constraints. In order to do this it will be important to distinguish between two

types of agents: young and old. A young agent is one that has been born at the beginning

of the current period. An old agent is one that has been born in some previous period.

The social planner decides recursive plans for both types of agents. The state of a

recursive plan is the value (i.e. discounted expected utility) that the agent is entitled to

at the beginning of the period. Given this promised value, the recursive plan specifies the

current utility of consumption, the current utility of leisure and next period promised values

as functions of the value of leisure currently reported by the agent.4 A key goal of the social

planner is to structure the recursive plans in such a way that the agents truthfully reveal

their private information. Another, conflicting goal, is to structure the plans so that they

provide as much insurance as possible. Throughout the paper I will assume that the social

planner is fully committed to the recursive plans that he chooses and that the agents have

no outside opportunities available.

A key difference between the young and the old is in terms of promised values. Since

during the previous period the social planner has already decided on some recursive plan for

a currently old agent, he is restricted to deliver the corresponding promised value during the

current period. On the contrary, the social planner is free to deliver any value to a currently

young agent since this is the first period that he is alive. Reflecting this difference, I will

specify the individual state of an old agent to be his promised value v and his current value

of leisure s. His current utility of consumption, utility of leisure and next-period promised

values are denoted by uos (v), nos (v) and wos (v, z′), respectively. In turn, the individual

state of a young agent is solely given by his current value of leisure s. His current utility of

consumption, utility of leisure and next-period promised values are denoted by uys, nys and

wys (z′), respectively. Observe that next-period promised values of young and old agents are

allowed to be contingent on the realization of next-period aggregate productivity z′.

The aggregate state of the economy is given by the triplet (z,K, µ), where z is the

aggregate productivity level, K is the stock of capital, and µ is a measure describing the

4I formulate the recursive plans in terms of the utility of consumption and leisure (insteady of consumption

and leisure levels) in order to obtain a convex feasible set to the social planner’s problem. This is crucial for

characterizing the solution using first order conditions.
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number of old agents across individual promised values v. The social planner seeks to

maximize the weighted sum of welfare levels of current and future generations of young

agents.5 In recursive form, the social planner problem is described by the following Bellman

equation:

V (z,K, µ) = max

{
(1− σ)

∑
s

[uys + snys + βσEz (wys (z′))]ψs + θEzV (z′, K ′, µ′z′)

}
(2)

subject to:

(1− σ)
∑
s

euysψs +

∫ ∑
s

euos(v)ψsdµ+ I ≤ ezKγH1−γ, (3)

H ≤ (1− σ)
∑
s

(1− enys)ψs +

∫ ∑
s

(
1− enos(v)

)
ψsdµ, (4)

uys + snys + βσEz [wys (z′)] ≥ uyŝ + snyŝ + βσEz [wyŝ (z′)] (5)

uos (v) + snos (v) + βσEz [wos (v, z′)] ≥ uoŝ (v) + snoŝ (v) + βσEz [woŝ (v; z′)] , (6)

v =
∑
s

{uos (v) + snos (v) + βσEz [wos (v, z′)]}ψs, (7)

K ′ = (1− δ)K + I, (8)

µ′z′ (B) = σ
∑
s

∫
{(v,s): wos(v,z′)∈B}

ψsdµ+ (1− σ)σ
∑

s: wys(z′)∈B

ψs, (9)

z′ = ρz + ε′, (10)

where 0 < θ < 1 is the welfare weight of the next-period generation relative to the current-

period generation.6 Equation (3) describes the aggregate feasibility constraint for the con-

sumption good. It states that the total consumption of young and old agents, plus aggregate

investment cannot exceed aggregate output.7 Equation (4) is the aggregate labor feasibility

constraint. It states that the input of hours into the production function cannot exceed the

total hours worked by young and old agents. Equation (5), which holds for every (s, ŝ), is

5The welfare levels of old agents are predetermined by their promised values at the beginning of the

period.

6Observe that if u and n are the utility of consumption and leisure, respectively, then consumption and

hours worked are given by eu and 1− en, respectively.

7Observe that, given the constant probability of dying 1 − σ and the immediate replacement with new-

borns, the number of young agents in the economy is always equal to 1− σ.
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the incentive compatibility constraint of young agents. It states that the value of truthfully

reporting s provides a higher utility level than reporting the alternative ŝ. Similarly, equa-

tion (6) is the incentive compatibility constraint for old agents. Equation (7) is the promise

keeping constraint. It states that the recursive plan for an old agent with promised value

v must provide him an expected utility equal to that promised value. Equation (8) is the

law of motion for the stock of capital. Equation (9) is the law of motion for the measure

of old agents across promised values. It states that the number of old agents that at the

beginning of the following period will have a promised value in the Borel set B is given by

the sum of two terms. The first term sums all currently old agents that receive a next-period

promised value in the set B and do not die. The second term does the same for all currently

young agents. Observe that since next-period promised values wos (v, z′) and wys (z′) are

contingent on the realization of next-period aggregate productivity z′, that the same is true

for the measure µ′z′ . Finally, equation (10) describes the stochastic process for aggregate

productivity.

Since the objective function in equation (2) is linear and increasing and equations (3)-(9)

define a convex feasible set, the solution to the social planning problem is unique.8

4 Characterization of optimal allocations

In this section I characterize the solution to the mechanism design problem as the solution to

two simpler planning problems and some side conditions. The two planning problems solve

the allocations of old and young agents, respectively, while the side conditions represent

aggregate feasibility constraints.

4.1 Planning problem for old agents

Consider the problem of maximizing the expected discounted “social profits” of providing

a recursive plan to an old agent, subject to incentive compatibility and promise keeping

constraints. Given a promised value to the old agent v, this planning problem is described

8For a proof, see Section 1 in the Technical Appendix.
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as follows:

P (v, z,K, µ) (11)

= max
∑
s

ψs

{
q (z,K, µ) (1− enos)− euos + θσEz

[
λ
(
z′, K ′, µ′

z′

)
λ (z,K, µ)

P
(
wos (z′) , z′, K ′, µ′

z′
)]}

subject to

uos (v) + snos (v) + βσEz [wos (v, z′)] ≥ uoŝ (v) + snoŝ (v) + βσEz [woŝ (v; z′)] , (12)

v =
∑
s

{uos (v) + ssnos (v) + βσEz [wos (v, z′)]}ψs, (13)

where q is the social value of labor and λ is the social value of consumption. Observe that

the “social profits” are given by the social value of the hours worked by the old agent, net of

the consumption goods that are transferred to him. Also observe that the planner discounts

future social profits using the social discount rate θ and the survival probability σ. The

planner takes the functions λ, q, and the law of motion for
(
z′, K ′, µ′

z′

)
as given.

It is possible to show that P is strictly decreasing, strictly concave, and differentiable in

v. These properties allow me to establish the following lemmas.9

Lemma 1 At the optimal allocation,

uoH (v) + sHnoH (v) + βσEz [woH (v, z′)] > uoL (v) + sHnoL (v) + βσEz [woL (v, z′)] (14)

uoL (v) + sLnoL (v) + βσEz [woL (v, z′)] = uoH (v) + sLnoH (v) + βσEz [woH (v, z′)] . (15)

Proof: It follows from an analysis of the first order conditions and from the fact that P

is strictly concave in v.10�

This lemma is quite intuitive. It states that at the optimal plan it is easy to convince an

old agent with a high value of leisure not to report the low value of leisure, but that it is

hard to convince an old agent with a low value of leisure not to report the high one.

Using Lemma 1 the first order conditions to the planning problem for old agents are

simplified to the following:

0 = −euoLt(v)ψL + ξot (v) + ηt (v)ψL, (16)

9In what follows, a variable xs will be denoted xL when s = sL and xH when s = sH .

10See Section 2 in the Technical Appendix for the details.
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0 = −euoHt(v)ψH − ξot (v) + ηt (v)ψH , (17)

0 = −qtenoLt(v)ψL + sLξot (v) + ηt (v) sLψL, (18)

0 = −qtenoHt(v)ψH − sLξot (v) + ηt (v) sHψH , (19)

0 = λtβσξot (v) + λtηt (v) βσψL − θλt+1σψLηt+1 [woL,t+1 (v)] , (20)

0 = −λtβσξot (v) + λtηt (v) βσψH − θλt+1σψHηt+1 [woH,t+1 (v)] , (21)

uoLt (v) + sLnoLt (v) + βσEt [woL,t+1 (v)] = uoHt (v) + sLnoHt (v) + βσEt [woH,t+1 (v)] , (22)

v = {uoLt (v) + sLnoLt (v) + βσEt [woL,t+1 (v)]}ψL (23)

+ {uoHt (v) + sHnoHt (v) + βσEt [woH,t+1 (v)]}ψH ,

where, for simplicity, I have switched from state-dependence notation to time-dependence

notation under the convention that a variable is dated t if it becomes known at date t. In

equations (16)-(21) ξot (v) and ηt (v) are the Lagrange multipliers to equations (22) and (23),

respectively. Since, ηt (v) = −dP (v, zt, Kt−1, µt) /dv and P is strictly concave in v it follows

that ηt (v) is strictly increasing in v. This property allows me to provide the following partial

characterization:

Lemma 2 At the optimal plan,

uoHt (v) < uoLt (v) ,

noHt (v) > noLt (v) ,

woH,t+1 (v) < woL,t+1 (v) , almost surely.

Proof: It follows from a simple analysis of the first order conditions (16)-(21) and the

fact that ηt+1 is a strictly increasing function.11�

This lemma is also quite intuitive. It says that when an old agent reports a high value of

leisure, the planner allows him to enjoy more leisure but, in compensation, he receives less

consumption and is promised a worse treatment in the future.

11See Section 2 in the Technical Appendix for the details.
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4.2 Planning problem for young agents

Now consider the problem of maximizing the expected discounted “social surplus” of pro-

viding a recursive plan to a young agent, subject to incentive compatibility constraints:

max
∑
s

{
uys + snys + βσwys

λ (z,K, µ)
+ q (z,K, µ) (1− enys)− euys

+θσEz

[
λ
(
z′, K ′, µ′

z′

)
λ (z,K, µ)

P
(
wys (z′) , z′, K ′, µ′

z′
)]
ψs

}
subject to

uys + snys + βσEz [wys (z′)] ≥ uyŝ + snyŝ + βσEz [wyŝ (z′)] ,

where the planner takes not only the functions λ, q, and the law of motion for
(
z′, K ′, µ′

z′

)
as

given, but the value function P that solves the planning problem for the old agents. Observe

that the social surplus is the lifetime utility level of the young agent (in current consumption

units), plus the expected discounted social value of the hours that will be worked by the

agent, net of the consumption goods that will be transferred to him.

Using the strict concavity of P with respect to v, it is possible to show a similar result

as in Lemma 1 but for the young agents. The first order conditions to the planning problem

for young agents then become the following:

0 = ψL − λteuyLtψL + λtξyt, (24)

0 = ψH − λteuyHtψH − λtξyt, (25)

0 = sLψL − λtqtenyLtψL + λtsLξyt, (26)

0 = sHψH − λtqtenyHtψH − λtsLξyt, (27)

0 = βσψL + λtβσξyt − θλt+1σψLηt+1 (wyL,t+1) , (28)

0 = βσψH − λtβσξyt − θλt+1σψHηt+1 (wyH,t+1) , (29)

uyLt + sLnyLt + βσEt [wyL,t+1] = uyHt + sLnyHt + βσEt [wyH,t+1] , (30)

where ξyt is the Lagrange multiplier to equation (30).

I can now provide a result analogous to Lemma 2.
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Lemma 3 At the optimal plan,

uyHt < uyLt,

nyHt > nyLt,

wyH,t+1 < wyL,t+1, almost surely.

Proof: It follows from a simple analysis of the first order conditions (24)-(29) and the

fact that ηt+1 is a strictly increasing function.12�

4.3 Side conditions

The following lemma states conditions under which the solutions to the planning problems

for the old agents and the young agents solve the economy-wide mechanism design problem.

Lemma 4 Suppose that {uost (v) , nost (v) , wos,t+1 (v) , ξot (v) , ηt (v)}∞t=0 solve equations (16)-

(23) and that {uyst, nyst, wys,t+1, ξyt, ηt (v)}∞t=0 solve equations (24)-(30) for some stochastic

process {qt, λt}∞t=0.

Additionally, suppose that there exists a stochastic process {Kt−1, µt, It, Ht}∞t=0 such that

{qt, λt, Kt−1, µt, It, Ht}∞t=0 satisfies the following equations (almost surely):

0 = qt − eztKγ
t−1 (1− γ)H−γt , (31)

0 = −λt + θEt
{
λt+1

[
ezt+1γKγ−1

t H1−γ
t+1 + 1− δ

]}
, (32)

0 = Kt − (1− δ)Kt−1 − It (33)

(1− σ)
∑
s

euystψs +

∫ ∑
s

euost(v)ψsdµt + It = eztKγ
t−1H

1−γ
t , (34)

Ht = (1− σ)
∑
s

(1− enyst)ψs +

∫ ∑
s

(
1− enost(v)

)
ψsdµt, (35)

µt+1 (B) = σ
∑
s

∫
{v: wos,t+1(v)∈B}

ψsdµt + (1− σ)σ
∑

s: wys,t+1∈B

ψs, (36)

zt+1 = ρzt + εt+1, (37)

with (z0, K−1, µ0) given.

12See Section 2 in the Technical Appendix for the details.
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Then, {uost (v) , nost (v) , wos,t+1 (v) , uyst, nyst, wys,t+1, Kt−1, It, µt}∞t=0 is the optimal plan

generated by the solution to the economy-wide mechanism design problem (equations 2-10)

and the initial condition (z0, K−1, µ0).

Proof : It follows from verifying that the first order conditions to the sequential formu-

lation of problem (2)-(10) are given by equations (16)-(23), (24)-(30) and (31)-(37).13�

Given the equivalence of first order conditions mentioned in the proof to the above lemma,

it follows that the converse is also true: A solution to the economy-wide mechanism design

problem solves the planning problems for the old and young agents and the side conditions

(31)-(37).

5 An irrelevance result

In this section I provide a striking result: Under the optimal plan, the stationary behavior of

all aggregate variables (i.e. aggregate consumption, capital, investment and hours worked) is

exactly the same as in the case of public information. In particular, the stationary behavior

of all aggregate variables is the same as in a representative agent economy with identical pref-

erence and technology parameters (but where the value of leisure is public information). This

establishes that, at least for the functional forms for preferences and technology considered

so far, that the information frictions introduced play no role on aggregate fluctuations.

5.1 Linear allocation rules

In this section I characterize the functional forms for the allocation rules of old agents.

13See Sections 1 and 2 in the Technical Appendix for the details.
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Lemma 5 The allocation rules for old agents have the following functional forms:

uost (v) = uost + bv, (38)

nost (v) = nost + bv, (39)

wos,t+1 (v) = wos,t+1 + v, (40)

ln ηt (v) = ft + bv, (41)

ln ξot (v) = got + bv, (42)

where 0 < b = 1−βσ
1+s̄

< 1 and s̄ = sHψH + sLψL.

Proof: It is straightforward to verify that these functional forms satisfy equations (16)-

(23), (24)-(30) and (31)-(37), and that these equations become the following:

0 = −euoLtψL + egot + eftψL, (43)

0 = −euoHtψH − egot + eftψH , (44)

0 = −qtenoLtψL + sLe
got + eftsLψL, (45)

0 = −qtenoHtψH − sLegot + eftsHψH , (46)

0 = λtβσe
got + λte

ftβσψL − θλt+1σψLe
ft+1+bwoL,t+1 , (47)

0 = −λtβσegot + λte
ftβσψH − θλt+1σψHe

ft+1+bwoH,t+1 , (48)

uoLt + sLnoLt + βσEt [woL,t+1] = uoHt + sLnoHt + βσEt [woH,t+1] , (49)

0 = {uoLt + sLnoLt + βσEt [woL,t+1]}ψL + {uoHt + sHnoHt + βσEt [woH,t+1]}ψH , (50)

0 = ψL − λteuyLtψL + λtξyt, (51)

0 = ψH − λteuyHtψH − λtξyt, (52)

0 = sLψL − λtqtenyLtψL + λtsLξyt, (53)

0 = sHψH − λtqtenyHtψH − λtsLξyt, (54)

0 = βσψL + λtβσξyt − θλt+1σψLe
ft+1+bwyL,t+1 , (55)

0 = βσψH − λtβσξyt − θλt+1σψHe
ft+1+bwyH,t+1 , (56)

uyLt + sLnyLt + βσEt [wyL,t+1] = uyHt + sLnyHt + βσEt [wyH,t+1] , (57)
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0 = qt − eztKγ
t−1 (1− γ)H−γt (58)

0 = −λt + θEt
{
λt+1

[
ezt+1γKγ−1

t H1−γ
t+1 + 1− δ

]}
(59)

0 = Kt − (1− δ)Kt−1 − It (60)

(1− σ)
∑
s

euystψs + Vt
∑
s

euostψs + It = eztKγ
t−1H

1−γ
t , (61)

Ht = (1− σ)
∑
s

(1− enyst)ψs + σ − Vt
∑
s

enostψs, (62)

Vt+1 = σVt
∑
s

ebwos,t+1ψs + (1− σ)σ
∑
s

ebwys,t+1ψs (63)

zt+1 = ρzt + εt+1, (64)

with (z0, K−1, V0) given, and where

Vt =

∫
ebvdµt.� (65)

This establishes not only that the functional forms given by equations (38)-(42) are sat-

isfied but that the dependence of the solution on promised values is completely summarized

by the moment Vt in equation (65).

Observe that the deterministic steady state conditions can be obtained from equations

(43)-(63) by setting the aggregate productivity level zt to zero and imposing that all variables

are constant over time. The appendix provides such conditions.

5.2 Fluctuations of optimal allocation rules

This section provides tight cross-restrictions on the stationary fluctuations of key variables

of the model. To this end, for any variable xt I define

∆xt = xt − x, (66)

where x is the deterministic steady state value of variable xt.

Lemma 6 At the stationary optimal plan,

∆uyt ≡ ∆uyHt = ∆uyLt, (67)

∆nyt ≡ ∆nyHt = ∆nyLt, (68)
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∆wy,t+1 ≡ ∆wyH,t+1 = ∆wyL,t+1, (69)

∆uot ≡ ∆uoHt = ∆uoLt, (70)

∆not ≡ ∆noHt = ∆noLt, (71)

∆wo,t+1 ≡ ∆woH,t+1 = ∆woL,t+1. (72)

Moreover,

∆ ln ξyt = −∆ lnλt (73)

∆uyt = −∆ lnλt (74)

∆nyt = ∆uyt −∆ ln qt (75)

∆ lnλt+1 + ∆ft+1 + b∆wy,t+1 = 0 (76)

∆uot = ∆ft = ∆got (77)

∆not = ∆uot −∆ ln qt (78)

∆ lnλt + ∆uot = ∆ lnλt+1 + ∆uo,t+1 + b∆wo,t+1 (79)

∆uot + s̄∆not + βσEt [∆wo,t+1] = 0 (80)

∆ lnVt = −∆ lnλt −∆uot (81)

Proof: Using equations (66), (67)-(81) and (141)-(161) it is straightforward to verify that

equations (43)-(57) and equation (63) are satisfied.14 Also, equations (58)-(62) become the

following:

0 = e∆ ln qt+ln q − eztKγ
t−1 (1− γ)Ht

−γ (82)

0 = −e∆ lnλt + θEt
{
e∆ lnλt+1

[
ezt+1γKγ−1

t Ht+1
1−γ + 1− δ

]}
(83)

0 = Kt − (1− δ)Kt−1 − It (84)

14For instance, using equation (66), equation (48) can be rewritten as follows:

0 = −e∆ lnλt+lnλβσe∆got+go + e∆ lnλt+lnλe∆ft+fβσψH − θe∆ lnλt+1+lnλσψHe
∆ft+1+f+b(∆wo,t+1+woH)

Using equations (77) and (79), this equation becomes

0 = e∆ lnλt+∆ftelnλ
[
−βσego + efβσψH − θσψHef+bwoH

]
,

which is satisfied because of the steady state condition (146).
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e−∆ lnλt (1− σ)
1

λ

θ

θ − σβ
+ It = eztKγ

t−1H
1−γ
t , (85)

Ht = 1− e−∆ lnλt−∆ ln qt (1− σ)
s̄

λq

θ

θ − σβ
(86)

zt+1 = ρzt + εt+1 (87)

A proof that a stationary solution to equations (82)-(87) exists will be provided in Section

5.4. A stationary process for λt and qt uniquely determines a stationary process for ∆uot,

∆not and ∆wo,t+1 from equations (78)-(80). In particular, they are given by

∆uot = −βσ∆ lnλt + (1− βσ)
∞∑
j=1

(βσ)j Et [∆ lnλt+j] + bs̄

∞∑
j=1

(βσ)j Et [∆ ln qt+j] ,

∆wo,t+1 =
∆ lnλt + ∆uot −∆ lnλt+1 −∆uo,t+1

b
,

∆not = ∆uot −∆ ln qt.

Corresponding realizations for ∆ ln ξyt, ∆uyt, ∆nyt, ∆wy,t+1, ∆ft, ∆got and ∆ lnVt are then

determined from equations (73)-(77) and (81).15�

As the following Corollary states, Lemma 6 provides a greatly simplified method for

solving a stationary solution to the original mechanism design problem.

Corollary 7 Finding a stationary solution to equations (16)-(23), (24)-(30) and (31)-(37)

is equivalent to finding a stationary solution to equations (82)-(87).

For future reference, the following summarizes results in (38)-(42), (66) and (70)-(72):

uoLt (v) = uoL + bv + ∆uot, (88)

uoHt (v) = uoH + bv + ∆uot, (89)

noLt (v) = noL + bv + ∆not, (90)

noHt (v) = noH + bv + ∆not, (91)

woL,t+1 (v) = woL + v + ∆wo,t+1, (92)

woH,t+1 (v) = woH + v + ∆wo,t+1. (93)

15See Section 3 in the Technical Appendix for the details.
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Equations (88)-(89) indicate that uoLt (v) and uoHt (v) are linear parallel functions with

slope less than one that shift vertically over the business cycle by exactly the same amounts.

Equations (90)-(91) indicate that the same is true for noLt (v) and noHt (v). Equations

(92)-(93) indicate that woL,t+1 (v) and woH,t+1 (v) also are linear parallel functions that shift

vertically over the business cycle by exactly the same amounts. However, the slope of

these functions is equal to one. Thus, promised values follow a random walk process with

innovations that depend on the realization of the idiosyncratic and aggregate shocks.16

5.3 Fluctuations in the optimal amount of inequality

In this section I characterize the fluctuations in the distributions of promised values, con-

sumption levels and hours worked implied by the fluctuations in the optimal allocation rules.

Observe, from equations (36) and (40) that for every interval (v1, v2) the steady state

distribution µ satisfies that:

µ [(v1, v2)] = σ
∑
s

ψsµ [(v1 − wos, v2 − wos)] + (1− σ)σ
∑

s: wys∈(v1,v2)

ψs. (94)

Define

∆t =
∆ lnλt + ∆ft

b
. (95)

From equations (36), (40), (76) and (79) we then have that for every (v1 −∆t+1, v2 −∆t+1):

µt+1 [(v1 −∆t+1, v2 −∆t+1)] = σ
∑
s

ψsµt [(v1 −∆t − wos, v2 −∆t − wos)]

+ (1− σ)σ
∑

s: wys∈(v1,v2)

ψs. (96)

From equations (94) and (96) it then follows that for every (v1, v2):

µ [(v1, v2)] = µt [(v1 −∆t, v2 −∆t)] . (97)

16Even with no aggregate fluctuations (i.e. with ∆wo,t+1 identical to zero) promised values follow a random

walk. However, contrary to Atkeson and Lucas (1992) an immizerizing result is not obtained because of the

stochastic lifetimes. As people die and are replaced by young agents, there is enough “reversion to the mean”

in promised values that an invariant distribution is obtained (see Phelan 1994). The immizerizeing result

actually applies within each cohort of agents: Within each cohort the distribution of promised values keeps

spreading out more and more over time.

19



That is, µt is just a ∆t horizontal translation of the invariant distribution µ. In particular,

since promised values increase during a boom, µt shifts to the right during such an episode.

Observe from equations (38), (74) and (77) that

uyst = uys −∆ lnλt,

uost (v) = uos + bv + ∆ft.

Then, the distribution of the utility of consumption φt satisfies that for every Borel set U :

φt (U) =
∑
s

∫
{v:uos+bv+∆ft∈U}

ψsdµt +
∑

s:uys−∆ lnλt∈U

ψs.

It follows that for every (u1, u2),

φ [(u1, u2)] =
∑
s

ψsµ

[(
u1 − uos

b
,
u2 − uos

b

)]
+

∑
s:uys∈(u1,u2)

ψs

and

φt [(u1 −∆ lnλt, u2 −∆ lnλt)]

=
∑
s

ψsµt

[(
u1 −∆ lnλt − uos −∆ft

b
,
u2 −∆ lnλt − uos −∆ft

b

)]
+

∑
s:uys∈(u1,u2)

ψs.

Using equations (95) and (97) we then have that

φt [(u1 −∆ lnλt, u2 −∆ lnλt)] = φ [(u1, u2)] .

Thus, φt is just a ∆ lnλt horizontal translation of the steady state distribution φ. Since the

utilities of consumption increase during a boom, φt shifts to the right during such an episode.

Observe that consumption levels are related to utilities of consumption according to

c = eu. Since this is a strictly increasing and strictly convex function it follows that when

the distribution of utilities of consumption shifts to the right, that the dispersion of the

distribution of consumption levels (measured, for example, as interdecile ranges) increases.

Thus, the dispersion of the distribution of consumption levels increases during a boom.

From equations (39), (75) and (78) we have that

nyst = nys −∆ lnλt −∆ ln qt,

nost (v) = nos + bv + ∆ft −∆ ln qt.
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Then, the distribution of utilities of leisure ζt satisfies that for every Borel set N :

ζt (N) =
∑
s

∫
{v:nos+bv+∆ft−∆ ln qt∈N}

ψsdµt +
∑

s:nys−∆ lnλt−∆ ln qt∈N

ψs

It follows that for every (n1, n2),

ζ [(n1, n2)] =
∑
s

ψsµ

[(
n1 − nos

b
,
n2 − nos

b

)]
+

∑
s:nys∈(n1,n2)

ψs

and

ζt [(n1 −∆ lnλt −∆ ln qt, n2 −∆ lnλt −∆ ln qt)]

=
∑
s

ψsµt

[(
n1 −∆ lnλt − nos −∆ft

b
,
n2 −∆ lnλt − nos −∆ft

b

)]
+

∑
s:nys∈(n1,n2)

ψs

Using equations (97) and (95) we then have that

ζt [(n1 −∆ lnλt −∆ ln qt, n2 −∆ lnλt −∆ ln qt)] = ζ [(n1, n2)] .

Thus, ζt is just a ∆ lnλt + ∆ ln qt horizontal translation of the steady state distribution ζ.

Since the utilities of leisure decrease during a boom, it follows that ζt shifts to the left during

such an episode.

Observe that hours worked are related to utilities of leisure according to h = 1 − en.

Since this is a strictly decreasing and strictly concave function it follows that when the

distribution of utilities of leisure shifts to the left, that the dispersion of the distribution of

hours (measured, for example, as interdecile ranges) decreases. Thus, the dispersion of the

distribution of hours worked decreases during a boom.

5.4 Full information economy

In this section I consider a representative agent economy with full information. The social

planning problem for this economy is the following:

V (z,K) = max {u+ s̄n+ θEz [V (z′, K ′]} (98)

subject to:

eu + I ≤ ezKγH1−γ (99)
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H ≤ 1− en (100)

K ′ ≤ (1− δ)K + I (101)

z′ = ρz + ε′, (102)

where s̄ = sHψH + sLψL. All parameters are assumed to have the same values as in the

private information economy.

Using dated variables, the first order conditions to this problem are the following:

qt = eztKγ
t−1 (1− γ)H−γt (103)

λ̂t = θEt

{
λ̂t+1

[
ezt+1γKγ−1

t H1−γ
t+1 + 1− δ

]}
(104)

Kt = (1− δ)Kt−1 + It (105)

1

λ̂t
+ It = eztKγ

t−1H
1−γ
t (106)

Ht = 1− s̄

λ̂tqt
(107)

zt+1 = ρzt + εt+1 (108)

where λ̂t and qt are the Lagrange multipliers on equations (99) and (100), respectively.

Defining deviations from steady state values as in equation (66), we get that equations

(103)-(108) can be rewritten as:

0 = e∆ ln qt+ln q − eztKγ
t−1 (1− γ)H−γt (109)

0 = −e∆ ln λ̂t + θEt

{
e∆ ln λ̂t+1

[
ezt+1γKγ−1

t H1−γ
t+1 + 1− δ

]}
(110)

0 = Kt − (1− δ)Kt−1 − It (111)

e−∆ ln λ̂t
1

λ̂
+ It = eztKγ

t−1H
1−γ
t (112)

Ht = 1− e−∆ ln λ̂t−∆ ln qt
s̄

λ̂q
(113)

zt+1 = ρzt + εt+1 (114)

I can now state the main result of this section.
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Lemma 8 Equations (109)-(114) are equivalent to equations (82)-(87).

Proof: The equivalence can be verified under the following relations:

λ = (1− σ)
θ

θ − σβ
λ̂, (115)

∆ lnλt = ∆ ln λ̂t.� (116)

The following corollary ties the lose end in the proof of Lemma 6.

Corollary 9 A stationary solution to equations (82)-(87) exists.

Proof: It is standard to show that a recursive solution to equations (109)-(114) exists,

with ∆ ln λ̂t, ∆ ln qt, Ht and It being time invariant functions of the state variables (zt, Kt−1),

and that these decision rules generate a stationary stochastic process for all endogenous

variables.

Another direct consequence of Lemma 3 is the following:

Corollary 10 All aggregate variables, i.e. Kt−1, Ht, It and Ct = eztKγ
t−1H

1−γ
t − It, fol-

low identical stationary stochastic processes in the private information economy and in the

representative agent economy.

This result establishes that the information frictions introduced to the original model

play no role whatsoever on aggregate business cycle fluctuations.

I would like to point out that the equivalence result presented here only holds for sta-

tionary allocations. The aggregate transitionary dynamics obtained from solving equations

(109)-(114) for an arbitrary initial condition (zo, K0) in general will not coincide with the

aggregate transitionary dynamics obtained from solving equations (43)-(64) for an identical

initial (zo, K0), but arbitrary V0. The reason, is that the restrictions imposed by equation

(81), which is needed for the equivalence result, will generally be violated.17 A consequence

of this is that, contrary to the results obtained in Farhi and Werning (2012), the determin-

istic transitionary dynamics (obtained for the case of zt = 0) will generally differ in the

representative agent economy and the mechanism design problem with private information.

17Given the stochastic process
{

∆ ln λ̂t,∆ ln qt, Ht, It, zt,Kt−1

}∞
t=0

that solves equations (109)-(114) and

an initial condition (zo,K0), equations (115)-(116) can always be used to construct the stochastic process

{∆uot,∆not,∆wo,t+1}∞t=0 that solves equations (78)-(80). The equivalence result along the transitionary

dynamics would then be obtained only for the value of V0 that satisfies equation (81) at t = 0.
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6 Computations

The previous section was able to provide a full characterization of the solution to the mech-

anism design problem because of the particular preferences considered. However, when

preferences differ from the log-log case such characterization is no longer possible and the

model must be solved numerically. This is a nontrivial task because of the high dimension-

ality of the state space. In this section I introduce a new method for computing equilibria of

models with heterogeneous agents and aggregate shocks and apply it to the model considered

in this paper. An important advantage of this computational method over existing alterna-

tives in the literature is not only that it keeps track of an arbitrarily good approximation

to the distribution of agents over individual states, but that the mapping from the current

distribution of agents (and current individual decision rules) to the next-period distribution

of agents is almost exact.18 Thus, the method promises to be extremely useful for computing

equilibria in cases where the distribution of individual states matters.

Before proceeding to describe its details it will be useful to sketch the main ingredients of

the computational method. Instead of keeping track of the distribution of promised values

µ as a state variable, what the computational method keeps track of is a long history of

individual decision rules wos and wys. Since the individual decision rules wos are parametrized

as spline approximations, the computational method only needs to keep track of a long but

finite history of spline coefficients. The current distribution of promised values is then

recovered by simulating the evolution of a large number of agents (and their descendants)

over time using the history of individual decision rules kept as state variables.19 The next

period distribution of promised values is then obtained by simply updating by one period

the history of individual decision rules using the decision rules chosen during the current

period. All first order conditions and aggregate feasibility constraints are then linearized

18See Algan et al. (2014) for a survey of the alternatives.

19Because of the stochastic lifetimes, the truncation introduced by the finite history of decision rules

generate arbitrarily small approximation errors as the lenght of the history becomes large. In fact, when this

length becomes large the distribution used for drawing initial promised values for the simulations becomes

irrelevant (although, in practice, I use the invariant distribution of the deterministic steady state).
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with respect to the spline coefficients describing current and past individual decision rules.20

This delivers a linear rational expectations model which, despite of its high dimensionality,

can be solved using standard methods.

To streamline the presentation I will describe the computational method using the equa-

tions already derived for the log-log case. However, it is important to keep in mind that

the method can be (and will be) applied to analogous equations derived under more general

preferences.

6.1 Computing the deterministic steady state

While computing the deterministic steady state of the model is completely standard, this

section describes the algorithm in detail since this will introduce objects and notation that

will be needed later on.

Observe that the shadow value of labor q is known from the steady state versions of

equations (31) and (32). In particular it is given by

q = (1− γ)

{
1

γ

[
1

θ
− 1 + δ

]} γ
1−γ

.

Given this value of q, the steady state planning problem for old agents can be solved.

To this end, I find it convenient to use cubic spline approximations and iterate with the

first order conditions to this problem, given by the steady state versions of equations (16)-

(23).21 In order to do this, I first restrict the promised values to lie on a closed inter-

val [vmin, vmax] and define an equidistant vector of grid points (vj)
J
j=1, with v1 = vmin and

vJ = vmax.22 Given the function η from the previous iteration, which is used to value next

period promised values in the steady state versions of equations (20) and (21), the values

20This is the computationally most intensive part of the method. The reason is that we need to take

numerical derivatives with respect to each spline coefficient in the history, and each of these calculations

requires simulating the evolution of a large panel of agents over the entire history of individual decision rules

kept as state variables.

21Observe that the shadow value of consumption λ does not appear in the steady state version of these

equations,

22When restricting promised values to lie in the interval [vmin, vmax], the first order conditions (20)-(21)

and (28)-(29) change by incorporating inequalities that check for corner solutions.
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of [uos (vj) , nos (vj) , wos (vj) , ξo (vj) , η (vj)]
J
j=1 that satisfy the steady state versions of equa-

tions (16)-(23) are then solved for at the grid points (vj)
J
j=1. Once these values are found, the

functions are extended to the full domain [vmin, vmax] using cubic splines.23 The iterations

continue until the values for [uos (vj) , nos (vj) , wos (vj) , ξo (vj) , η (vj)]
J
j=1 converge. Observe,

that this solution does not depend on any other endogenous values, so it forms part of the

steady state.

Given the steady state solution for η the steady state planning problem for young agents

can be solved next. This problem is essentially static and has a finite number of decision

variables. However, it has the complication is that it depends on the shadow price of con-

sumption λ, which is an endogenous variable. Thus, conditional on a value for λ, the steady

state versions of equations (24)-(30) can be solved for (uys, nys, wys, ξy), but later on I will

have to provide the side condition that λ must satisfy for this to form part of the steady

state.

The steady state version of equation (36) describes the recursion that the invariant µ

has to satisfy. This equation corresponds to the case of a continuum of agents. However, I

will find it convenient to work with a large, but finite number of agents, and perform the

recursion for this case. In particular, consider a large but finite number of agents I and

endow them with promised values in the interval [vmin, vmax]. Using the functions woL and

woH obtained from the steady state planning problem for old agents and the values wyL

and wyH obtained from the steady state planning problem for young agents, simulate the

evolution of the promised values of these I agents and their descendants for a large number

of periods T . To be precise, if agent i was promised a value v at the beginning of the current

period (conditional on being alive), then his promised value (or his descendant’s, in case the

agent dies) at the beginning of the following period will be given by:

v′ =



woL (v) , with probability σψL,

woH (v) , with probability σψH ,

wyL, with probability (1− σ)ψL,

wyH , with probability (1− σ)ψH .

(117)

Simulating the I agents for T periods using equation (117) we obtain a realized distri-

23In practice, I use the monotonicity preserving cubic splines described by Steffen (1990).
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bution (v̄i)
I
i=1 of promised values (conditional on being alive) across the I agents. Observe

that the last iteration of equation (117) also gives the corresponding realized values of leisure

(s̄i)
I
i=1 across the I agents. The joint realized distribution of promised values and values of

leisure (v̄i, s̄i)
I
i=1 can then be used to compute statistics under the invariant distribution. In

particular, aggregate consumption can be obtained as:

C = σ
1

I

I∑
i=1

euo,s̄i (v̄i) + (1− σ)
∑
s

euysψs. (118)

To understand this expression, suppose that we are at the beginning of period T + 1. The

joint realized distribution (v̄i, s̄i)
I
i=1 now corresponds to agents that were alive in the previous

period, and thus a fraction σ of them will have survived and a fraction (1− σ) of them will

have died. The first term in equation (118) corresponds to those who have survived. It

averages the consumption of these agents and multiplies the result by the probability of

surviving σ. The second term corresponds to those who have died and thus have been

replaced by young agents. It averages the consumption of young agents and multiplies the

result by the probability of dying (1− σ).

Aggregate hours worked can be similarly computed as

H = σ

∑I
i=1

[
1− eno,s̄i (v̄i)

]
I

+ (1− σ)
∑
s

(1− enys)ψs. (119)

Observe that by a law of large numbers equations (118) and (119) will become arbitrarily

good approximations to the steady state versions of equations (34) and (35) as I and T tend

to infinity.

Given aggregate hours worked, aggregate capital can be then obtained from the fact

that the social planner equates the marginal productivity of capital to its shadow price. In

particular, from the steady state version of equation (32) we have that aggregate capital is

given by

K =

(
γ

1
θ
− 1 + δ

) 1
1−γ

H. (120)

Then, aggregate investment is

I = δK. (121)

The last equation that needs to be satisfied is the feasibility condition for consumption,

C + I = KγH1−γ. (122)
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This is the side condition mentioned above for the shadow value of consumption λ. The

shadow value of consumption determines the consumption, hours worked and promised values

of young agents, and therefore each of the variables in equation (122). Therefore, it must be

changed until equation (122) holds.24

6.2 Computing business cycle fluctuations

As has already been mentioned, computing business cycle fluctuations requires linearizing

the first order conditions and aggregate feasibility constraints with respect to a convenient

set of variables. The resulting linearized system can then be solved using standard methods.

6.2.1 Linearization

Linearizing equations (16)-(23), (24)-(30) and (31)-(37) present different types of issues. As

a consequence, I classify them into different categories.

The first category is constituted by equations that only involve scalar variables. Equations

(24)-(27), (30), and (31)-(33) fall into this category. For example, consider equation (25).

This equation is a function of {λt, uyHt, ξyt}, which are all scalars. Linearizing this equation

around the deterministic steady state values
{
λ̄, ūyHt, ξ̄yt

}
poses no difficulty.25

The second category is constituted by a continuum of equations that only involve scalar

variables. Equations (16)-(19) and (22)-(23) fall into category. Consider, for example,

equation (17). This equation depends on {uoHt (v) , ξot (v) , ηt (v)} which are all scalars.

The problem is that there is one of these equations for every value of v in the interval

[vmin, vmax]. In this case the “curse of dimensionality” is solved by considering this equa-

tion only at the grid points (vj)
J
j=1 that were used in the computation of the deterministic

steady state. It is now straightforward to linearize each of these J equations with respect to

{uoHt (vj) , ξot (vj) , ηt (vj)} at their deterministic steady state values
{
ūoH (vj) , ξ̄o (vj) , η̄ (vj)

}
.

Extending {uoHt (v) , ξot (v) , ηt (v)} to the full domain [vmin, vmax] using cubic splines will

24In practice, this is done using a bisection root finding method.

25Although in this case derivatives can be taken analytically, throughout the section derivatives are as-

sumed to be numerically obtained.
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make equation (17) hold only approximately outside of the grid points (vj)
J
j=1. The quality

of this approximation will depend on how many grid points J we work with.

The third category is constituted by equations that involve both scalars and functions.

Equations (28) and (29) fall in this category. For example, consider equation (29). This

equation depends on λt, ξyt, λt+1, wyH,t+1 and on the function ηt+1, which is a high dimen-

sional object. In this case the “curse of dimensionality” is broken by considering that ηt+1

is a spline approximation and, therefore, is completely determined by the finite set of values

{ηt+1 (vj)}Jj=1, i.e. the value of the function at the grid points. The equation can then be

linearized with respect to
[
λt, ξyt, λt+1, wyH,t+1, {ηt+1 (vj)}Jj=1

]
at the deterministic steady

state values
[
λ̄, ξ̄y, λ̄, w̄yH , {η̄ (vj)}Jj=1

]
.

The fourth category is a combination of the previous two: it is constituted by a con-

tinuum of equations that involve both scalars and functions. Equations (20) and (21) fall

in this category. For example, consider equation (21). Similarly to the third category, this

equation depends on the scalars λt, ξot (v), λt+1, woH,t+1 (v) and on the function ηt+1. Sim-

ilarly to the second category there is one of these equations for every value of v in the

interval [vmin, vmax]. Given these similarities we can use the same strategy. In particular,

we can consider this equation only at the grid points (vj)
J
j=1 and linearize each of these J

equations with respect to
[
λt, ξot (vj) , λt+1, woH,t+1 (vj) , {ηt+1 (vk)}Jk=1

]
at the deterministic

steady state values
[
λ̄, ξ̄o (vj) , λ̄, w̄oH (vj) , {η̄ (vk)}Jk=1

]
.

The fifth category is much more involved. It is constituted by equations that involve

scalars and integrals of variables with respect to the distribution µt. Equations (34) and (35)

fall in this category. For example, consider equation (34). This equation depends on the real

numbers uyL,t, uyH,t, It, zt, Kt−1, and Ht, and on the integrals
∫
euoL,tdµt and

∫
euoH,tdµt.

To make progress it will be important to represent these integrals with a convenient finite

set of variables. In order to do this, I will follow a strategy that is closely related to the

one that was used in Section 6.1 for computing statistics under the invariant distribution.

In particular, consider the same large but finite number of agents I that was used in that

section and endow them with the same realized distribution of promised values (v̄i)
I
i=1 that

was obtained when computing the steady state. Now, assume that these agents populated
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the economy M time periods ago and consider the history

{woL,t−m, woH,t−m, wyL,t−m, wyH,t−m}Mm=0 ,

which describes the allocation rules for next-period promised values that were chosen during

the last M periods (where t is considered to be the current period). Observe that since

woL,t−m and woH,t−m are spline approximations, this history can be represented by the fol-

lowing finite list of values:{
[woL,t−m (vj)]

J
j=1 , [woH,t−m (vj)]

J
j=1 , wyL,t−m, wyH,t−m

}M
m=0

. (123)

Using the history of allocation rules for next-period promised values, we can simulate the

evolution of promised values for the I agents and their descendants during the last M time

periods to update the distribution of promised values from the initial (v̄i)
I
i=1 to a current

distribution (vi,t)
I
i=1.

In particular, we can initialize the distribution of promised values at the beginning of

period t−M − 1 as follows:

vi,t−M−1 = v̄i,

for i = 1, ..., I. Given a distribution of promised values at the beginning of period t−m− 1,

the distribution of promised values at period t−m is then obtained as follows:

vi,t−m =



woL,t−m (vi,t−m−1) , with probability σψL,

woH,t−m (vi,t−m−1) , with probability σψH ,

wyL,t−m, with probability (1− σ)ψL,

wyH,t−m, with probability (1− σ)ψH ,

(124)

for i = 1, ..., I. Proceeding recursively for m = M,M − 1, ..., 0, we obtain a realized distri-

bution of promised values (vi,t)
I
i=1 at the beginning of period t.

Observe that the last iteration of equation (124) also gives the corresponding realized

values of leisure (sit)
I
i=1 across the I agents. The joint realized distribution of promised

values and values of leisure (vit, sit)
I
i=1 can then be used to compute statistics under the

distribution µt. In particular, equation (34) can be re-written as:

0 = (1− σ) [euyL,tψL + euyH,tψH ] + σ
1

I

I∑
i=1

euosit (vit) + It − eztKγ
t−1H

1−γ
t . (125)
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Since uoL,t and uoH,t are splines approximations, they can be summarized by their values

at the grid points (vj)
J
j=1. Therefore, equation (125) can be linearized with respect to

It, zt, Kt−1, Ht, uyL,t, uyH,t, [uoL,t (vj)]
J
j=1 , [uoH,t (vj)]

J
j=1 , (126){

[woL,t−m (vj)]
J
j=1 , [woH,t−m (vj)]

J
j=1 , wyL,t−m, wyH,t−m

}M
m=0

at their steady state values

Ī , 0, K̄, H̄, ūyL, ūyH , [ūoL (vj)]
J
j=1 , [ūoH (vj)]

J
j=1 ,

{
[w̄oL (vj)]

J
j=1 , [w̄oH (vj)]

J
j=1 , w̄yL, w̄yH

}M
m=0

.

Observe that equation (126) provides a large but finite list of variables. In particular,

there are M (2J + 2) variables in the second line of equation (126). Taking numerical deriva-

tives with respect to each of these variables requires simulating I agents over M periods. As

a consequence, linearizing equation (125) requires performing a massive number of Monte

Carlo simulations. While this seems a daunting task it is easily parallelizable. Thus, using

massively parallel computer systems can play an important role in reducing computing times

and keeping the task manageable.26

The last category of equations has only one element: equation (36), which describes the

law of motion for the distribution µt. While daunting at first sight, this equation is greatly

simplified by our approach of representing the distribution µt using the history of values

given by equation (123). In fact, updating the distribution µt is merely reduced to updating

this history. In particular, the date-(t + 1) history can be obtained from the date-t history

and the current values of [woL,t+1 (vj)]
J
j=1, [woH,t+1 (vj)]

J
j=1, wyL,t+1 and wyH,t+1 using the

following equations:

[
woL,(t+1)−m (vj)

]J
j=1

=
[
woL,t−(m−1) (vj)

]J
j=1

(127)[
woH,(t+1)−m (vj)

]J
j=1

=
[
woH,t−(m−1) (vj)

]J
j=1

(128)

wyL,(t+1)−m = wyL,t−(m−1) (129)

wyH,(t+1)−m = wyH,t−(m−1) (130)

for m = 1, ...,M . Observe that the law of motion described by equations (127)-(130) is

already linear, so no further linearization is needed. Also observe that the variables that

26In practice, I heavily rely on GPU computing for performing the Monte Carlo simulations.
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are M periods old in the date-t history are dropped from the date-(t + 1) history. Thus,

the law of motion described by equations (127)-(130) introduces a truncation. However,

the consequences of this truncation are expected to be negligible. The reason is that the

truncation only affects the agents that had survived for M consecutive periods, and given a

sufficiently small survival probability σ and/or a sufficiently large M there will be very few

of these agents. Aside from this negligible truncation there are no further approximations

errors in the representation of the law of motion given by equation (36).

6.2.2 Linearized system

Define the vector of endogenous state variables as follows:

xt−1 =

(
4 lnKt−1,

{
4wyL,t−m,4wyH,t−m, [4woL,t−m (v̄j)]

J
j=1 , [4woH,t−m (v̄j)]

J
j=1

}M
m=0

)
,

and the vector of decision variables and Lagrange multipliers as follows:

yt =
(
4wyL,t+1,4wyH,t+1, [4woL,t+1 (v̄j)]

J
j=1 , [4woH,t+1 (v̄j)]

J
j=1

4uyL,t,4uyH,t4 nyL,t,4nyH,t4 ln ξyt,4 lnλt,4 ln qt,

[4 ln ηt (v̄j)]
J
j=1 , [4uoL,t (v̄j)]

J
j=1 , [4uoH,t (v̄j)]

J
j=1 , [4noL,t (v̄j)]

J
j=1 ,

[4noH,t (v̄j)]
J
j=1 , [4 ln ξot (v̄j)]

J
j=1 ,4 lnHt,4 ln It

)
.

Then, using the approach described in the previous section, the linear approximation to

equations (16)-(23), (24)-(30) and (31)-(37) can be written as

0 = Axt +Bxt−1 + Cyt +Dzt, (131)

0 = Gxt + Jyt+1 +Kyt + Lzt+1, (132)

zt+1 = Nzt. (133)

where I have applied the certainty equivalence principle.

We seek a linear solution to equations (131)-(133) of the following form:

xt = Pxt−1 +Qzt (134)

yt = Rxt−1 + Szt (135)
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Equations (131)-(135) have exactly the same structure as in Uhlig (1999), so his methods

can be directly applied. Alternatively, one could iterate with equations (134)-(135) as follows.

Suppose that at iteration j we have that

xt = P jxt−1 +Qjzt, (136)

yt = Rjxt−1 + Sjzt. (137)

and that we want to find

xt = P j+1xt−1 +Qj+1zt, (138)

yt = Rj+1xt−1 + Sj+1zt, (139)

for iteration j + 1. Substituting equations (136)-(139) into equations (131)-(132), it is easy

to show that P J+1, Qj+1, Rj+1, and Sj+1 are the solution to the following system of linear

equations:

 A C

(JRj +G) K

 P j+1 Qj+1

Rj+1 Sj+1

 = −

 B D

0 (JSj + L)N

 , (140)

which can be solved using a LU decomposition. Iterating with equation (140) until conver-

gence is an alternative way of obtaining the solution P , Q, R and S that we seek.

The important thing is that whatever method one chooses to use, the linear rational

expectations model given by equations (131)-(135) can be solved using standard methods.

The only difficulty is its high dimensionality. Once equations (134)-(135) are obtained, they

can be used to simulate the economy.

7 Numerical results

This section uses the computational method just described to explore the quantitative prop-

erties of different private information economies and compare them to those of their full

information counterparts. In order to do this I first select parameter values for the bench-

mark economy with log-log preferences. Economies with more general preferences will be

considered later on.
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7.1 Parametrization

Except for the private information, the basic structure of the model corresponds to a standard

real business cycle model. In fact, under log-log preferences the basic structure of the model is

identical to the one in Cooley and Prescott (1995). For this reason, I calibrate all parameters

associated with the neoclassical growth model to the same observations as theirs. In order

to simplify computations, the model time period is selected to be one year.

Following Cooley and Prescott (1995) the labor share parameter 1− γ is set to 0.60, the

depreciation rate δ is chosen to reproduce an investment-capital ratio I/K equal to 0.076,

and the social discount factor θ is chosen to reproduce a capital-output ratio K/Y equal

to 3.32. The values of leisure sL and sH are chosen to satisfy two criteria: that aggregate

hours worked H equal 0.31 (another observation from Cooley and Prescott 1995) and that

the hours worked by old agents with the high valuation of leisure and the highest possible

promised value noH (vmax) be a small but positive number. The rationale for this second

criterion is that I want to maximize the relevance of the information frictions while keeping

an internal solution for hours worked. The probability of drawing a high value of leisure

ψH is chosen to maximize the standard deviation of the invariant distribution of promised

values. It turns out that a value of ψL = 0.50 achieves this. The survival probability σ is

chosen to generate an expected lifespan of 40 years. In turn, the individual discount factor

β is chosen to be the same as the social discount factor θ. In terms of the parameters for

the aggregate productivity stochastic process, ρ is chosen to be 0.95 and the variance of

the innovations to aggregate productivity σ2
ε is chosen to be 4 × 0.0072 (as in Cooley and

Prescott 1995).

While the above parameters are structural, there are a number of computational param-

eters to be determined. The number of grid points in the spline approximations J , the total

number of agents simulated I, the length of the simulations for computing the invariant

distribution T , and the length of the histories kept as state variables when computing the

business cycles M are all chosen to be as large as possible, while keeping the computational

task manageable and results being robust to non-trivial changes in their values.27 The lower

27Given the value selected for the survival probability σ, less than 0.1% of individuals survive more than

M periods. Thus, the truncation imposed by keeping track of a finite history of decision rules introduces a
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and upper bounds for the range of possible promised values vmin and vmax in turn were chosen

so that the fraction of agents in the intervals [v1, v2] and [vJ−1, vJ ] are each less than 0.1%.

Thus, truncating the range of possible values at vmin and vmax should not play an important

role in the results.

Table 1

Parameter values

Structural Computational

sL = 1.513 vmin = −28.5

sH = 2.047 vmax = −11

ψL = 0.50 T = 1, 000

θ = 0.9574 M = 273

β = 0.9574 I = 8, 388, 608

σ = 0.975 J = 20

γ = 0.40

δ = 0.076

ρ = 0.95

σε = 0.014

Table 1 describes all parameter values. It turns out that under the computational param-

eters specified in this table the dimensionality of the linear system described by equations

(131)-(135) is about 12, 000× 12, 000, a large system indeed.

7.2 Results under log-log preferences

Before turning to business cycle dynamics I illustrate different features of the model at its

deterministic steady state. Figure 1.A shows the invariant distribution of promised values

across the J−1 intervals [vj, vj+1]J−1
j=1 defined by the grid points of the spline approximations.

While it is hard to see at this coarseness level, the distribution is approximately symmetrical.

More importantly, we see that the invariant distribution puts very little mass at extreme

small approximation error.
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values. As a consequence, in what follows I will report allocation rules only between the 7th

and 15th ranges of the histogram. The reason is not only that there are very few agents at

the tails of the distribution for them to matter, but being close to the artificial bounds vmin

and vmax greatly distorts the shape of the allocation rules.

Figure 1: Deterministic steady state
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Figure 1.B reports the utility of consumption for old agents uoL (v) and uoH (v) across

promised values v, as well as those of young agents uyL and uyH (which are independent of

v). We see that, in all cases the utility of consumption is higher when the value of leisure

is low. Both uoL and uoH are strictly increasing in the promised value v, are linear (with

slope less than one) and parallel to each other. Moreover, the vertical difference between

uoL and uoH is the same as between uyL and uyH . Figure 1.C reports the utility of leisure

for old agents noL (v) and noH (v) across promised values v, as well as those of young agent

nyL and nyH . We see that in all cases leisure is lower when the value of leisure is low. Both

noL and noH are strictly increasing in the promised value v, are linear (with slope less than
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one) and parallel to each other. Moreover, the vertical difference between noL and noH is

the same as between nyL and nyH . In turn, Figure 1.D reports the next-period promised

values for old agents woL (v) and woH (v) across promised values v, as well as those of young

agent wyL and wyH . We see that in all cases next-period promised values are higher when

the value of leisure is low. Both woL and woL are strictly increasing in the promised value v,

are linear (with slope equal to one) and parallel to each other. We also see that the vertical

difference between woL and woH is the same as between wyL and wyH . Thus, Figure 1 verifies

the analytical steady state results of Lemmas 2, 3 and 5.

Figure 2: Impulse responses of utility of consumption
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The discussion of business cycle dynamics that follows will be centered around the anal-

ysis of the impulse responses of different variables to a one standard deviation increase in
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aggregate productivity. Figure 2.A shows the impulse responses of the utility of consumption

of young agents uyL and uyH . We see that both impulse responses are identical and that

their shape qualitatively resembles one for aggregate consumption in a standard RBC model.

Figure 2.B shows the impulse response of the utility of consumption of old agents with a

low value of leisure uoL (v), at each of the eleven grid points (vj)
16
j=6. While the figure shows

eleven impulse responses, only one of them is actually seen because they happen to overlap

perfectly. This means that, in response to the aggregate productivity shock, the function

uoL depicted in Figure 1.B shifts vertically over time. Figure 2.C, which does the same for

uoH , is identical to Figure 2.B. Thus, uoH also shifts vertically over time and its increments

are the same as those of uoL.

Figure 3: Impulse responses of utility of leisure
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Figure 3 is analogous to Figure 2, except that they depict the behavior of the utility of

leisure. Figure 3.A shows that the impulse responses of nyL and nyH are identical and that

they resemble the response of leisure in a standard RBC model, while Figures 3.B and 3.C

indicate identical vertical shifts of the functions noL and noH in response to the aggregate

productivity shock.

Turning to promised values, Figure 4.A shows that the impulse responses of wyL and wyH

coincide. In turn, Figures 4.B and 4.C show that woL and woH shift vertically by identical

amounts in response to an aggregate productivity shock. Thus, taken together, we see that

Figures 2 -4 reproduce the analytical results of equations (67)-(69) and (88)-(93).

Figure 4: Impulse responses of promised values
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Figure 5.A shows the impulse responses of the cross sectional standard deviations of
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promised values, consumption and hours worked. We see that in response to a positive

aggregate productivity shock the standard deviation of promised values remains flat while

the standard deviation of consumption increases and the standard deviation of hours worked

decreases. Thus, Figure 5.A reproduces the analytical results of Section 5.3.

Figure 5: Cross-sectional distributions and macro variables
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Finally, Figure 5.B shows the impulse responses of aggregate output Y , aggregate con-

sumption C, aggregate investment I, aggregate hours worked H and aggregate capital K in

the benchmark economy with private information. Figure 5.C reports the impulse responses

for the same variables but for the full information economy given by equations (98)-(102). We

see that both sets of impulse responses are identical. Thus, Figures 5.B and 5.C reproduce
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the analytical result of Corollary 10.

We have verified that while the computational method was not designed to exploit any

of the properties of the log-log case, it is able to exactly reproduce the analytical results

derived for this case. This suggests that the computational method introduced in this paper

could be quite useful not only for analyzing other functional forms, but as a general method

for computing aggregate fluctuations of economies with heterogeneous agents.

7.3 Extension to other preferences

This section generalizes the preferences of equation (1) to the following form:

ET

{
∞∑
t=T

βt−Tσt−T

[
c1−π
t − 1

1− π
+ st

(1− ht)1−α − 1

1− α

]}
,

where π 6= 1 and α 6= 1. Since under this general functional form analytical results are no

longer available the computational method becomes essential to evaluate these preferences.

Table 2

Steady state macroeconomic variables

(α, π) Information Y C I H K

(1, 1) Private 0.69155 0.51706 0.17449 0.31074 2.2959

Full 0.69155 0.51706 0.17449 0.31074 2.2959

(1, 2) Private 0.56302 0.42096 0.14206 0.25299 1.8692

Full 0.56305 0.42098 0.14207 0.25300 1.8693

(2, 1) Private 0.89539 0.66947 0.22592 0.40234 2.9727

Full 0.89551 0.66956 0.22595 0.40239 2.9731

(2, 2) Private 0.76319 0.57062 0.19257 0.34293 2.5338

Full 0.76327 0.57068 0.19259 0.34297 2.5341

Without recalibrating other parameters different values for π and α have been considered.

However, in all cases similar results were obtained. For concreteness I here report results for

unit deviations from the π = 1 and α = 1 case. For each of these cases Table 2 reports the

steady state values of all macroeconomic variables for the economies with private information
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and full information. We see that in each parametrization all variables are nearly identical

in both information scenarios.

Figure 6: Cross-sectional distributions and macro variables
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In order to streamline the analysis of business cycle dynamics I consider the π = 2 and

α = 2 as a representative case. Figure 17 reports that, contrary to the log-log case, the cross

sectional distribution of promised values now follows a non-trivial dynamics: Instead of being

constant, the standard deviation of promised values decreases significantly in response to a

positive aggregate productivity shock. Despite of this the information frictions still turn

out to be irrelevant for aggregate dynamics. Figure 18 reports the impulse responses of all

macroeconomic variables in the economy with private information while Figure 19 does the

same for the economy with full information. We see that both sets of impulse responses
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are identical. Thus, similarly to the log-log case, the stationary behavior of the aggregate

variables of the economy is not affected by the presence of information frictions.

8 Conclusions

The paper considered a RBC model in which agents are subject to i.i.d. idiosyncratic shocks

to their value of leisure. A key assumption of the model is that these shocks are private infor-

mation of the agents. In this framework the paper analyzed the mechanism design problem

of maximizing utility subject to incentive compatibility, promise keeping and aggregate fea-

sibility constraints. For the case of log-log preferences the paper obtained sharp analytical

characterizations. In particular, the utility of consumption, the utility of leisure and next-

period promised values are all linear functions of current promised values. Over the business

cycle these functions shift vertically in such a way that the distribution of promised values

shifts horizontally while maintaining its shape. However, the cross-sectional dispersion of

consumption levels turns out to be procyclical while the cross-sectional dispersion of hours

worked is countercyclical. A key result of the paper is that the stationary business cycle

fluctuations of all macroeconomic variables are exactly the same under private information

as under full information.

For preferences other than the log-log case analytical results are no longer available.

To analyze these other cases the paper developed a novel method for computing equilibria

of economies with heterogeneous agents. Its basic strategy is to parametrize individual

decision rules as spline approximations and to keep long histories of the spline coefficients as

state variable. The model is then linearized with respect to these variables and solved. Two

advantages of the computational method over alternatives is that it approximates the current

distribution of promised values arbitrarily well and that the law of motion for this distribution

is almost exact. Applying this method to other preference specifications produces a similar

irrelevance result for aggregate dynamics. While the distribution of promised values may now

change its shape over the business cycle, the business cycle fluctuations of all macroeconomic

variables are still unaffected by the presence of private information.

The paper opens wide possibilities for future research. While the irrelevance result for

the general CRRA preferences was obtained numerically, it is an open question if it could
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be established analytically. While I ignore the answer to this question I speculate that if it

could the proof would be much more involved than in this paper because of fluctuations in

the shape of the distribution of promised values. Also, the irrelevance of private information

for aggregate dynamics was obtained under a very particular framework (although a very

interesting one, since the Mirlees structure considered constitutes a benchmark case in the

dynamic public finance literature). It is an open question if information frictions could

play an important role in aggregate dynamics in alternative settings, as in economies with

moral hazard in unemployment insurance. In fact, the computational method developed

here should prove extremely useful not only to evaluate these alternatives but to compute

equilibria of more general models with aggregate fluctuations and heterogeneous agents.

A Appendix

Assuming that the aggregate productivity level z is identical to zero and imposing the con-

dition that all variables are constant over time, equations (43)-(63) become the following:

0 = −euoLψL + ego + efψL, (141)

0 = −euoHψH − ego + efψH , (142)

0 = −qenoLψL + sLe
go + efsLψL, (143)

0 = −qenoHψH − sLego + efsHψH , (144)

0 = βσego + efβσψL − θσψLef+bwoL , (145)

0 = −βσego + efβσψH − θσψHef+bwoH , (146)

uoL + sLnoL + βσwoL = uoH + sLnoH + βσwoH , (147)

0 = {uoL + sLnoL + βσwoL}ψL + {uoH + sHnoH + βσwoH}ψH , (148)

0 = ψL − λeuyLψL + λξy, (149)

0 = ψH − λeuyHψH − λξy, (150)

0 = sLψL − λqenyLψL + λsLξy, (151)

0 = sHψH − λqenyHψH − λsLξy, (152)
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0 = βσψL + λβσξy − θλσψLef+bwyL , (153)

0 = βσψH − λβσξy − θλσψHef+bwyH , (154)

uyL + sLnyL + βσwyL = uyH + sLnyH + βσwyH , (155)

0 = q −Kγ (1− γ)H−γ (156)

0 = −1 + θ
[
γKγ−1H1−γ + 1− δ

]
(157)

0 = δK − I (158)

(1− σ)
∑
s

euysψs + V
∑
s

euosψs + I = KγH1−γ, (159)

H = (1− σ)
∑
s

(1− enys)ψs + σ − V
∑
s

enosψs, (160)

V = σV
∑
s

ebwosψs + (1− σ)σ
∑
s

ebwysψs. (161)

It is straightforward to show that equations (159)-(161) actually reduce to the following:28

(1− σ)
1

λ

θ

θ − σβ
+ I = KγH1−γ, (162)

H = 1− (1− σ)
s̄

λq

θ

θ − σβ
, (163)

V = (1− σ)σ
β

λef
1

(θ − σβ)
. (164)
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